
Learning Bimanual Scooping Policies
for Food Acquisition Supplementary Material

This appendix contains food property details, classifier training details, experiment rollout visual-
izations, and a more in-depth analysis of failure modes. For more videos, please see our website.

A Food Property Analysis
The detailed food properties of 14 different types of food are presented in Table 3. Within the robust
food category, we consider variations along brittleness and geometry. We also consider both brittle
foods, e.g., cashews, and compliant foods, e.g., pasta. In addition, we experiment with a wide range
of shapes, e.g., round grapes and irregularly shaped farfalle pasta. In our list, we also include foods
with varied sizes, from extra small, e.g., peas, to larger items, e.g., strawberries, and we vary the
thickness of food, e.g., thin snow peas vs thick broccoli.

For fragile food, we use firm tofu, cheesecakes, and jello pieces of different colors, shapes and stiff-
ness in the experiments. Unlike the tofu and jello pieces, cheesecakes have an additional property
of stickiness that makes it extremely difficult to be scooped without any residue in the environment.
For jello pieces, we have two colors and shapes of red square and orange triangle. The latter one
is less stiff. One reason for the total failure of Single baseline on orange triangle jello is that the
triangle is not symmetric along certain axis. Therefore, Single baseline is able to cup part of the
orange triangle jello into the spoon mouth but it falls out of the spoon during the Scooping Phase
because of the asymmetric weight imbalance.

Table 3: Food Property Analysis: We report the food properties of 14 different food classes
in terms of deformability, brittleness and geometry, including shape, size and thickness. In the
column of size, L represents large food, M represents medium food, S represents small food and XS
represents extra small.

Food Type Deformability Brittleness Geometry
Shape Size Thickness

Broccoli Robust Compliant Irregular L Thick
Grapes Robust Compliant Round M Thick

Blueberry Robust Compliant Round S Thick
Strawberry Robust Compliant Irregular L Thick

Carrot Robust Compliant Cylinder M Thick
Farfalle Robust Compliant Irregular M Thin

Macaroni Robust Compliant Irregular S Thick
Snow Pea Robust Compliant Irregular L Thin
Cashews Robust Brittle Irregular S Thick
Goldfish Robust Brittle Irregular S Thick

Peas Robust Compliant Round XS Thick
Tofu Fragile Compliant Square L Thick

Cheesecake Fragile Compliant Square L Thick
Orange Triangle Jello Fragile Compliant Triangle L Thick

Red Square Jello Fragile Compliant Square L Thick

B Training Details
Risk Classifier. We instantiate the Risk Classifier with a ResNet34 architecture trained on a hand-
labelled dataset of 14 food classes labelled “Robust“ or “Fragile“. The dataset is composed of
600 overhead RGB images of all foods in Table 3 except Orange Triangle Jello and augmented
by 8X by applying a series of standard label-preserving image transformations, including rotation,
flipping, blurring, affine transformation, contrast changes, hue and saturation changes and addition
of Gaussian noise. The applied augmentations not only enlarge the dataset but also enable Risk
Classifier to work under various lighting conditions and be robust to small camera shift. With enough
augmented data, we use Binary Cross-Entropy Loss and the Adam Optimizer [19] with a learning
rate of 1e-4 and a weight decay of 1e-4 to train the Risk Classifier. We train on a NVIDIA GeForce
GTX 1070 GPU for 15 epochs.
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Figure 6: Augmented Dataset Images: We present examples of augmented overhead food images
from the dataset used to train the Risk Classifier. The datasets used to train the Segmentation and
Failure Classifier models were augmented with the same techniques.

