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ABSTRACT

Recent advances in Vision-Language-Action (VLA) models, powered by large
language models and reinforcement learning-based fine-tuning, have shown re-
markable progress in robotic manipulation. Existing methods often treat long-
horizon actions as linguistic sequences and apply trajectory-level optimization
methods such as Trajectory-wise Preference Optimization (TPO) or Proximal Pol-
icy Optimization (PPO), leading to coarse credit assignment and unstable training.
However, unlike language, where a unified semantic meaning is preserved de-
spite flexible sentence order, action trajectories progress through causally chained
stages with different learning difficulties. This motivates progressive stage opti-
mization. Thereby, we present Stage-Aware Reinforcement (STARE), a module
that decomposes a long-horizon action trajectory into semantically meaningful
stages and provides dense, interpretable, and stage-aligned reinforcement signals.
Integrating STARE into TPO and PPO, we yield Stage-Aware TPO (STA-TPO)
and Stage-Aware PPO (STA-PPO) for offline stage-wise preference and online
intra-stage interaction, respectively. Further building on supervised fine-tuning as
initialization, we propose the Imitation→Preference→Interaction (IPI), a serial
fine-tuning pipeline for improving action accuracy in VLA models. Experiments
on SimplerEnv and ManiSkill3 demonstrate substantial gains, achieving state-of-
the-art success rates of 98.0% on SimplerEnv and 96.4% on ManiSkill3 tasks. Our
code will be released publicly.

1 INTRODUCTION

Large-scale Vision–Language–Action (VLA) models (Zitkovich et al., 2023; Ghosh et al., 2024;
Kim et al., 2024; Black et al., 2024; 2025) have recently emerged as powerful generalist policies
for robotic manipulation. These models unify image, language, and action modalities within a
single architecture, enabling robots to interpret multimodal inputs and generate executable actions.
Pretrained on massive-scale multimodal data (O’Neill et al., 2024; Walke et al., 2023), VLA models
provide strong priors that can be efficiently adapted to diverse downstream tasks through fine-tuning,
avoiding the need for retraining from scratch.

Recent development of large-scale VLA models has been rapidly driven by the success of vi-
sion–language models (VLMs) and large language models (LLMs), as their output, i.e., action tra-
jectories and sentences, can both be represented as sequential data (Zitkovich et al., 2023; O’Neill
et al., 2024; Ghosh et al., 2024). Consequently, many developed fine-tuning techniques, such as
supervised fine-tuning (SFT), reinforcement learning from feedback (RLFT) (Ouyang et al., 2022),
direct preference optimization (DPO) (Rafailov et al., 2023), and Proximal Policy Optimization
(PPO) (Schulman et al., 2017), have been straightforwardly adopted for VLA models . However,
directly applying these methods to fine-tune on the whole action trajectories remains cumbersome
and often inefficient, as the large optimization space makes credit assignment across long-horizon
trajectories highly ambiguous. Unlike language reasoning, where optimization depends on a holis-
tic understanding of sentences without strict ordering, an action trajectory naturally decomposes
into semantically distinct stages that are causally chained and vary in difficulty. For example, as
a pick-and-place task illustrated in Figure 1, Reach must precede Grasp, which in turn precedes
Transport and Place. Reach and Transport are relatively easy with simple optimization objectives,
while Grasp and Place are more challenging as they require precise geometric constraints. Overall
task success hinges on correct progression through all stages. This fundamental characteristic moti-
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RGB Image Sentence 1 Sentence 2 Reach Grasp Transport Place

(a) Observation (b) Language Reasoning (c) Action Reasoning

Figure 1: Language Reasoning vs. Action Reasoning. Given an RGB image as the observation (a), the
language model (b) is asked to describe the content in the image, and produces Sentence 1 and Sentence 2. These
sentences are flexibly ordered and jointly contribute to the global meaning required to answer the question. In
contrast, the VLA model (c), when instructed to place the cup onto the plate, generates an action trajectory
composed of semantically meaningful stages (Reach→Grasp→Transport→Place), which follow a strict order
and vary in difficulty (with the more challenging stages shown in bold).

vates stage-aware objectives rather than monolithic trajectory-level optimization, which remains the
predominant paradigm in current VLA fine-tuning.

In this paper, we design Stage-Aware Reinforcement (STARE), a plug-in module that decomposes
action trajectories into progressive stages with dense reward signals based on task-specific seman-
tics. Given a trajectory, either in the collected data or during the model’s rollout, STARE employs a
stage separator to identify when stage transitions occur, based on the translation and orientation of
an end-effector. A stage calculator computes a stage cost and per-step rewards to evaluate how well
each stage is executed. In this way, STARE not only annotates stage-wise actions but also assesses
partial successes and failures within a trajectory. We leverage STARE for offline fine-tuning via
Stage-Aware Trajectory-Wise Preference Optimization (STA-TPO), which constructs pairwise pref-
erences at the stage level. By incorporating stage costs, STA-TPO propagates precise gradient sig-
nals to specific action stages, enabling progressive learning and credit assignment not only between
success and failure but also among varying degrees of success. For online fine-tuning, we introduce
STARE to Stage-Aware Proximal Policy Optimization (STA-PPO), which reshapes sparse terminal
rewards to dense interaction rewards. By providing this progressive feedback, STA-PPO stabilizes
intra-stage updates, especially for complex manipulation tasks that require dense guidance. Con-
ceptually, STA-TPO and STA-PPO are reminiscent of curriculum learning (Bengio et al., 2009),
where training is organized along an ordered sequence of subtasks to ease optimization and improve
generalization. However, unlike conventional curricula that progress strictly from easy to hard, our
stage-aware design enforces semantic continuity across stages, ensuring that optimization respects
causal dependencies in stages.

