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SION MODELS WITH DUAL-LEVEL PRIOR KNOWL-
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Figure 1: Comparison between images generated by pretrained SDXL (first row) and SDXL fine-
tuned with our method (second row).

ABSTRACT

The development of diffusion models (DMs) has greatly enhanced text-to-image
generation, outperforming previous methods like generative adversarial networks
(GANs) in terms of image quality and text alignment. However, accurately gener-
ating human body images remains challenging, often resulting in disproportionate
figures and anatomical errors, which limits their practical applications in areas
such as portrait generation. While previous methods such as HcP have shown
promising results, limitations including retention of noisy priors, limited under-
standing of human representation, and restriction of generalization power, still
exist due to the specific design of fully-supervised learning with only pose-related
information. In this study, we introduce a novel method to enhance pretrained
diffusion models for realistic human body generation by incorporating dual-level
human prior knowledge. Our approach involves learning shape-level details with
the human-related tokens in the original prompts, and learning pose-level prior
by adding a learnable pose-aware token to each text prompt. We use a two-stage
training strategy to rectify the cross attentions with a bind-then-generalize process,
leveraging multiple novel objectives along with adversarial training. Our exten-
sive experiments show that this method significantly improves the ability of SD1.5
and SDXL pretrained models to generate human bodies, reducing deformities and
enhancing practical utility.

1 INTRODUCTION

Despite improvements in AI-generated content fidelity and text alignment compared to GANs, dif-
fusion models still struggle with human body images, a common visual in real-world media. These
advanced models often produce disproportionate bodies and inaccurately placed, missing, or re-
dundant limbs and hands, limiting their application in areas like portrait generation and image
stylization. Since the introduction of the Latent Diffusion Model (LDM) Rombach et al. (2022),
researchers have focused on scaling up model and training data sizes to enhance human body image
quality. However, even SDXL in Fig. 1 and the recent SD3 Esser et al. (2024) continue to strug-
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gle with this issue, suggesting that simply increasing model or data size does not ensure effective
representation of human body shapes.

We recognize HcP Wang et al. (2024a) as one of the few recent studies focused on improving human
body generation. This work introduces an additional attention map derived from pose information to
amend the original cross-attention mechanisms. Unlike other methods Liu et al. (2023) that rely on
explicit conditions such as pose or depth, HcP can be seamlessly integrated into any text-to-image
diffusion model, making it highly valuable. The study highlights a significant issue: the cross-
attention modules in diffusion models often struggle to capture the location and shape information
of target objects related to human tokens. This challenge is illustrated in Fig. 2(a), where examples
generated by the pretrained SDXL show that cross-attention maps for human-related tokens either
marginally highlight or completely neglect human regions, resulting in noisy, large activations in the
background.

While HcP delivers impressive results and maintains a lightweight design, we still identify several
issues existed in this approach: 1) Retention of Noisy Priors: HcP revises the cross-attention maps
of pretrained diffusion models by introducing additional attention maps. This method retains all
prior knowledge from the pretrained models, including noisy attention maps. The new branch can
highlight the desired regions but cannot suppress other areas, resulting in continued noisy attention
maps. 2) Limited Understanding of Human Representation: HcP primarily focuses on human
poses, neglecting other essential aspects of human representation. A pose alone cannot specify a
particular human body type. Factors such as body shape (e.g., thin or heavy) and occlusion by
objects (as shown in Fig. 2(c)) are also crucial for accurately depicting human figures. For instance,
with the pose illustrated in Fig. 2(b), it remains unclear whether to generate a slender girl or a heavier
one. 3) Restriction of Generalization Power: HcP adopts a fully-supervised learning strategy,
relying on pose annotations paired with each training image. However, real-world images often
feature diverse human bodies in unexpected poses. Even well-trained segmenters like SAM Kirillov
et al. (2023) and pose detectors such as HrFormer Yuan et al. (2021) can struggle in various corner
cases. As a result, while the pretrained diffusion models may perform well on the training data, their
generalization ability is limited.

a man sitting on a chair 

with a piece of paper

a woman in a pink dress 

standing in front of a rock
a male ballet dancer in white pants and shirt jumping

(a)

(b)

Hand of person behind is 

wrongly detected as front person

Undesirable human skeleton from 

occluded body parts

(c)

a heavy girla girla thin girl

Figure 2: (a) Visualization of images generated by pretrained SDXL and their cross attention maps
with regard to human-related tokens which are marked as red in prompts. For the attention maps,
white color stands for large activation. The pretrained SDXL fails to produce meaningful cross
attention maps for human-related tokens. (b) With the same pose, humans with different shapes can
be generated, which means more human body prior besides pose information should be leveraged
for better human body generation. (c) Pose detected by deep models can be very noisy in some
cases.

