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ABSTRACT

A smooth enough function f : D → R defined on a domain D ⊂ V in a real
vector space is an analytic object which defines two different geometric objects.
On the one hand, one may consider its level hypersurfaces as affine hypersurface
immersions in V , on the other hand the graph of its gradient ∇f as a Lagrangian
immersion in the product V × V ∗ of the real space with its dual. It turns out that
when f is a logarithmically homogeneous barrier on a conic domain D, then the
three objects are almost equivalent to each other in the sense that they contain
nearly the same information and can be recovered from each other. Properties of
the barrier such as self-concordance and self-scaledness are equivalent to mean-
ingful properties of the geometric objects. This equivalence furnishes new vantage
points to study barriers in conic optimization and builds a bridge to other areas of
mathematics which open new ways to obtain results in optimization. We describe
the links and equivalences between the three different view-points and give exam-
ples of results obtained by means of these connections.

1 INTRODUCTION

Consider a convex minimization problem of the form

min
x∈D

f(x), (1)

where D is a domain in a real vector space V of dimension n, f is sufficiently smooth, and the
minimum exists. Finding it is equivalent to finding a stationary point. The problem is therefore
equivalent to the problem of finding the intersection point of the two sets

G = {(x, p) ∈ D × V ∗ | p = f ′(x)}, L0 = V × {0}

in the direct product V × V ∗. Here G is the graph of the gradient of f . When studying optimization
methods in different setups, the one or the other viewpoint may be more useful.

We present three different viewpoints, mostly for the setup of conic optimization using logarithmi-
cally homogeneous barriers, which are equivalent to each other, but belong to three different math-
ematical domains. In each of these domains mathematicians have developed their own theories and
created a pool of literature. The goal of this paper is to make the relations between the viewpoints
precise, to relate properties known in these domains under different names to each other, and thus to
make the corresponding bodies of knowledge available to research in optimization. We complement
the paper with examples of results inspired by theories which were initially non-intersecting with
optimization, but which have been made available by the developments presented here.

The three viewpoints which are presented here are

• the analytic viewpoint familiar in optimization
• affine differential geometry, studying hypersurface immersions into real vector spaces
• the theory of Lagrangian submanifolds in para-Kähler spaces

In the context of problem equation 1 the hypersurfaces are the level sets of the function f , while the
Lagrangian manifold is the graph G of the gradient of f . As an example of the utility of the affine
differential geometric viewpoint we present the canonical barrier.
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Most results have been scattered in one form or the other in previous publications. It should also
be mentioned that the connection between hypersurface immersions and Lagrangian manifolds has
been repeatedly noted by geometers in different contexts. We see this work rather as a systematic
description of the aforementioned equivalences and connections, to make the geometric body of
knowledge more accessible to researchers in optimization.

1.1 CONIC PROGRAMS AND SELF-CONCORDANT BARRIERS

In this section we give an account on the classic objects and properties in conic programming.

A regular convex cone K is a closed convex cone in a real vector space V , with non-empty interior,
and containing no lines. A conic program over a regular convex cone K is a problem of the form

min
x∈K

⟨c, x⟩ : Ax = b. (2)

To any conic program over a cone K ⊂ V one can associate a dual program, which is a conic
program over the dual cone

K∗ = {s ∈ V ∗ | ⟨x, s⟩ ≥ 0 ∀ x ∈ K}.
Well-known classes of conic programs are linear programs (LP), second-order cone programs
(SOCP), and semi-definite programs (SDP), which all employ symmetric cones Faybusovich (1995).

The main innovation which permitted the design of efficient interior-point methods to solve conic
programs was the invention of the self-concordant barrier Nesterov & Nemirovskii (1989). These
authors recognized two properties of barriers as being sufficient to explain the performance of
interior-point methods, namely logarithmic homogeneity and self-concordance. In the book Nes-
terov & Nemirovskii (1994) a self-contained theory of interior-point methods for conic programs
over arbitrary regular convex cones has been elaborated.
Definition 1.1. Nesterov & Nemirovskii (1994) Let K ⊂ V be a regular convex cone. A function
F : intK → R is called logarithmically homogeneous with parameter ν if

F (tx) = −ν log t+ F (x) ∀ t > 0, x ∈ intK. (3)

Let C ⊂ V be an open convex set. A convex C3 function F : C → R is called self-concordant if for
all x ∈ C and all h ∈ V the relation

|F ′′′(x)[h, h, h]| ≤ 2(F ′′(x)[h, h])3/2 (4)

holds. It is called a self-concordant barrier on C if in addition

lim
x→∂C

F (x) = +∞.

A ν-self-concordant barrier or self-concordant barrier with parameter ν on a regular convex cone K
is a function combining all these properties, with C = intK.

In order for an interior-point method to be efficient in solving a conic program over a cone K, an
efficiently computable self-concordant barrier for the cone K with a low barrier parameter has to be
available. In (Nesterov & Nemirovskii, 1994, Section 2.5) a self-concordant barrier, the universal
barrier, has been constructed for an arbitrary cone K, with barrier parameter bounded by above n
Bubeck & Eldan (2019), but its computation is in general difficult. In the case of symmetric cones
the construction reduces to the well-known log-determinantal barriers.