To sufficiently fine-tune a pre-trained VLA model with STA-TPO and STA-PPO, we integrate
these two algorithms with SFT as an initialization into a serial tri-step fine-tuning pipeline,
Imitation→Preference→Interaction (IPI). The IPI framework first finetunes a VLA model from ex-
pert demonstrations via SFT, then further optimizes it according to offline stage-aware preferences
using STA-TPO, and finally refines it based on stage-aware interaction in online environments us-
ing STA-PPO. In contrast to existing VLA fine-tuning strategies, IPI offers two key advantages:
first, it explicitly models the multi-stage structure of robot trajectories, enabling more precise credit
assignment rather than monolithic trajectory-level optimization (Zhang et al., 2024). Second, com-
pared to other methods that treat offline and online fine-tuning as disjoint processes (Zhang et al.,
2024; Lu et al., 2025a; Chen et al., 2025a), IPI unifies them under a single framework, enabling
stage-wise preference alignment and intra-stage interactions. Extensive experiments show that IPI
not only improves in-distribution success rates but also substantially enhances out-of-distribution
generalization, underscoring the importance of multi-stage reward design in VLA fine-tuning.

Our contributions are summarized as: (i) We design STARE, a rule-based module that decom-
poses trajectories into semantically meaningful stages, enabling fine-grained supervision beyond
trajectory-level signals. (ii) Based on (i), we propose stage-aware fine-tuning methods: STA-TPO
for offline stage-wise preference alignment and STA-PPO for online intra-stage interaction, both
providing more precise credit assignment and improved sample efficiency. (iii) We unify supervised
fine-tuning, STA-TPO, and STA-PPO into IPI, a serial tri-step pipeline for fine-tuning VLA mod-
els, and validate it on the benchmarking frameworks SimplerEnv and ManiSkill3, showing that IPI
achieves state-of-the-art success rates and substantially improves out-of-distribution generalization.
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2 RELATED WORK

Long-horizon Robotic Manipulation Tasks in RL Long-horizon robotic manipulation involves
completing a sequence of sub-tasks with frequent state and environment changes. Applying RL to
such tasks is challenging due to sparse rewards, credit assignment, error accumulation, and high-
dimensional state spaces. To address these issues, Plan-Seq-Learn (Dalal et al., 2024) leverages lan-
guage models for high-level planning and RL for low-level control, enabling end-to-end execution
from visual input to complex tasks. AC3 (Yang et al., 2025) learns continuous action chunks with in-
trinsic rewards to mitigate sparsity. DEMO3 (Escoriza et al., 2025) augments limited demonstrations
with a world model and stage-wise dense rewards to improve sample efficiency. RoboHorizon (Chen
et al., 2025b) employs LLMs to generate sub-goals and rewards, integrated with multi-view world
models and planning to achieve high success rates. ARCH (Sun et al., 2025) combines high-level
policy selection with a primitive skill library to tackle contact-rich assembly. Building on these in-
spirations that divide goals into sub-goals, we take a further step with stage-aware reinforcement,
decomposing trajectories into semantically meaningful stages. This provides denser feedback and
enables progressive optimization, making RL more effective for long-horizon VLA tasks.

RL Fine-tuning for LLMs RL fine-tuning is a widely used approach for aligning LLMs. The
most prominent method is Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al.,
2022), where a reward model trained from human preference data guides algorithms such as policy
gradient or PPO to align outputs with human expectations. While highly successful, RLHF suffers
from costly data collection and unstable training. To mitigate these issues, DPO (Rafailov et al.,
2023) eliminates the reward model by directly optimizing on preference comparisons, simplifying
training and improving stability. Further variants such as RLAIF (Lee et al., 2023) and RAFT (Dong
et al., 2023) refine the framework. As a subclass of LLMs, Large Reasoning Models (LRMs) (Zhang
et al., 2025b) are designed for multi-step reasoning and face challenges akin to long-horizon VLA
tasks, including sparse rewards and difficult credit assignment. DeepSeek-R1 (Guo et al., 2025a)
tackles these issues with GRPO, a group-wise relative ranking algorithm that strengthens multi-step
reasoning. This motivates our stage-aware reinforcement approach for VLA models.

RL Fine-tuning for VLAs Recent studies explore RL as a fine-tuning paradigm for VLA mod-
els. GRAPE (Zhang et al., 2024) adapts DPO (Rafailov et al., 2023) to trajectory-level preferences
to propose TPO, while ConRFT (Chen et al., 2025a) alternates RL and SFT in real-world settings.
ReinboT (Zhang et al., 2025a) designs dense rewards, and Guo et al. (2025b) propose an iterative
SFT–RL pipeline to reduce instability and cost. RIPT-VLA (Tan et al., 2025) applies RLOO (Ahma-
dian et al., 2024) for online training, RL4VLA (Liu et al., 2025) studies RL-driven generalization,
VLA-RL (Lu et al., 2025a) applies PPO, and RFTF (Shu et al., 2025) introduces value models for
dense reward estimation. Despite their promise, these methods typically optimize at the trajectory
level, suffering from sparse rewards, coarse credit assignment, and difficult exploration in long-
horizon manipulation. In contrast, our stage-aware RL decomposes trajectories into semantically
meaningful stages and assigns stage-level rewards, providing denser, interpretable feedback and
enabling progressive optimization for complex robotic tasks.

3 PRELIMINARY

3.1 PROBLEM FORMULATION

We consider a language-conditioned POMDP problem defined by the tuple {S,A, T ,L,R, γ},
where S is the state space, A is the action space, T : S × A → S is the dynamic function, L
is the space of language instruction, R : S × L → R is the reward function, and γ is a scale factor
with 0 < γ < 1. The goal of a VLA model is to find a policy πθ : S × L → A, which gener-
ates action trajectories maximizing the expected accumulated reward, or return for each task l, i.e.
R(π, l) = Ea∼π[

∑
t γ

trt].

