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1 Description of Key Parameters of Experimentation

Model Architectures: We report the effectiveness of numerous architectures for our given task on
both formulations. These models include a simple Convolutional Neural Network to predict single
targets and fields, Visual Transformers, and U-Nets in conjunction to the additional deep methods
listed below.

Transfer Learning: Transfer learning is a broad category of techniques that involve reusing
knowledge from a source domain to improve performance on a target domain. In material science,
this can involve fine-tuning pre-trained models (e.g., deep neural networks) on simulated data, or
transferring knowledge from other related datasets. In these experiments, we experiment with transfer
learning in multiple models. We experiment with using pretrained image classification networks
such as VGG or ViT as an intermediate featurizer, which has shown positive results in past works
involving similar materials.

Instance Reweighting: Instance reweighting methods assign different weights to samples from
the source and target domains to mitigate the effects of domain shift. Techniques like importance
weighting and domain-balanced loss functions can be used to emphasize the importance of certain
samples during training. In some methods, where some small amount of data for the target texture is
available for training, these samples – or augmented data based on these samples – were upweighted.
When training labels for the target domain were not available, a separate classifier was trained to
distinguish between textures, then points were weighted according to logits corresponding to the
target texture. These classifiers were searched over the same architectures as our mean prediction
models, but trained on classifying source texture. When training labels were available for a few
samples of the target texture, these samples were simply upweighted.

Reconstruction Loss: In the training process for this approach, the model must reconstruct the input
from an intermediate representation of the neural network in addition to predicting the output. This
preserves relevant information in this representation, and can often act as a source of regularization.

Deep Domain Adaptation Methods: Domain Adversarial Neural Networks (DANNs) ? and
Multisource Domain Adaptation Networks (MDANs) ? are neural networks that consist of three
main components: a feature extractor, a label predictor, and a domain classifier. The domain classifier
attempts to distinguish between source and target domain data using the extracted features, while
the feature extractor and label predictor work together to minimize prediction error and maximize
the error of the domain classifier. This adversarial training process encourages the feature extractor
to learn domain-invariant representations, reducing the impact of domain shift. We also use an
implementation of Deep CORAL as an additional training loss, which aligns the covariances of the
features from each domain.
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2 Using a Single Microstructure from Target Texture

Another set of experiments included a single microstructure belonging to a target texture in the
training data. This is in line with cases where only a single experimental or simulated sample needs
to be obtained for use in a deep learning model. Models trained solely on this single microstructure
are prone to overfitting, thus we experiment with a number of data augmentation techniques and
model architectures to leverage the modestly-sized dataset of additional textures. Our experiments for
this are shown in table 1. These experiments demonstrate that additional training on other textures
is beneficial for learning stress relationships. A single microstructure likely does not have enough
varied data for a machine learning model to learn generalizeable relationships, particularly due to
the high levels of correlation between adjacent slices. Similar to our other stress field prediction
formulation, CNN performs better out of domain than U-Net architectures.

3 Hyperparameters

All hyperparameters were chosen via experimentation over a wide range of complexities and choices.
The reported parameters correspond to the best performing models.

3.1 Mean Prediction Models

CNN : 4 convolutional layers with kernel size 4, stride of 2. Channels: 3, 32, 64, 128, 256, 512.
Batch norm after each convolution, followed by a ReLU transform. Reduced to hidden sizes of 768
to 2000 to the output, with a dropout of 0.2.

VGG : Taking features from any layers led to around the same performance. Final global represen-
tation fed into a network of hidden size 2000, then to the output, with a dropout of 0.2.

ViT : Trained using adapters on top of the standard pretrained model. Images were resized to 224 x
224.

3.2 Field Prediction Models

CNN : 4 Convolutional layers with kernel of 3, stride of 1, padding of 1. Channels: 3, 64, 128, 256,
512. The output of the final convolution is fed through a feed forward network with a hidden size of
300 to the output for each pixel, with a dropout of 0.2.

U-Net : Convolutional layers with kernel of 3, stride of 1, padding of 1. Channels: 3, 64, 128, 256,
512. The output of the final convolution is fed through a feed forward network with a hidden size of
300 to the output for each pixel, with a dropout of 0.2. Each layer is downsampled using max pooling
to half the previous size.

ViT : Trained using adapters on top of the standard pretrained model. Images were resized to 224 x
224. The patch-wise features are expanded to 128x128 using transpose convolutional layers. The
output of the final convolution is fed through a feed forward network with a hidden size of 300 to the
output for each pixel, with a dropout of 0.2.

MDAN : The adversary is a feed forward network with a hidden size of 300 to the output for each
pixel, with a dropout of 0.2. The weight for domain confusion loss was 1.0.

4 Additional Figures
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Table 1: Mean squared error predicting stress field across 11 direction using a single microstruc-
ture from the target texture

Field Pred Model Target Texture
Mean 148.95
U-Net with Source Data Only 147.81
U-Net with Source Data and Target Structure 125.18
U-Net with Source Data and Target Structure + Reflections 125.52
U-Net with Source Data and Target Structure + Reweighting 125.58
CNN with Target Structure Only 115.53
CNN with Source Data and Target Structure + Reweighting 97.47
CNN with MDAN 116.72

Figure 1: Distribution of stress field by texture. Note that only a few textures are shown for data
clarity.

Figure 2: Mean squared error plot for stress field prediction
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Figure 3: Mean squared error over ablation between U-Net and CNN

Figure 4: Mean squared error over ViT patch sizes. Only the model labeled as pretrained used
pretrained weights, while others were trained on the dataset.
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Figure 5: Left: Histograms for the predicted values of a validation point from adjacent points
of the training set compared with the true distribution. Right: Histograms for a distant slice
of the training set compared with the true distribution. The U-Net predicted with relatively low
spread around a mean of around 0.75, while the CNN predicted with higher spread with a mean of
0.32. The true distribution had a mean centered at -0.27.
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