To address the challenges in generating realistic human bodies, we propose a novel dual-level prior
injection method that enhances pretrained diffusion models by learning both shape-level and pose-
level human priors. Unlike HcP, which captures only limited human priors, our approach aims for
a more generalizable and comprehensive understanding through a two-stage bind-then-generalize
strategy. Specifically, we first bind the human-related tokens from the original prompts, along with
an additional pose token attached to the text prompt, to their corresponding semantic regions. This
binding produces meaningful attention maps for these tokens. We propose a novel composite ob-
jective with three distinct terms to facilitate the learning process: The first term suppresses attention
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activation outside human regions in each image. Building on this, the second term encourages the
diffusion UNet to ensure that human-related activation exceeds non-human-related activation, ef-
fectively highlighting human body regions. The third term serves as an auxiliary objective to learn
the scale of the ground truth. Together, these objectives empower the pretrained diffusion models to
extract and aggregate critical information from various token types, leading to higher-quality human
body generation.

After establishing a one-to-one mapping based on the training data, we guide the model to mimic
the distribution of real attention maps. We utilize commonly-used Generative Adversarial Networks
(GANs) by introducing shape-aware and pose-aware discriminators corresponding to the human-
related and pose tokens, respectively. The diffusion UNet is trained against these discriminators in
an adversarial minimax game, enabling it to generate cross-attention maps that align with real data
distributions. This process ultimately enhances the model’s ability to produce realistic human bodies
across various contexts, including diverse real-world scenarios.

To show the effectiveness of our proposed method, we conduct extensive experiments across vari-
ous text prompts. Our findings reveal that with simple tuning, both the pretrained SD1.5 and SDXL
significantly enhance their capacity to generate human bodies, resulting in fewer problematic and
deformed outputs, thus showing greater practical value. In summary, the contributions of this work
are as follows:
1)Dual-Level Prior Injection Method: We present a novel method that enhances pretrained diffu-
sion models by learning shape-level and pose-level human priors through a two-stage bind-then-
generalize strategy. Our method binds human-related tokens from text prompts and an additional
pose token to their corresponding semantic regions, resulting in meaningful attention maps.
2)Composite Objective for Learning: We propose a new composite objective that comprises three
novel terms: one for suppressing noisy activations, another for enhancing human activation, and a
third for learning the scale of ground truth.
3)Mimicking Real Attention Map Distribution: We further introduce adversarial training to rectify
the cross attention maps, with shape-aware and pose-aware discriminators enhancing the model’s
ability to mimic the real data distribution.
4)Improved Model Performance: Extensive experiments demonstrate that simple tuning can sig-
nificantly improve the performance of pretrained models (SD1.5 and SDXL) in generating human
bodies, resulting in fewer deformed outputs and showcasing greater practical value.

2 RELATED WORK

Refined human body generation. In spite of astonishing image fidelity in general, the diffusion
models have long been suffering from problems of inaccurate details, especially human bodies. To
solve this problem and generate better human images, two main strategies are adopted. The first
is extra conditions. For example, ControlNet Zhang et al. (2023) was proposed to add additional
spatial controlling signal to the denoising process through a replicated branch of diffusion UNet
encoder. Following this work, many other works, such as HyperHuman Liu et al. (2023), tried to
apply more comprehensive conditions including depth and normal maps to diffusion models for bet-
ter results. Huang et al. Huang et al. (2024) proposed to generate human bodies in a hierarchical
manner, with parts first being generated and then whole bodies. Another important strategy is reg-
ularization. HcP Wang et al. (2024a) tried to learn an additional attention branch with pose-related
information, thus making diffusion models aware of the poses and generating more reasonable hu-
man bodies. Our paper follows the idea of regularization. In comparison, after training with our
proposed method, diffusion models can be used in text-to-image generation as normal, without ex-
tra process. Furthermore, compared with HcP, we design a more refined pipeline in order to inject
the prior knowledge regarding human body into pretrained diffusion models, including adopting a
two-stage training regime and leveraging adversarial training, which has not been considered in the
previous works.