In Nesterov & Todd (1994) it was observed that the logarithmic barriers on symmetric cones have a
property in common which barriers on general cones do not have, namely that of being self-scaled.
In order to introduce this notion we first have to define the dual barrier.
Definition 1.2. Let F be a self-concordant barrier on a cone K with parameter ν. The dual barrier
of F is given by

F∗(s) = max
x∈K

(−⟨x, s⟩ − F (x)), s ∈ intK∗.

By (Nesterov & Nemirovskii, 1994, Theorem 2.4.4) F∗ is indeed a self-concordant barrier on the
dual cone K∗ with the same parameter ν as F . In fact, F∗(−p), p ∈ − intK∗, is the Legendre
transformation of F .
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Definition 1.3. Let K ⊂ Rn be a regular convex cone, let K∗ be its dual cone, let F be a self-
concordant barrier on K, and let F∗ be the dual barrier on K∗. Then F is called self-scaled if for
every x,w ∈ intK we have

F ′′(w)x ∈ intK∗, F∗(F
′′(w)x) = F (x)− 2F (w)− ν.

A cone K admitting a self-scaled barrier is called self-scaled cone.

For every x ∈ intK and s ∈ intK∗ there actually exists a unique point w ∈ intK such that
F ′′(w)x = s (Nesterov & Todd, 1997, Theorem 3.1). The point w is called the scaling point of the
pair (x, s). Nesterov & Todd (1997; 1998) developed a theory of interior-point methods especially
for self-scaled barriers, where the directions of the steps, the so-called Nesterov-Todd directions, are
computed using the local metric F ′′(w) at the scaling point. In Nesterov (2006; 2012) the notion of
scaling point has been considered for general barriers.

While the property of being self-scaled is primarily a property of the barrier, the property of being
symmetric is a property of the cone. Nevertheless, these notions turned out to have a close con-
nection. Several authors proved independently that the symmetric cones and the self-scaled cones
form the same class, and provided a full classification of self-scaled barriers Hauser (2000b; 1999;
2000a); Schmieta (2000); Hauser & Lim (2002).

1.2 GEOMETRY OF SELF-CONCORDANT BARRIERS

Connections between self-concordant barriers and geometry have been already noticed and em-
ployed. In this section we review past developments.

Bayer & Lagarias (1989) and Lagarias (1990) analyzed the vector fields of descent directions for
solving LPs. In Karmarkar (1988) the Riemannian manifold defined by the Hessian of the barrier for
LP has been studied. The complexity, more precisely the number of steps, grows with the curvature
of the trajectories of the aforementioned vector fields, because the curvature determines how well
the continuous trajectory can be approximated by discrete steps. Later the iteration complexity was
linked to the barrier parameter ν Nesterov & Nemirovskii (1994).

Nesterov and Nemirovski showed that the Legendre transformation which maps the interior of the
primal cone K to the interior of the dual cone K∗ is an isometry when these interiors are equipped
with Hessian Riemannian metrics generated by a mutually dual pair of self-concordant barriers
F, F∗ on K and K∗, respectively (Nesterov & Nemirovskii, 1994, p.45), see also Nesterov & Todd
(2002) for an explicit statement. Moreover, the third derivative F ′′′ is mapped to −F ′′′

∗ and the first
derivative F ′ to −F ′

∗. This easily follows from the geometric theories presented here, especially that
of para-Kähler spaces, where primal and dual space fuse into a single product space.

In Ohara (1999); Ohara & Tsuchiya (2007); Kakihara et al. (2013) parallels have been drawn be-
tween the geometry of barriers and information geometry. The presence of a dually flat structure
has been noted. Such a structure is also known under the name of Hessian manifold Shima (2007).
It has been shown that the affine scaling vector field is parallel under the dual flat connection, which
is an equivalent reformulation of the result in Bayer & Lagarias (1989) on the stratification of this
vector field by the Legendre transformation.

2 MATHEMATICAL TOOLS

In this section we introduce the employed concepts from differential geometry. Basic notions like
Riemannian metrics, (co-)tangent spaces, vector and tensor fields are supposed to be known. Intro-
ductions into tensor calculus can be found, e.g., in Spivak (1999); Warner (1983).

2.1 PARALLELISM AND CURVATURE

Let M be a Riemannian manifold with metric tensor gµν . A Riemannian manifold is called complete
if every geodesic can be prolonged infinitely. The metric defines a parallel transport on M . Infor-
mally, a vector field on M is parallel if it is invariant with respect to the geodesic flow. Technically,
for a vector field uα we may define a covariant derivative

∇̂βu
α = ∂βu

α + Γα
βγu

γ . (5)
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Here we follow the Einstein convention of summation over repeating indices. The symbol ∂β de-
notes the partial derivative with respect to the coordinate xβ on M . Here

Γµ
αβ =

1

2
gµγ (gαγ,β + gβγ,α − gαβ,γ) (6)

are the Christoffel symbols, which are symmetric in the lower indices, and gµγ is the inverse of
the metric tensor. equation 5 informs us how much the component uα changes compared to a
hypothetical vector field ũα which is left unchanged by the geodesic flow in the direction of the
basis vector eβ . If ∇̂βu

α = 0 for all α, β, then the vector field u is parallel with respect to the
metric.