Fine-tuning a VLA model adapts a pre-trained πθ to new tasks so that the resulting policy πθ′

maximizes expected return under the POMDP. This can be done through imitation for aligning with
expert demonstrations, preference for refining trajectories via learned comparisons, or reinforcement
optimizing long-term rewards.
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3.2 TRAJECTORY-WISE PREFERENCE OPTIMIZATION (TPO)

Direct Preference Optimization (DPO) (Rafailov et al., 2023) is a recent fine-tuning technique for
large language models that directly aligns a policy with preference data, bypassing explicit reward
modeling. Extending this idea to fine-tuning VLA models yields TPO (Zhang et al., 2024): the
outputs are action trajectories τ = {(st, at)}Tt=1 rather than text sequences. TPO treats each trajec-
tory as a single sequence and learns from pairwise comparisons of successful and failed trajectories
(τ+, τ−) generated under the same instruction. The policy is updated to prefer τ+ over τ− by
minimizing

LTPO(θ) = −E(τ+,τ−)

[
log σ

(
β(q(τ+)− q(τ−))

)]
, (1a)

q(τ) =
1

T

T∑
t=1

(
log πθ′(at|st)− log πθ(at|st)

)
. (1b)

where σ(·) is the sigmoid function, β controls the strength of preference alignment, st ∈ S and
at ∈ A denote the environment state and action at timestep t, and q(·) measures the normalized log-
likelihood ratio of a trajectory under policy πθ′ relative to πθ. LTPO is minimized when the model
increases q(τ+) relative to q(τ−), i.e., when the likelihood of successful trajectories exceeds failed
ones.

While TPO provides a direct mechanism to apply preference learning to long-horizon control, it
suffers from credit assignment ambiguity: preferences are assigned to full trajectories, making it
difficult to determine which specific stage contributed to the preference signal. Moreover, such a
binary preference limits optimization to coarse distinctions between successful and failed rollouts,
without capturing relative quality among partially successful trajectories. These limitations motivate
(STA-TPO), which decomposes trajectories into stages and aligns hierarchical preferences at the
stage level, enabling finer-grained optimization.

3.3 PROXIMAL POLICY OPTIMIZATION (PPO)

PPO (Schulman et al., 2017) is one of the most widely used online reinforcement learning algo-
rithms, known for its balance of sample efficiency and training stability. PPO improves policy
gradient methods by introducing a clipped surrogate objective that prevents excessively large policy
updates, thereby stabilizing training. Given an old policy πθ, the clipped objective is

LPPO(θ) = Et

[
min

(
pt(θ)GAE(rt), clip(pt(θ), 1− ϵ, 1 + ϵ)GAE(rt)

)]
, (2)

where pt(θ) = πθ′(at|st)/πθ(at|st) is the likelihood ratio between the new and old policies, and
ϵ is a clipping parameter. GAE(·) is generalized advantage estimator (Schulman et al., 2015) that
estimate the advantage value based on rewards rt.

In the context of fine-tuning VLA models, PPO is commonly used to fine-tune policies with sparse
rt, but such signals often limit sample efficiency and provide insufficient guidance for complex,
long-horizon tasks. This motivates STA-PPO, which integrates stage-aware reward shaping to trans-
form sparse terminal rewards into dense progressive signals for more efficient fine-tuning.

4 METHOD

We begin by introducing Stage-Aware Reinforcement (STARE), which decomposes long-horizon
action trajectories into semantically meaningful stages, each equipped with stage-wise costs
and intra-stage rewards. Building on this foundation, we develop offline and online learn-
ing algorithms for progressive stage-wise finetuning: Stage-Aware Trajectory Preference Opti-
mization (STA-TPO) and Stage-Aware Proximal Policy Optimization (STA-PPO). Finally, we
integrate STA-TPO and STA-PPO with supervised fine-tuning (SFT) into a serial pipeline,
Imitation→Preference→Exploration (IPI), to achieve sufficient fine-tuning of VLA models.

4.1 STAGE-AWARE REINFORCEMENT (STARE)

We propose STARE, a module that decomposes long-horizon action trajectories into semantically
meaningful stages defined by task-specific rules. STARE consists of two components: (i) a stage
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separator, which determines when stage transitions occur by detecting task-relevant events, and (ii)
a stage calculator, which evaluates how well each stage is executed using stage-wise costs and dense
intra-stage rewards.

Stage Separator Stage boundaries are determined by semantically meaningful manipulation
events rather than arbitrary temporal cuts. Given the whole action trajectory τ , we intend to di-
vide it into K stages by defining semantic boundaries and assigning each global timestep t a stage
label k ∈ {1, . . . ,K}. Following an event-driven rule, the entry condition of stage k coincides with
the terminal condition of stage k − 1, ensuring progressive continuity across stages. For instance, a
pick-and-place task can be separated into four stages: Reach→ Grasp→ Transport→ Place.

Stage segmentation thus reduces to detecting the onset of each stage based on geometric con-
straints, defined by thresholds δk on the translation and orientation signals of the end-effector. These
thresholds set binary environment flags (e.g., grasped, on-target). For example: a Reach→ Grasp
transition occurs when the end-effector contacts the object; Grasp → Transport occurs when the
grasped object is lifted above a small height threshold; Transport → Place occurs when the object
is within a distance margin of the goal position; and Place → Success occurs when the object is
released and remains stably in the goal region (see Supplementary Material E for other segmenta-
tion examples). Thereby, we group steps with the same stage label into the k-th trajectory segment
τ (k) = {(st, at) | g(t) = k}Tk

t=1, where st ∈ S , at ∈ A, and Tk is the number of timesteps as-
signed to stage k. Here, g : N→ {1, . . . ,K} is a stage assignment function mapping each timestep
t to its corresponding stage index k. The full trajectory can then be expressed as the stage-wise
decomposition τ 7→ {τ (i)}Ki=1.

Stage Calculator Given the stage segments produced by the stage separator, the stage calculator
computes both stage-wise costs and intra-stage dense rewards by measuring the relation between the
end-effector and relevant targets in the environment. The specific forms of cost and reward depend
on the goal of each stage. We illustrate with Reach as the k-th stage:

(i) Stage cost aggregation. We define the cost function ℓk(·) as the mean Euclidean distance over
Tk between the end-effector and the target object from start to the end of Reach:

ℓk(τ
(k)) =

1

Tk

Tk∑
t=1

∥xee(t)− xobj(t)∥2, (3)

where xee(t) ∈ R3 denotes the Cartesian position of the end-effector at time step t, and xobj(t) ∈ R3

is the target position of the object. By definition, ℓk is a non-negative value measuring the deviation
from the target: the better the τ (k), the smaller the ℓk. Detailed cost functions for other stage
categories are provided in the Supplementary Material D.