Adversarial training for diffusion models. Adversarial training was originated in Generative
Adversarial Models (GANs) Goodfellow et al. (2020) that learn to mimic the real data distribution
as competing procedure between generator and discriminator, which iteratively improve both mod-
els’ performance. Recently, some researches have been focusing on enhancing diffusion models
with adversarial training. Most of them are aimed at reducing the sampling steps of DMs. Xiao et.
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al. Xiao et al. (2021) proposed to replace the minimization of divergence with Gaussian distribu-
tion with the adversarial divergence with a learned discriminator. Xu et al. Xu et al. (2024) further
improved this formulation with simpler objective and better training strategy, thus helping diffusion
models generate high-quality images with fewer sampling steps. ADD Sauer et al. (2023), following
the same idea, proposed to combine the distillation and adversarial training to further enhance the
efficiency of diffusion models. On the other hand, adversarial training is also applied to diffusion
models for better generation quality. For example, Li et al. Li et al. (2024) proposed to discriminate
the noisy estimation of generated images with a segmenter. As the result, the diffusion models can
better follow the control of input segmentation masks. Besides, Yang et al. Yang et al. (2024) pro-
posed to leverage adversarial training to embed structural prior into diffusion models. Our method
follows the idea of improving performance of diffusion models with adversarial training. However,
different from the previous works that rely on the noisy image estimation, we propose to apply
discriminator to the intermediate cross attention maps, which leads to significantly more efficiency
while guaranteeing strong performance.

3 PRELIMINARY: STABLE DIFFUSION

Diffusion models aim to capture the data distribution pθ (x0) of clean data x0 by gradually refining a
standard Gaussian distribution, with the learning process framed as denoising score matching. Stable
Diffusion (SD) builds upon this framework to enable text-to-image generation based on a text prompt
p. By leveraging a pre-trained VQ-VAE Van Den Oord et al. (2017) that includes an encoder E and
a decoder D, SD allows the model to concentrate more on the semantic aspects of the data, thereby
enhancing efficiency. A diffusion UNet is utilized to estimate the noise, incorporating an attention
mechanism. Specifically, in the l-th layer, self-attention is first employed to facilitate interactions
among spatial features: zl = Attention(W l

Q · zl,W l
K · zl,W l

V · zl), where Attention denotes
the attention operator, zl represents the latent embeddings of the l-th layer, and WQ,WK ,WV are
the projection layers for self-attention. Following this, cross-attention is applied to incorporate
conditioning information such as the text prompt: ẑl = Attention(Ŵ l

Qt
·zl, Ŵ l

Kt
·ztext, Ŵ l

Vt
·ztext),

where ztext denotes the text prompt embedding, and ŴQ, ŴK , ŴV are the projection layers for
cross-attention. The training objective of SD is formulated as follows:

Lnoise = EE(x),ϵ∼N (0,1),t

[∥∥ϵ− ϵθ
(
zt, t

)∥∥2
2

]
, (1)

where t is uniformly sampled from {0, ..., T}, and zt represents the noisy latent at the t-th timestep.

4 METHODOLOGY

4.1 SEMANTIC ATTENTION BINDING

Previous works have shown that the cross attention maps of diffusion UNet between text prompts and
image latent embeddings can indicate the coarse location and shape of the target objects. However,
as mentioned in Sec. 1, the pretrained SD fail to produce meaningful cross attention maps regarding
those human-related token, such as man, woman, etc, which can result in the problem of human
body deformity. Consequently, we propose to first guide the cross attention maps to bind with
correct regions, i.e., suppressing non-human-related activation and highlighting human-relation one.
Inspired by previous works, a composite objective is utilized which including the following three
items.