Failure Classifier. Similar to Risk Classifier, we also use the ResNet34 [14] architecture to train
a Failure Classifier to identify the breakage-imminent states during the pushing phase. The model
is trained on the dataset of 30 rollouts, each containing 60 image frames, of the Pushing Phase of
tofu with ↵ = 1 for maximum pushing distance. We augment the dataset by 8X with the same
augmentations as with the Risk Classifier. We train the Failure Classifier with Binary Cross-Entropy
Loss and the Adam optimizer [19] with a learning rate of 1e-4 and a weight decay of 1e-4. We train
on a NVIDIA GeForce GTX 1070 GPU for 25 epochs. We find that the Failure Classifier is able to
generalize to the three fragile food classes unseen during training with a success rate of 96.8% of
157 images over 13 scooping rollouts.

Augmentation Parameters
LinearContrast (0.95, 1.05)

Add (-10, 10)
GammaContrast (0.95, 1.05)

GaussianBlur (0.0, 0.6)
MultiplySaturation (0.95, 1.05)

AdditiveGaussianNoise (0, 3.1875)
Flipud 0.5

Table 4: Data Augmentation Parameters: We report the augmentation techniques used to train
all models in CARBS, along with their accompanying parameter values. All augmentations are used
from the imgaug library [15].

C Hardware Design
For our bimanual scooping task, we find that the design of the pusher and the scooper greatly im-
proved the efficiency and effectiveness of the bimanual primitive.

Inspired by the antique pushers used by children to push food onto the spoon, we 3D print a custom
concave pusher that has approximately the same curvature as the mouth of the spoon. During the
Pushing Phase, the concave surface of the pusher pushes the off-centered food items to the mouth
of the spoon and groups multiple food items together towards the center while a flat pusher may
cause potential spreading of food over the plate. Another critical design choice is the pusher’s size.
It approximately the same size of the spoon so that the food items that are already grouped to the
center of the pusher with the pusher’s concavity. Foods are cupped into the spoon mouth without
leaving anything beyond the reachable range of the spoon.
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Figure 7: Failure Mode Rollouts: We present selected rollouts illustrating each of the four failure
modes. The Not Enter failure shows a cashew becoming wedged between the pusher and scooper
and then failing to enter the spoon mouth. The Fall failure shows the snow pea entering the spoon
bowl, but falling out of the spoon off the side due to its irregular geometry. The Roll failure shows
two blueberries rolling off each other and out of the trajectory of the scooper. Lastly, the final row
shows a cheesecake piece breaking, leaving a piece of food on the plate after scooping.

Apart from the design of the pusher, we also experiment with different designs of the scooper spoon
tool and mount. The two key components of the scooper design are the mounted angle of the spoon
and the tilted angle of the camera. The spoon is angled 45 degrees off the vertical axis, to align the
mouth of the spoon to be tangent to the plate workspace and avoid robot motion range constraints. A
larger angle would make the front part of the spoon mouth too high, which increases the difficulty of
scooping thin foods, e.g., snow peas, and extra small foods, e.g., peas, because they can slide under
the spoon mouth. A smaller angle is prone to cause conflicts and break constraints of two arms
during the Pushing and Scooping phase. The mounted camera is mounted at 30 degrees to capture
the full view of the spoon mouth, the food in front of the spoon and the pusher during the Pushing
Phase, which is necessary for the Failure Classifier.

D Failure Mode Analysis
We observe four failure modes during experiments with all three bimanual scooping strategies: Not
Enter, Roll, Fall, and Break. We present visualizations of these failure modes in the Fig. 8.

Not Enter: As shown in Fig. 5, the failure mode Not Enter is the most common failure mode for
the Single baseline. The food is in contact with the spoon during the Pushing Phase but it fails to be
cupped inside the spoon mouth in the end. There are various failure cases in this failure modes, e.g.,
the cashews are pushed with too much force so it jumps out of the space between the pusher and the
spoon. Another failure case of this failure mode in the experiments is that some small or thin food
items are stuck between the spoon and the pusher, not able to roll into the spoon mouth.