(ii) Intra-stage reward shaping. To provide dense guidance, we adopt potential-based reward
shaping (Kim et al., 2025; Ng et al., 1999). For active stage k, we define a per-timestep potential
Φkt

that captures the normalized progress of state st. Specifically, for Reach, we use:

Φkt
(st) = σ

(
1− ∥xee(t)−xobj(t)∥

dk

)
, (4)

where Φkt
(st) ∈ [0, 1], dk is a normalization length scale, and σ(·) is a sigmoid function. This

provides smooth shaping rewards that encourage the end-effector to progressively reach the target
(see detailed potential functions for other stages in the Supplementary Material E). Based on Φkt

,
the shaped reward r′t augments the sparse reward rt as:

r′t = rt + γ Φkt+1
(st+1) − Φkt

(st). (5)

4.2 FROM STARE TO STA-TPO

Unlike standard TPO (Zhang et al., 2024), which aggregates preferences only at the level of entire
trajectories, STA-TPO leverages STARE to segment trajectories into progressive stages and perform
stage-wise preference alignment. A detailed algorithm is shown in Supplementary Material A.1. A
pair comparison of stage samples (τ (k)+, τ (k)−) exists only when the previous stage τ (k−1) has
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been successfully completed, ensuring progressive consistency across stages. In addition, the stage
cost ℓk(τ) is incorporated as a penalty term in equation 1b, transforming q into q̂:

q̂(τ (k)) = q(τ (k))− λℓk(τ
(k)), (6)

where λ is the penalty weight. The original objective LTPO in equation 1a thereby extends to
LSTA-TPO. Compared to equation 1, which optimizes the model only with binary trajectory-level
preferences (success vs. failure), q̂ introduces a hierarchical signal to LSTA-TPO. Even among suc-
cessful stages τ (k)+ across different trajectories, those with lower penalties ℓk(τ (k)) yield higher q̂,
while less optimal stages receive lower q̂. This design enables credit assignment not only between
success and failure but also among varying degrees of success, thereby providing finer-grained su-
pervision for learning optimal behaviors.

4.3 FROM STARE TO STA-PPO

For online RL fine-tuning, we integrate STARE directly into rollouts. The stage separator deter-
mines the stage transition on the fly. At each time step within the stage, the stage calculator pro-
duces shaped reward r′t, turning LPPO in equation 2. to LSTA-PPO. Finally, policy parameters θ are
updated by minimizing LSTA-PPO. By replacing rt with r′t, STA-PPO provides denser, stage-aligned
feedback that accelerates policy learning in long-horizon, sparse-reward tasks. A detailed algorithm
is shown in Supplementary Material A.2.

4.4 STA-TPO AND STA-PPO FOR SERIAL FINE-TUNING

Existing works often apply offline preference-based optimization (Zhang et al., 2024) and online RL
fine-tuning (Liu et al., 2025; Li et al., 2025) separately. Besides, while we are now able to jointly
address offline preference alignment and online reinforcement learning by STA-TPO and STA-
PPO, a complete fine-tuning framework for VLA models must also incorporate imitation learning
to initialize a strong policy prior.

Thereby, we propose Imitation→Preference→Interaction (IPI), a three-step fine-tuning pipeline. We
first warm up the policy safely from demonstrations by SFT. Then we apply STA-TPO to offline
refine the policy. Finally, we apply STA-PPO to further enhance robustness through online explo-
ration. Thereby, IPI integrates supervised, preference-based, and exploration signals into a coherent
progression, yielding more sample-efficient and more robust fine-tuning of VLA models.

5 EXPERIMENTS

Figure 2: Two simulated benchmarks. We show experiment setups and example tasks involved.

Benchmarks & Baselines. We evaluate our approach on two families of robotic manipulation
environments, as shown in Figure 2. The first is SimplerEnv (Li et al., 2024b) with the Wid-
owX arm, where we focus on the four canonical single-object tasks in the SimplerEnv-WidowX
split. The second is ManiSkill3 (Tao et al., 2025) with the Franka robot (Haddadin, 2024), includ-
ing StackCube and three contact-rich tasks (PushCube, PullCube, and LiftPegUpright) to validate
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Table 1: Evaluation on SimplerEnv with WidowX Robot tasks. We report the final success rate
and grasp success rate shown in parentheses (Success % (Grasp %)). Our method, IPI, uses RL fine-
tuning after an initial SFT phase. The ‘(+X%)’ indicates the improvement over a relevant baseline.

Methods Robotic Task Avg.
Success

Rate (%)Put Spoon
on Towel

Put Carrot
on Plate

Stack Green
on Yellow

Put Eggplant
in Basket

Other Methods
RT-1-X (Brohan et al., 2023) 0.0 (16.7) 4.2 (20.8) 0.0 (8.3) 0.0 (0.0) 1.1
Octo-Base (Ghosh et al., 2024) 12.5 (34.7) 8.3 (52.8) 0.0 (31.9) 43.1 (66.7) 16.0
Octo-Small (Ghosh et al.,
2024)

47.2 (77.8) 9.7 (27.8) 4.2 (40.3) 56.9 (87.5) 30.0

RoboVLM (Li et al., 2024a) 20.8 (37.5) 25.0 (33.3) 8.3 (8.3) 0.0 (0.0) 13.5
SpatialVLA (Qu et al., 2025) 20.8 (25.0) 20.8 (41.7) 25.0 (58.3) 70.8 (79.2) 34.4
SOFAR (Qi et al., 2025) 58.3 (62.5) 66.7 (75.0) 70.8 (91.7) 37.5 (66.7) 58.3

OpenVLA-7B Based Methods
SFT 43.7(70.3) 52.7(74.7) 21.3(59.0) 49.0(67.4) 41.7
GRAPE (Zhang et al., 2024) 44.3(72.0) 55.0(85.3) 22.7(53.3) 53.7(78.7) 43.9
SFT→ STA-TPO(ours) 51.0(85.7) 57.3(82.3) 43.7(78.3) 54.3(85.7) 51.6 (+17.5)