Suppressing loss. To serve our goal, we first utilize a simple objective to suppress the attention ac-
tivation outside the human bodies. Particularly, when processing each noisy latent zt corresponding
to image I with the diffusion UNet, we collect all intermediate cross attention maps and upsample
them to fixed size, e.g., 512×512, denoted as M̂shape ∈ R512×512. In the mean time, SAM Kirillov
et al. (2023) is leveraged to segment all human bodies in I, resulting in a shape mask Mshape. Then
the suppressing loss is calculated as follow:

Lshape
s =

∑
M̂∈M̂shape

∑
i,j

M̂i,j1(M
shape
i,j = 0) (2)

where i, j denote spatial index, 1 denotes the indicator function.
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Margin loss. In order to teach the diffusion UNet to highlight human-relation activation, a margin-
based objective is utilized as follows:

f(M̂) = min
i,j

(M̂i,j1(M
shape
i,j = 1)) (3)

g(M̂) = max
i,j

(M̂i,j1(M
shape
i,j = 0)) (4)

Lshape
margin =

∑
M̂∈M̂shape

max(0, f(M̂)− g(M̂) + δ) (5)

where δ denotes the margin coefficient. By leveraging this loss, the model is encouraged to pro-
duce attention maps in which human-related activation is at least larger than non-human-related
activation, thus better highlighting the human body regions in each image.

Scaling loss. The above two objectives can encourage the model to produce attention maps that
have large values inside human bodies and small values outside. To further enhance the training, we
utilize a scaling loss to directly let the attention maps recover the scale of Mshape.

Lshape
scale =

1

HW

∑
M̂∈M̂shape

∥M̂ −Mshape∥22 (6)

By training the diffusion UNet with the combined loss

Lshape
bind = Lshape

s + Lshape
margin + Lshape

scale , (7)

<sds>
<sds>
<sds>
<sds>
<sds>

woman
she
male

girl
...
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young

woman

···

<sds>
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Figure 3: Schematic diagram of our pro-
posed method. Up: The first stage utilizes
fully-supervised learning to learn both shape
and pose priors for human-related tokens and
extra pose token respectively. Bottom: In-
stead of solely leveraging fully-supervised
learning, we adopt unsupervised adversar-
ial training to mimic the distribution of real
shapes and poses, thus entitling the model
with better generalization ability.

the cross attention modules can learn what infor-
mation is represented by the human-related tokens,
and aggregate these information into right regions
in each image, thus sketching reasonable human
shapes. TokenCompose Wang et al. (2024b) also
proposes to regularize cross attention maps of dif-
fusion UNet with extra objectives. However, since
TokenCompose focuses on improving the textual fi-
delity of diffusion models, it is sufficient for the
cross attentions to provide rough locations for each
semantic token. Compared with that, rectifying hu-
man body deformity requires more refined atten-
tion control, otherwise the unrelated information
could easily lead to mistakenly drawn human bod-
ies. Therefore, we propose a composite objective
with multiple sub-goals which can provide stronger
supervision as we will show in the experiments.

Pose tokens. The proposed Lshape
bind can guide the

diffusion UNet to attend the human-related tokens
in text prompts on human-related regions in the im-
ages. However, it is hard to correctly portray a hu-
man body solely based on the shape information. For
example, when a man crosses his arms, Mshape can
only show that the arms are not stretched, but can-
not tell what exact pose the man is holding. As
the result, it is also important to embed to pose-
related information into the diffusion UNet. In spite
of its importance, simply copying Lshape

bind to train
the human-related tokens also with pose information
means these tokens have to learn two different levels
of knowledge, which would be much harder.

To this end, we propose a simple yet effective alternative method. Specifically, a learnable pose
token <sds>, which is aimed to represent pose-related information, is attached to each text prompt.
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To supervise the pose token with prior knowledge regarding poses, for each image I, we leverage
MMPose Contributors (2020) to detect the keypoints {pi}

Np

i=1, where Np denotes the maximum
number of keypoints. Then {pi} is processed into a skeleton mask Mpose, in which lines are drawn
between adjacent keypoints following human structure, e.g., neck and shoulders, elbows and wrists.
After setting up <sds> and Mpose, we can build the training scheme following the same way as
guiding human-related tokens. Concretely, for each training iteration, we collect the cross attention
maps M̂pose regarding <sds>, and calculate the following objectives:

Lpose
bind = Lpose

s + Lpose
margin + Lpose

scale (8)

in which each item follows the same formulation as in Eq. 7, with M̂shape,Mshape replaced with
M̂pose,Mpose. To make full usage of the proposed objectives, we attach additional LoRA param-
eters Hu et al. (2021) to pretrained SD models, and optimize them together with the newly added
token embedding corresponding to pose token <sds> with L = Lnoise + Lshape

bind + Lpose
bind.