Roll: Roll is a failure mode of round foods that are easy to roll in the environment. During the
Pushing Phase, either the pusher or the spoon exerts a force on the food item. The food builds
momentum and may roll in the environment. If the round foods are in contact with each other,
they are also likely to roll against each other and roll out of the scooping trajectory. Therefore, the
scooper will fail to pick up the foods.

Fall: After the Pushing Phase, only part of the food is cupped into the spoon mouth. Therefore,
when the spoon rotates in the Scooping Phase, the food may fall out of the spoon because of its
unstable position. In general, this type of failure mode is more common in Single baseline than
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Figure 8: Failure Mode Visualizations:: We present four failure modes: Not Enter, Roll, Fall and
Break. Break failures are only present with deformable foods, such as cheesecake shown here. For
the robust food category, Not Enter is the most common failure mode.
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other methods because the pusher in Single baseline acts like a static barrier without following the
rotating motion of the spoon and fails to stabilize the food during the process.

Break: The failure mode of Break only happens to fragile foods because this category of foods are
prone to deform and break while being squeezed under large forces from the spoon or the pusher.

E Additional Rollouts

Figure 9: Full Scooping Rollouts: Full rollout visualizations for scooping a robust food (carrot) and
a fragile food (tofu) with adaptive pushing distance ↵. Both foods employ the three phase bimanual
scooping primitive, but differ in ↵ choice. The carrot is a rigid food and uses and ↵ for maximum
stabilization during scooping, while the tofu is fragile and requires an ↵ < 1 to avoid breakage.

F Ablation Study of Stablizing Strategies
Our approach CARBS includes three stabilizing strategies, Angled Pushing, Adaptive Cupping and
Pinning, to prevent potential failures while scooping food of various properties. To understand how
these three stabilizing strategies impact performance, we compare CARBS to three ablation base-
lines, CARBS without Angled Pushing, CARBS without Adaptive Cupping and CARBS without
Pinning, on five robust food classes. In CARBS without Angled Pushing, the angle of the pusher
✓ is set to 0 during the Pushing Phase. In CARBS without Adaptive Cupping, the angled pusher
and scooper move in sequence rather than simultaneously so that the pusher and the spoon cannot
cup the food together. Lastly in CARBS without Pinning, the pusher stays on the table during the
Scooping phase rather than following the scooper up to pin the foods in the spoon.

For the ablation experiments, we consider 5 different types of foods: grape, blueberry, macaroni,
snow pea and cashews. These 5 classes cover a variety of visual and physical properties, including
brittleness and geometry. We consider cashews to represent brittle foods and macaroni for compliant
foods. In terms of geometry, we include varied sizes from small to large, e.g., blueberry, grape
and snow pea, and a wide range of shapes, e.g., round grape and irregularly shaped snow pea.
Table 5 reports the success rate of scooping grape, blueberry, macaroni, snow pea, and cashews with
ablations of CARBS’s stabilizing strategies.

Based on the success rate, CARBS without Angled Pushing has worse performance on cashews
because two cashews become wedged between the vertical pusher and scooper. The Angled Pushing
stabilizing strategy was designed with this failure mode in mind, and encourages food items to roll
over the lip of the spoon and into the spoon bowl. CARBS without Adaptive Cupping does not
match the performance of our approach on 4 out of 5 food items, showing that Adaptive Cupping is
critical for most food items. This is because in the Pushing phase, Adaptive Cupping cups the food
to be centered with the spoon mouth and prevents the food rolling away. Lastly, CARBS without
Pinning also performs worse than CARBS on all five food classes because when the pusher does not
follow the scooper motion during the Scooping phase, food will easily fall out of the spoon bowl.