RL4VLA (Liu et al., 2025) 93.0 (98.3) 91.3 (96.7) 92.0 (97.0) 93.7 (98.3) 92.5
SFT→ STA-PPO(ours) 94.3 (97.7) 95.3 (99.0) 93.7 (98.3) 95.0 (98.7) 94.6 (+2.1)

IPI (ours) 98.0 (99.0) 98.5 (99.5) 98.0 (99.0) 97.5 (99.0) 98.0

generality beyond pick-and-place and assess performance under challenging non-trivial manipula-
tion. We compare against widely used VLA baselines (RT-1-X, Octo-Base/Small, RoboVLM, Spa-
tialVLA), the strong offline preference fine-tuning method GRAPE, and the RL fine-tuning baseline
RL4VLA (Liu et al., 2025). For fairness, all methods fine-tune the OpenVLA-7B backbone (Kim
et al., 2024), and we additionally evaluate our proposed STA-TPO, STA-PPO, and the full IPI.
We report average success over 300 evaluation episodes per method and setting. Unless otherwise
stated, hyperparameters are shared across methods when applicable (detailed in Appendix).

Main Results. We begin by presenting overall comparisons on two widely used families of ma-
nipulation benchmarks. Table 1 reports grasp and final success rates on the four representative
SimplerEnv-WidowX tasks, while Table 2 reports results on selected ManiSkill3-Franka tasks
including both stacking and contact-rich manipulation.

Across all benchmarks, existing VLA baselines exhibit limited performance (e.g., average success
rates < 60%). Recent RL fine-tuning approaches, such as RL4VLA (Liu et al., 2025) achieve
strong results (92.6% on SimplerEnv-WidowX, 70.5% on ManiSkill3). Our proposed IPI further
improves to 98.0% and 96.4%, outperforming prior state-of-the-art methods by +5.4 and +25.9
points, nearly solving these benchmark tasks. Our IPI is a fully implemented and executed pipeline
obtained from actual end-to-end runs, demonstrating that each stage can be integrated seamlessly
and that the complete framework achieves the strongest overall performance.

PPO vs STA-PPO While PPO improves over SFT, it often stagnates on tasks requiring high pre-
cision or contact-rich interactions. In contrast, STA-PPO consistently accelerates convergence and
achieves higher asymptotic performance by leveraging stage-aware signals. Figure 3 presents results
across eight representative tasks from SimplerEnv-WidowX and ManiSkill3. The most challenging
tasks—LiftPegUpright and StackGreenOnYellow—exhibit the largest performance gaps, underscor-
ing the importance of incorporating stage-aware signals in long-horizon, precision-critical manip-
ulation. By comparison, for short-horizon pick-and-place tasks (e.g., PutCarrotOnPlate, PutEgg-
plantInBasket) or simple push-and-pull tasks, PPO and STA-PPO achieve similar final success rates,
with STA-PPO mainly contributing faster convergence and reduced variance. Overall, these results
suggest that stage-aware guidance is particularly crucial when strict alignment accuracy or multi-
stage coordination is required, whereas simpler tasks can often be solved effectively with standard
reinforcement learning.

We compare SFT, PPO, STA-PPO, and our full IPI method. While PPO improves over SFT, it often
stagnates in high-precision (e.g., StackCube) or contact-rich settings (e.g., LiftPegUpright). STA-
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Table 2: Evaluation on selected ManiSkill3 Franka tasks. RoboFAC-7B is a VLM method Lu
et al. (2025b), Octo and SmolVLA use 1000 trajectory samples for SFT per task while OpenVLA-
7B based methods use 100 trajectory samples for SFT and 50 trajectory preference pairs for TPO
and STA-TPO, detailed in Appendix C.2.

Methods Robotic Task Avg.
Success

Rate (%)Stack
Cube

Push
Cube

Pull
Cube

LiftPeg
Upright

Other Methods
Octo (fine-tuning) (Ghosh et al., 2024) 1.0 67.0 90.0 0.0 39.5
SmolVLA (fine-tuning) (Shukor et al., 2025) 12.7 86.3 90.7 16.3 51.5
RoboFAC-7B (Lu et al., 2025b) 85.5 80.4 80.7 84.0 82.7

OpenVLA-7B Based Methods
SFT 12.0 11.7 31.0 5.3 15.0
GRAPE (Zhang et al., 2024) 15.7 13.3 35.3 7.7 15.5
SFT→STA-TPO (ours) 19.3 16.0 35.7 12.3 21.9 (+6.4)

RL4VLA (Liu et al., 2025) 64.0 95.7 90.3 32.0 70.5
SFT→STA-PPO (ours) 92.7 96.0 95.3 89.7 93.4 (+22.9)

IPI (ours) 94.3 97.3 98.5 95.5 96.4

Si
m

pl
er

E
nv

M
an

iS
ki

ll3

PutCarrotOnPlate PutEggplantInBasket PutSpoonOnTowel StackGreenOnYellow

PushCube PullCube StackCube LiftPegUpright

PPO STA-PPO SFT IPI

Figure 3: Comparison of learning curves across eight representative tasks from SimplerEnv and ManiSkill3.
The y-axis denotes the success rate, and the x-axis shows the interaction environment steps (in thousands).

PPO accelerates convergence and achieves higher asymptotic performance by leveraging stage-
aware signals. Notably, the most challenging tasks, LiftPegUpright and StackCube, show the clearest
benefit, highlighting the importance of incorporating stage-awareness for solving complex tasks.

After the benchmark-level comparison in Tables 1 and 2, we note that while the overall improve-
ments of STA-PPO and STA-TPO over prior baselines are consistent, the performance gap is most
pronounced on two tasks: (1) Cube stacking tasks from both the envs, which requires precise align-
ment in placing stage, and (2) LiftPegUpright from ManiSkill3, which demands accurate orientation
control after lifting. To better understand where these gains originate, we decompose trajectories
into semantic stages and evaluate conditional stage success (P (stagek | stagek−1)), which mea-
sures how reliably a policy completes a stage given that all previous stages have been successful.