4.2 ADVERSARIAL ATTENTION RECTIFICATION

While the above training strategy can guide the model to correctly bind human-related tokens with
their semantic regions in the training set, such property can hardly be generalized to unseen cases,
since the shape and pose of humans can severely vary among different images according to their
ages, genders, events and even the background scenarios. This makes the distribution of shape and
pose data a sparse one, leading to great difficulty for the model to transfer the learned knowledge to
wide range of real cases. To solve this problem, we further propose to leverage adversarial training
which directly learns the data distribution via the supervision of a learnable discriminator rather than
reciting the one-to-one mapping.

Specifically, we setup two discriminators Dshape, Dpose for shape and pose data respectively, cor-
responding to the human-related tokens and extra pose tokens. During each training iteration, we
first get the intermediate cross attention map sets M̂shape,M̂pose, together with their ground truth
annotations Mshape,Mpose, using the same way as in Sec. 4.1. Based on these data the adversarial
training can be built to bridge the gap between the cross attention maps predicted by diffusion UNet,
i.e., fake distribution, and the shape/pose masks of real images, i.e., real distribution. We simply
follow WGAN-GP Gulrajani et al. (2017) for the instantiation. Formally, the discriminators are
optimized by minimizing the following objectives:

Lshape
D =

1

|M̂shape|

∑
M̂∈M̂shape

Dshape(M̂)−Dshape(Mshape) + α∆shape (9)

Lpose
D =

1

|M̂pose|

∑
M̂∈M̂pose

Dpose(M̂)−Dpose(Mpose) + α∆pose (10)

where ∆ denotes the gradient penalty, α denotes the coefficient. Accordingly, the diffusion UNet is
optimized as follows:

LU = Lnoise + Lshape
G + Lpose

G (11)

Lshape
G = − 1

|M̂shape|

∑
M̂∈M̂shape

Dshape(M̂) (12)

Lpose
G = − 1

|M̂pose|

∑
M̂∈M̂pose

Dpose(M̂) (13)

Through the adversarial minimax game, the diffusion UNet can gradually learn how to adapt the
LoRA weights so that the cross attention maps can be rectified to ideal shapes and poses. Compared
with previous works Li et al. (2024) that also adopt adversarial supervision for diffusion models, the
most noticeable difference is that our method does not rely on the noisy prediction ẑ0 achieved from
ẑt, which results in two merits. First, the VAE decoder is not required for calculating discriminator
prediction, thus being more efficient. Second, the input of discriminators are binary masks which
are much easier than RGB images, thus making them better functioning for producing guidance
supervision for the diffusion UNet.
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5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Dataset. To train our model, we collect a specific dataset via crawling from open-source search
engines and filtering out all images containing unclear human bodies, which results in a training set
with 176,092 images. Then BLIP2 Li et al. (2023) is utilized to provide the captions corresponding
to these data. As for validation, we follow HcP Wang et al. (2024a) to adopt the captions from
validation set of HumanArt Ju et al. (2023) in the quantitative comparison. Besides, for qualitative
results, we also include 50 prompts that are manually created with complex semantic meaning, on
which we empirically find that the pretrained SD tends to generate deformed human bodies.

5.2 QUANTITATIVE RESULTS

Table 1: Quantitative result with SDXL as backbone. For FID and KID, the smaller score denotes
the better model. For other metrics, the larger score denotes the better model.

Methods FID ↓ KID ↓ CLIP ↑ HPS ↑ PickScore ↑
Pretrain 41.87 12.44 33.94 23.06 22.38
LoRA 40.34 12.54 34.68 23.06 22.31
Ours 38.11 11.77 34.84 23.17 22.61

We first present quantitative evaluations in this part. Concretely, FID Heusel et al. (2017),
KID Bińkowski et al. (2018), CLIP-Score, HPS-v2 Wu et al. (2023) and PickScore Kirstain et al.
(2023) are calculated to evaluate the general quality and textual fidelity of generated images. Given
that previous methods such as HcP and HyperHuman are not open-sourced, we compare our method
with pretrained SDs and LoRA finetuned model using our training set. The results are shown in
Tab. 1. We find that directly finetuning pretrained SDXL makes most of the metrics better, and
adopting our proposed strategy leads to further better results, which indicates the efficacy of our
method. However, while we have presented quantitative metrics among various aspects, they gener-
ally concern about the image quality and textual fidelity rather than evaluating the quality of human
body generation, and there lacks a fully related metric for our problem. Therefore, we advocate
focusing more on the following qualitative results.