G Additional Experiments for Out of Distribution Food Items
In order to further test the generalization of our method, we extend our method to other unseen,
scattered food items that also require a scooping mechanism in our daily life. The food tested in the
Table 6 are cooked rice and couscous and they are grouped into a scoopable area on the workspace
before scooping. Results in Table 6 suggests that CARBS achieves comparable performance for
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Food Type Success Rate
w/o Angled Pushing w/o Adaptive Cupping w/o Pinning CARBS

Grape 5/5 3/5 3/5 5/5
Blueberry 5/5 3/5 4/5 5/5
Macaroni 5/5 4/5 4/5 5/5
Snow Pea 4/5 4/5 3/5 4/5
Cashews (2) 5/10 6/10 6/10 7/10

Table 5: Ablation Study Results: We report the per food item success rate over 5 trials of scooping
robust foods with CARBS strategies and three ablation baselines: CARBS without Angled Pushing,
CARBS without Adaptive Cupping, and CARBS without Pinning. As expected, we observe CARBS
achieves best overall performance across all 5 food classes in the table. CARBS without Angled
Pushing fails on cashews due to their propensity to become wedged between the vertical pusher and
scooper, while CARBS without Adaptive Cupping only matches CARBS performance on one out of
five food items. CARBS without Pinning performs worse than CARBS on all five food items. These
results suggest that the combination of all three bimanual stabilizing strategies (Angled Pusher,
Cupping Motion, and Pinning Motion) are indispensable to the generalization and robustness of our
method for scooping various food items.

cooked rice and couscous with human baseline. Both Human and CARBS have larger weight loss
in couscous than rice, indicating that it is more difficult to scoop couscous because they are much
smaller and more easily pushed out of the pushing and scooping path. We do not consider any
grouping strategies for scattered foods, and leave this problem as an interesting direction for future
work.

Food Type Avg. Weight Difference (%)
CARBS Human

Rice (CARBS OOD) 10.339 8.423
Couscous (CARBS OOD) 31.666 21.594

Table 6: OOD Food Results: We report the weight loss of food items after scooping as a percentage
of the original food weight, averaged across 5 scooping trials. We compare our method CARBS to
human baselines over 2 unseen scattered food rice and couscous. We observe that both CARBS and
Human could scoop a majority amount of scattered food on the plate.

H Force Sensor Analysis
Apart from the visual servoing system for bimanual scooping, we also consider using a force torque
sensor mounted to the pusher. We conduct experiments to test if force sensor readings give additional
information about the deformability of the food to distinguish between robust and fragile foods, as
well as whether a fragile food is in a breakage-imminent state. We present the force readings along
three axes during the three phases: Pushing, Scooping and Transfer, for three food items, including
grape, strawberry and tofu.

Figure 10 demonstrates that there are no distinct differences of forces between robust and fragile
foods, suggesting that tactile information alone would not be sufficient for classifying food fragility.
We also present the forces during two rollouts of scooping tofu. One of these rollouts has breakage at
the transition between the Pushing and Scooping phases, while the other has no breakage throughout.
The difference of forces in Figure 11 is also too small to identify which one has the breakage, and
when the breakage occurred.

In conclusion, we find that the force-torque readings alone are too noisy to be used to replace the Risk
Classifier and distinguish between robust and fragile food items. Even within fragile food scooping
rollouts, we are unable to identify breakage failures from force-torque sensing alone, suggesting the
need for a vision-based system for our Failure Classifier. Although past food acquisition works have
used tactile sensing [10], we hypothesize the multi-object interactions present in bimanual scooping,
such as the pusher scraping against the plate, adds too much noise to the force readings to be used
to identify food states.
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Figure 10: Sensored forces of 3 food items: We report the per food item sensored force in the
pusher over 3 trials of scooping foods along the x, y and z axes in three phases(Pushing, Scooping,
Transfer). The confidence interval in the plot is 95% and there is no obvious difference between the
grape, strawberry and tofu.

Figure 11: Sensored forces from tofu rollouts: We report the sensored force in the pusher along
the x, y and z axes in three phases (Pushing, Scooping, Transfer) for tofu rollouts. The breakage
happens around the timestep of the green line where the transition from pushing to scooping starts.
We cannot identify the breakage failures purely from the force torque sensing.
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