Figure 4 shows STA-TPO provides clear advantages over TPO, with the largest improvements ap-
pearing in the grasp, and place and upright stages. These stages are particularly decisive for the
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SFT SFT+TPO SFT+STA-TPO
StackGreenOnYellow LiftPegUpright

Reach
Grasp|Reach

Transport|Grasp

Place|Transport
Reach

Grasp|Reach
Lift|Grasp

Upright|Lift

Figure 4: Offline Stage-wise ablation on two tasks. We report stage completion rates (%) for Stack-
GreenonYellow (SimplerEnv) and LiftPegUpright (ManiSkill3). Compared with TPO, STA-TPO achieves sig-
nificant gains, particularly in the grasp and place/upright stages, which are critical for final success.

Fi
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STA-PPO ablations SFT+PPO baseline

STA-PPO Stage Toggle - StackCube STA-PPO Stage Toggle - LiftPegUpright

All STA
-STA @ Reach

-STA @ Grasp

-STA @ Transport

-STA @ Place
All STA

-STA @ Reach
-STA @ Grasp

-STA @ Lift
-STA @ Upright

Figure 5: Stage toggle ablation of STA-PPO. We evaluate the effect of selectively disabling stage-aware re-
inforcement signals on two representative tasks: StackGreenonYellow (SimplerEnv) and LiftPegUpright (Man-
iSkill3). The All STA setting achieves the best performance, while disabling critical stages (Place in stacking,
Upright in peg lifting) causes the largest performance drops.

final outcome, explaining why the overall success rate improvements are disproportionately large
for these two tasks.

Ablations study To further dissect the contributions of stage-aware reinforcement, we conduct a
stage toggle ablation where the STA signal is selectively removed at different phases of the manipu-
lation in STA-PPO. As shown in Figure 5, disabling STA at early stages (e.g., reach or grasp) only
leads to moderate drops, since later corrective actions can partially recover performance. In con-
trast, removing STARE at the final precision-critical phases (e.g., Place in stacking and Upright in
peg lifting) causes the largest degradation, reducing success rates by more than 20%. This analysis
highlights that STA guidance is especially valuable at stages where geometric accuracy and stability
directly determine task completion.

6 CONCLUSION

We presented Stage-Aware Reinforcement (STARE), a plug-in module that decomposes trajecto-
ries into semantically meaningful stages and provides stage-level reinforcement signals. Building
on this, we introduced Stage-Aware TPO (STA-TPO) and PPO (STA-PPO) for offline stage-wise
preference alignment and online intra-stage interaction, and integrated them with supervised fine-
tuning into the Imitation→Preference→interaction (IPI) pipeline. Experiments on SimplerEnv and
ManiSkill3 demonstrate that IPI achieves state-of-the-art success rates and improved generalization.
Our results highlight the importance of stage-aware credit assignment for efficient VLA fine-tuning
and point toward promising directions in long-horizon robotic learning.
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Reproducibility Statement We have made extensive efforts to ensure the reproducibility of our
work. We detail of our proposed module, STARE, in Sec. 4.1. Then we illustrate how we apply
STARE in Sec. 4.2 and Sec. 4.3 to yield STA-TPO and STA-PPO. We provided cost functions and
potential functions used in STA-TPO and STA-PPO in the Supplementary Material D and E. We
also provide algorithms of STA-TPO and STA-PPO in the Supplementary Material A. Training
settings and evaluation protocols are provided in the Supplementary Material B. All datasets used
(SimplerEnv and ManiSkill3) are publicly available. We provide experimental visualizations and
more at https://sites.google.com/view/stare-vla. Finally, we will provide our
code and instructions upon acceptance.

LLM Usage We used ChatGPT solely as a writing assistant for grammar checking and language
polishing of the manuscript. All research ideas, experimental design, implementations, analyses,
and conclusions were conceived and conducted entirely by the authors. Separately, our method em-
ploys OpenVLA (Kim et al., 2024) (which includes LLM backbones (Karamcheti et al., 2024)) as a
standard pretrained model component for VLA modeling. This use is analogous to employing any
pretrained backbone and does not involve LLM assistance in research ideation or manuscript draft-
ing. No LLMs were used to generate technical content or to determine experimental methodology.
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Supplementary Material
We provide experimental visualizations and more at https://sites.google.com/view/
stare-vla.

A DETAILED ALGORITHMS

Algorithm 1 STA-TPO (offline)

Require: Preference pairs {(τ+, τ−)} under same instruction; reference policy πθ; STARE; stage
penalty weight λ; temperature β; learning rate η.

Ensure: Updated policy πθ′ .
1: while not converged do
2: Sample minibatch B = {(τ+, τ−)}.
3: for all τ ∈ {τ+, τ−} in B do
4: Stage segmentation & costs: {τ (k), ℓk(τ (k))}Kk=1 ← STARE(τ).
5: Stage scores: For each k, first compute

q(τ (k))← 1

Tk

∑
t∈Tk

(
log πθ′(at|st)− log πθ(at|st)

)
. (cf. equation 1b)

6: Then add stage costs: q̂(τ (k))← q(τ (k))− λ ℓk(τ
(k)).

7: end for
8: Preference loss: Compute

LSTA-TPO ← −
1

|B|
∑

(τ+,τ−)∈B

1

K

K∑
k=1

log σ
(
β
(
q̂(τ (k)+)− q̂(τ (k)−)

))
. (cf. equation 1a)

9: Policy update: θ′ ← θ′ − η∇θ′LSTA-TPO.
10: end while

Algorithm 2 STA-PPO (online)

Require: Simulation Env; Behavior policy πθ; STARE; horizon T ; PPO epochs E; discount γ;
GAE parameter; clip ϵ; step size η.

Ensure: Updated policy πθ′ .
1: while not converged do
2: Rollout: collect {(st, at, rt, log πθ(at|st))}T−1

t=0 in Env.
3: Online stage labels & potentials:
4: for t = 0 to T − 1 do
5: Detect current stage k = g(t) via stage separator in STARE (event rules).
6: Compute potential Φkt(st) by the stage calculator in STARE.
7: end for
8: Shaped rewards:
9: for t = 0 to T − 1 do

10: r′t ← rt + γ Φkt+1
(st+1)− Φkt

(st) ▷ Potential-based shaping
11: end for
12: for e = 1 to E do ▷ PPO updates
13: Compute ratio pt(θ

′) = exp(log πθ′(at|st)− log πθ(at|st)).
14: Interaction loss:

LSTA-PPO ← Et

[
min

(
pt(θ

′)GAE(r′t), clip(pt(θ
′), 1− ϵ, 1 + ϵ)GAE(r′t)

)]
.