5.3 QUALITATIVE RESULTS

We present several uncurated results for SDXL in Fig. 4. For each prompt, we randomly select three
random seeds to control the generation process of different methods, thus making sure the results
can be fairly compared. Interestingly, we find that while the prompts are generally short and easy
for human to understand, they are especially hard for pretrained SDXL to generate corresponding
images. For example, when generating common actions such as sitting or jumping, which could
be abundant in the pretrain dataset, the pretrained SDXL still cannot produce satisfactory results,
leaving many artifacts such as unorganized body, redundant arms and hands, and improperly shaped
limbs. When it comes to rare actions (e.g., doing yoga, dancing ballet) or rare combinations of ac-
tions and objects (e.g., holding a rifle), the deformity becomes more severe. As our baseline method,
we find that finetuning SDXL on our dataset directly with LoRA does learn some information from
the data, given that the finetuned model can generate much detailed background in many images.
Unfortunately, this straightforward method has no positive effect and even makes it worse in many
cases with regard to human body generation. For example, when generating according to the prompt
’a woman doing a yoga pose on a yoga mat’, the LoRA-finetuned SDXL can hardly generate a com-
plete human body. This indicates that even if models with sufficient capacity (e.g., SDXL) can be
finetuned with specific training data (e.g., high-quality human images), the problem of human body
deformity can still not be solved. Compared with these methods, our method can guide the model
to learn appropriate human body prior from the training data, resulting in much better human bod-
ies. Meanwhile, our method does not require additional design for the network structure and input
conditions, thus making the best of both worlds.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

SDXL

Ours

LoRA

SDXL

Ours

LoRA

SDXL

Ours

LoRA

a woman doing a yoga pose on 
a white background

a woman doing a yoga pose on 
a yoga mat

a woman dressed as a maid 
sitting on a couch

a woman holding a rifle

a male ballet dancer in black 
and white

two people jumping in the air 
in front of a wall

Figure 4: Qualitative comparison with SDXL as backbone. Each comparison is controlled with the
same random seed.

To further show the generalization ability of our method, we apply it to pretrained SD1.5, whose
results are presented in Fig. 5. The results are consistent with those of SDXL. In general, since SD1.5
itself is worse than SDXL, the image quality among three methods lags behind images generated
by SDXL in terms of the details. Nonetheless, our proposed method still can help the model fix the
problem of human body deformity, leading to more reasonable human bodies under different kinds
of prompts.

5.4 ABLATION STUDY

To further verify the effectiveness of our proposed method, we conduct extensive ablation studies
using SDXL as backbone. Since the above adopted quantitative metrics cannot intuitively reflect the
quality of generated human bodies, we only provide the qualitative results, with parts of them shown
in the main paper. For more comprehensive comparison please refer to the appendix.

How can Lbind help the model? We first test the efficacy of each item in Lbind as illustrated
in Eq. 7, of which the generated images together with the averaged cross attention maps regarding
human-related tokens are shown in Fig. 6. Same as the results in Sec. 1, we can find that the pre-
trained SDXL cannot concentrate on the generated human body regarding the human-related tokens.
In some cases (e.g., the second and fourth from left) the model even highlights more on background
than human bodies. Consequently it cannot gather correct information, thus leading to deformed hu-
man bodies. Directly finetuning SDXL with LoRA also does not work, resulting in almost the same
attention maps as the pretrained model. This indicates that the noise prediction loss Lnoise cannot
solely guide the cross attention modules to function correctly, hence leveraging the additional ob-
jectives is necessary. As for the three items proposed by us, it can be found that when using only
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SD1.5

Ours

LoRA

SD1.5

Ours

LoRA

SD1.5

Ours

LoRA

a female ballet dancer is 
jumping with a yellow ribbon

a man is doing a gymnastics 
exercise on a parallel bar

a woman doing a trick on a 
skateboard

a woman doing yoga in the field 
at sunset

a woman with blue hair and 
fishnets sitting on a balcony

two dancers in black and white 
pose for the camera

Figure 5: Qualitative comparison with SD1.5 as backbone. Each comparison is controlled with the
same random seed.