(cf. equation 2)
15: Update: θ′ ← θ′ + η∇θ′LSTA-PPO.
16: end for
17: end while

1
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B TRAINING SETTINGS AND EVALUATION PROTOCOLS

B.1 SUPERVISED FINE-TUNING (SFT)

We initialize from the pretrained OpenVLA backbone and optimize the action prediction objective
with AdamW. The learning rate is set to 1e-5 and training runs for several tens of thousands of steps.

B.2 TRAJECTORY PREFERENCE OPTIMIZATION (TPO / STA-TPO)

For preference optimization, we construct pairs of successful and failed trajectories and train the
policy against a frozen reference model. We use AdamW with a learning rate of 2e-5, and train for
several epochs. STA-TPO further incorporates stage-wise margins derived from stage calculators.

B.3 REINFORCEMENT LEARNING: PPO

We adopt standard PPO with parallel simulation environments. We use discount factor 0.99 and
GAE parameter 0.95. Optimization uses AdamW with a policy learning rate of 1e-4 and a value
head learning rate of 3e-3. Training proceeds for millions of environment steps.

B.4 REINFORCEMENT LEARNING: STA-PPO

STA-PPO shares the same setup as PPO but is augmented with stage-aware signals from the envi-
ronment. This provides additional supervision during training and stage-level logging during evalu-
ation.

B.5 EVALUATION PROTOCOLS

We evaluate on both SimplerEnv-WidowX and ManiSkill3 benchmarks. Each method is tested over
300 evaluation episodes with deterministic action decoding. A trial is considered successful if the
environment-defined condition is met within the horizon (60 steps for SimplerEnv and 30 steps
for ManiSkill3). We report average success rates over 5 random seeds, and additionally compute
conditional stage success to analyze where policies fail or succeed.

C EXPERIMENTAL SETUP AND IMPLEMENTATION DETAILS

C.1 ENVIRONMENT AND TASKS

SimplerEnv (Li et al., 2024b) provides a set of real-to-sim environments that enable efficient, scal-
able, and informative evaluation of robotic policies in simulation, serving as a practical alternative
to real-world experiments.

In the WidowX + Bridge setting, we evaluate the following tasks:

• put the spoon on the towel: The spoon is initially placed at one corner of a 15 cm square
region on the tabletop, with a towel located at another corner. The spoon orientation alter-
nates between horizontal and vertical across trials, requiring the robot to adapt its gripper
pose. In total, 24 trials are performed.

• put carrot on plate: This task mirrors the previous setup, with the spoon replaced by a
carrot and the towel replaced by a plate.

• stack the green block on the yellow block: A green block and a yellow block (each 3 cm
in size) are placed at different corners of a tabletop square. Two square sizes (10 cm and
20 cm side length) are used, resulting in 24 trials.

• put eggplant into yellow basket: An eggplant is placed randomly in the right basin of
a sink, while a yellow basket is positioned in the left basin. The eggplant’s location and
orientation vary across trials but remain graspable (avoiding sink edges). A total of 24 trials
are conducted.
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ManiSkill3 Tasks (Tao et al., 2025) are designed as contact-rich robotic manipulation benchmarks
with diverse object interactions and long-horizon challenges. In our evaluation, we select the fol-
lowing four tasks with the Franka robot:

• stack cube: The robot is required to stack one cube on top of another. The cubes are
initially placed at separate locations on the table, requiring precise grasping, lifting, and
alignment to achieve a stable stack.

• push cube: A cube is placed on the tabletop, and the robot must push it toward a designated
target region. This task emphasizes contact-rich control and requires smooth trajectory
execution.

• pull cube: Similar to the push task, but the robot must pull the cube by grasping it from
one side and dragging it into the target region, demanding stable grasping under sliding
contact.

• lift peg upright: The robot is given a peg lying flat on the table. It must first grasp the peg,
lift it, and reorient it to stand vertically upright. This task is particularly challenging due to
the orientation constraints and precision required to maintain the peg’s balance.

C.2 DATA COLLECTION

Our data collection process, which is similar to the methodology used in the main paper, is designed
to generate high-quality data for both supervised and preference-based learning. All data is collected
specifically for the selected ManiSkill3 tasks.

• Expert Demonstrations: For each task, we generate 100 high-quality demonstration
trajectories. These trajectories are produced using the MPLib motion planner, ensuring
kinematically feasible and efficient paths to task completion. Following the findings of the
main paper, we apply an action filtering technique to this data, removing idle actions where
the end-effector pose changes by a negligible amount. This preprocessing step is crucial
for mitigating the issue of trained SFT policies getting stuck during execution.

• Preference Pairs: For methods requiring preference data (e.g., TPO), we generate 50 tra-
jectory preference pairs per task. In the case of SimplerEnv, trajectories are sampled
for each task using the Octo model. These pairs are obtained by sampling two trajecto-
ries from the Octo-collected dataset, and assigning preference labels based on cumulative
rewards (e.g., successful completion vs. failure).

D STAGE SCORE CALCULATION ACROSS TASKS

Notation. A trajectory τ = {(st, at)}Tt=1 is segmented into stages τ (k) with length Tk = |τ (k)|.
At time t, we denote: - xobj(t) ∈ R3: object position, - Robj(t) ∈ SO(3): object orientation, -
xee(t) ∈ R3: end-effector position, - xgoal, Rgoal: task goal position/orientation.

We use ∥ · ∥ for Euclidean distance and drot(·, ·) for rotation error.

Reach. The average Euclidean distance between the end-effector and the goal:

ℓReach(τ) =
1

Tk

∑
t∈τ(k)

∥xee(t)− xgoal∥.

Grasp. Penalizes poor contact quality and object slipping during grasp. With Contact alignment
error between gripper and object dcontact(t) and binary slip flag slip(t) ∈ {0, 1} (0 = stable, 1 =
slipping):

ℓGrasp(τ) =
1

Tk

∑
t∈τ(k)

(
α1dcontact(t) + α2 slip(t)

)
.

Transport. Move the object along a reference trajectory. With reference path xref(t):

ℓTransport(τ) =
1

Tk

∑
t∈τ(k)

∥xobj(t)− xref(t)∥.

3
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Contact. (Push/Pull) Maintain continuous contact and minimize sideways deviation. With
contact(t) indicating whether the robot maintains contact with the object (1 = contact, 0 = no con-
tact), and d⊥(t) indicating error orthogonal to the desired push/pull direction:

ℓContact(τ) =
1

Tk

∑
t∈τ(k)

(
αc(1− contact(t)) + α⊥d⊥(t)

)
.

Push / Pull. Ensure the object is pushed or pulled straight to the goal. In order to penalize lateral
motion that deviates from the desired pushing/pulling direction v̂, we define perpendicular motion
∆x⊥(t) = xobj(t)− xobj(t− 1)− ((xobj(t)− xobj(t− 1))⊤v̂)v̂:

ℓPush/Pull(τ) = ∥xobj(Tk)− xgoal∥+ λ⊥
1

Tk

∑
t∈τ(k)

∥∆x⊥(t)∥.

Lift. Lift the object above a specified minimum height. With current object height h(t) and mini-
mum target height threshold hmin:

ℓLift(τ) =
1

Tk

∑
t∈τ(k)

max(0, hmin − h(t)).

Upright. Keep the object upright during manipulation. With rotational distance metric drot (e.g.,
geodesic distance on SO(3)) and desired upright orientation Rupright:

ℓUpright(τ) =
1

Tk

∑
t∈τ(k)

drot(Robj(t), Rupright).

Goal. Reach the target location while maintaining stability.

ℓGoal(τ) =
1

Tk

∑
t∈τ(k)

(
βx∥xobj(t)− xgoal∥+ βv∥xobj(t)− xobj(t− 1)∥

)
.

Place. The object must be placed at the goal pose and remain stable for the last M steps:

ℓPlace(τ) = λstab
1

M

Tk∑
t=Tk−M+1

∥xobj(t)− xobj(t− 1)∥.

Usage. Stage costs ℓk(τ) define the margin mk = λ(ℓk(τ
−)− ℓk(τ

+)) for SA-TPO, and can also
be normalized into potentials for stage-wise reward shaping.

E STAGE POTENTIALS FOR DETECTION AND SHAPING

We design stage potentials Φstage(s) to provide both a detection signal (for identifying stage comple-
tion) and a shaping signal (for smoother learning). All potentials are bounded in [0, 1] and include
tolerance parameters to avoid brittleness to small deviations.

E.1 PICK–PLACE

This task involves moving an object from its initial location to a designated goal region. We decom-
pose it into four stages: (i) reach — the end-effector approaches the object, (ii) grasp — establish
and maintain a stable grasp, (iii) transport — carry the grasped object toward the goal, and (iv) place
— align and release the object at the goal pose.

Φreach(s) = σ
(
1− ∥pee−pobj∥

dreach

)
,

Φgrasp(s) = β1 1{grasped}+ β2 tanh
( consec grasp

τ

)
,

Φtransport(s) = σ
(
1− ∥pobj−pgoal∥

dtrans

)
+ β3 1{grasped},

Φplace(s) = σ
(
1− ∥pobj−pgoal∥

dplace

)
+ β4 g(Robj, Rgoal),

where pee, pobj, and pgoal are the positions of the end-effector, object, and goal, respectively, and
g(·) ∈ [0, 1] measures orientation alignment between object and goal.

4
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E.2 PUSH–CUBE

This task requires pushing a cube along the table surface into a marked goal region. The stages are:
(i) reach — approach the object, (ii) contact — establish end-effector contact, (iii) push — move
the object toward the goal, and (iv) goal — verify the object is inside the goal region.

Φreach(s) = σ
(
1− ∥pee−pobj∥

dreach

)
,

Φcontact(s) = β1 1{ee–obj contact},

Φpush(s) = σ
(
1− ∥pobj−pgoal∥

dpush

)
,

Φgoal(s) = 1{obj in goal region}.

E.3 PULL–CUBE

This task requires grasping a handle attached to a cube and pulling it to a goal location. The stages
are: (i) reach — approach the handle, (ii) grasp — secure a grasp on the handle, (iii) pull — drag
the object toward the goal, and (iv) goal — verify the object is inside the goal region.

Φreach(s) = σ
(
1− ∥pee−phandle∥

dreach

)
,

Φgrasp(s) = β1 1{handle grasped},

Φpull(s) = σ
(
1− ∥pobj−pgoal∥

dpull

)
+ β2 1{grasped},

Φgoal(s) = 1{obj in goal region}.

E.4 LIFT–PEG–UPRIGHT

This task requires picking up a peg, lifting it above the table, and orienting it upright. We decompose
it into: (i) reach — approach the peg, (ii) grasp — secure the peg, (iii) lift — raise it to a sufficient
height, and (iv) upright — align it with the vertical axis.

Φreach(s) = σ
(
1− ∥pee−ppeg∥

dreach

)
,

Φgrasp(s) = β1 1{peg grasped},

Φlift(s) = σ
(

zpeg−ztable

hlift

)
,

Φupright(s) = g(Rpeg, Rupright),

where zpeg is the peg height, hlift is a normalizing scale, and g(·) ∈ [0, 1] measures uprightness via
cosine similarity between peg orientation and the vertical axis.

Remark. All potentials are non-negative by design, with values in [0, 1]. Tolerance parameters
such as d∗ or hlift define acceptable ranges, ensuring robustness to small deviations and avoiding
brittle binary signals.

F BROADER IMPACTS

Our framework aims to improve safety and reliability of robot manipulation by aligning policies
with human-preferred, semantically correct behaviors. Potential risks include overfitting to biased
preferences and misuse in unsafe settings; we discuss mitigations in the main text and Appendix.
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