pretrain

LoRA

+ℒ𝑠

+ℒ𝑠 + ℒ𝑚𝑎𝑟𝑔𝑖𝑛

+ℒ𝑠 + ℒ𝑚𝑎𝑟𝑔𝑖𝑛

+ℒ𝑠𝑐𝑎𝑙𝑒

Figure 6: Ablation comparison among model variants using different objectives.

suppressing loss, the attention maps are better, but still noisy. When using both suppressing loss and
margin loss, the model can fully concentrate on human bodies, but the activation scale is smaller.
Introducing the scaling loss help the model highlighting human bodies with large activation values,
thus leading to the best results.

Effectiveness of the pose token. In Fig. 7 we present three model variants regarding the learning
strategy for human body prior: (1) OnlyShape: We only learn shape-related information with orig-
inal human-related tokens in the prompts. (2) OnlyPose: Similar to OnlyShape, with shape-related
information replaced with pose-related on. (3) Ours: Our proposed strategy as in Sec. 4.1, i.e., using
extra pose token to learn pose information. To make the results simple for understanding, we aver-
age attention activation among all human-related tokens and pose token. Basically, solely learning
shape-level information can help the model better concentrate on the human bodies. However, since
pose information is not injected, the model cannot avoid problem of abnormal poses, i.e., missing or
additional limbs. On the other hand, it is also difficult for human-related tokens to learn pose infor-
mation, considering the results that the attention maps can only concentrate on specific regions such
as faces. Compared with these two variants, our proposed strategy can help the model leveraging

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

OnlyShape

OnlyPose

Ours

Figure 7: Ablation comparison among model variants using different training strategies.

attention maps that truly highlight the reasonable human body regions, thus generating human body
images with higher quality.

Effectiveness of adversarial training. In Fig. 8 we compare three model variants including pre-
trained SDXL, SDXL finetuned with only the semantic attention binding stage proposed in Sec. 4.1
and the one finetuned with both semantic attention binding and adversarial attention rectification.
We can find that the first stage can help the model generate better human bodies in some cases. For
example, in the first column, while the pretrained SDXL generates an additional head, the 1-stage
model can revise this mistake. However, the human bodies generated by this 1-stage model are of-
ten stilted, while also being prone to deformity, which shows its limited generalization ability due
to fully supervised learning. In comparison, the model trained with both stages as shown in the last
row can be generalized to different prompts, resulting in both more appropriate human poses and
shapes.

pretrain

1 stage

2 stage

Figure 8: Ablation comparison among model variants using different training strategies.

6 CONCLUSION

This paper introduces a novel method to enhance pretrained diffusion models for generating realistic
human body images. By incorporating dual-level human body prior knowledge through a learnable
pose token and human-related tokens, our approach addresses common issues like disproportionate
figures and anatomical inaccuracies. Our two-stage training process, which includes binding tokens
to semantic regions and leveraging adversarial training, significantly improves the fidelity and ac-
curacy of generated human images. Experimental results demonstrate that our method effectively
reduces deformities and enhances the practical utility of diffusion models, as shown by the improved
performance of both pretrained SD1.5 and SDXL. This advancement surpasses previous approaches
and opens new possibilities for real-life applications.
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A TRAINING DETAILS

To validate the efficacy of our method, we conduct experiments on pretrained SD1.5 and SDXL. We
adopt AdamW as optimizer with 5e-6 learning rate. Our model is trained for 10,000 iterations for
each stage on 16 V100s with 4 batch size on each gpu, which takes about 2 days. For the second
stage, we adopt a 11-layer convolutional discriminator, which can produce patch-level predictions
for each input attention maps. We empirically find that the discriminator could easily be too strong
to fool, making the adversarial training less effective. To this end, dropout layers are added to the
discriminator and the binary labels that indicate real or fake samples are randomly flipped during
training, thus making the training of discriminator more challenging.

B MORE QUALITATIVE RESULTS
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Figure 9: More qualitative comparison for SDXL. Each item contains results generated by pretrained
SDXL, naive LoRA and our method from up to bottom.
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Figure 10: More qualitative comparison for SDXL. Each item contains results generated by pre-
trained SDXL, naive LoRA and our method from up to bottom.
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