Parallelism can be defined for any tensor field. A dual vector field vα is parallel if and only if its
convolution vαu

α vanishes for all parallel vector fields uα. A tensor field T β1...βl
α1...αk

is parallel if
and only if its convolution T β1...βl

α1...αk
uα1 . . . wαkvβ1 . . . zβl

vanishes for all parallel (co-)vector fields
u, v, . . . , w, z.

Let us now consider a Riemannian manifold M with metric G and a smooth submanifold M ⊂
M. The restriction g of G to M defines a metric on M and turns M into a Riemannian manifold
too. At any point x ∈ M , the tangent space TxM can be decomposed into a G-orthogonal sum
TxM ⊕ NxM . Here NxM is defined as the G-orthogonal complement of TxM in TxM and is
called the normal subspace to M at x. The submanifold M is called totally geodesic if every M -
geodesic is also an M-geodesic.

The extrinsic curvature II of a submanifold M measures how much M deviates from a totally
geodesic submanifold. Given a point x ∈ M and a tangent vector u to M at x, one may compare the
M -geodesic to the M-geodesic through x with velocity u. It turns out that these geodesics differ by
a vector-valued term whose leading part is quadratic in u and points in a direction orthogonal to M at
x. Technically, the extrinsic curvature at x is a symmetric bilinear map II : TxM ×TxM → NxM .

The Christoffel symbols in equation 5 are defined by equation 6 derived from the metric g. One may
define the covariant derivative by similar symbols ∇l

kj which are not linked to a metric, in which
case one speaks of an affine connection. The affine connection generated by the metric is called the
Levi-Civita connection and is denoted by ∇̂.

A prime example of a connection not derived from a metric is the connection of a real vector space
V , usually called D, which in any coordinate system derived from a basis of V is given by the
symbols Dl

kj = 0. Its parallel vector fields are just the constant vector fields.

2.2 AFFINE HYPERSURFACE IMMERSIONS

Affine hypersurface immersions have first been studied in the pioneering works Tzitzeica (1908)
and Blaschke & Reidemeister (1923). This branch of differential geometry studies the structures
generated by the connection D of V on smooth hypersurface immersions M → V .

Let M be an (n − 1)-dimensional differentiable manifold and f : M → V a smooth hypersurface
immersion. Let ξ : M → Rn be a smooth transversal vector field on M , i.e., such that at any point
y ∈ M , every tangent vector u ∈ Tf(y)Rn can be decomposed into a sum of a tangential component
in f∗[TyM ] and a component parallel to ξ(y). Then there exists a unique affine connection ∇ and a
unique symmetric (0, 2)-tensor field h on M such that for every ∇-geodesic σ(t) on M we have

d2f(σ(t))

dt2
+ h(σ̇(t), σ̇(t)) · ξ(σ(t)) = 0. (7)

This can be written equivalently as D −∇ = −h⊗ ξ, and ∇ can be interpreted as projection of the
connection D onto the tangent space to M along ξ. The tensor h is called the affine fundamental
form, and ∇ is called the induced connection. If h is non-degenerate everywhere on M , then f is
called non-degenerate and h is called the affine metric.

Given a hypersurface immersion f : M → Rn and a transversal vector field ξ : M → Rn, we may
define another hypersurface immersion ν : M → V ∗ into the dual space, as follows. For y ∈ M we
define the image ν(y) as the vector v ∈ V ∗ which is zero on the tangent space f∗[TyM ] and 1 on
the transversal vector ξ(y). It turns out that this conormal map defines the same quadratic form h
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on M , but a different affine connection ∇̄, which is called the dual affine connection. The conormal
map of the immersion ν is the original immersion f , so the correspondence f ↔ ν is a duality.

The induced connection ∇ on M does in general not coincide with the Levi-Civita connection ∇̂ of
the affine metric h. The covariant derivative Cαβγ = ∇αhβγ is called the cubic form.

We are interested in hyperbolic centro-affine hypersurface immersions f : M → Rn, whose
transversal vector field is defined by the relation ξ = −f and whose affine metric is positive definite.
This implies that the image of the immersion is convex such that its convex hull and the origin lie on
opposite sides of the surface. For centro-affine immersions the cubic form C is totally symmetric.

An excellent general reference on affine differential geometry is the book Nomizu & Sasaki (1994).
Centro-affine hypersurface immersions are treated in detail in its first chapter.

2.3 PARA-KÄHLER SPACES

A para-Kähler manifold M is a 2n-dimensional manifold equipped with three objects: a pseudo-
Riemannian metric G, a symplectic form ω, and a linear involution J acting at each point x ∈ M
on the tangent space TxM, satisfying the following conditions. For arbitrary tangent vectors u, v ∈
TxM we have

G(u, v) = ω(Ju, v), ω(u, v) = g(Ju, v),

the covariant derivative ∇̂ω vanishes, and the eigenspaces of J for the eigenvalues ±1 form inte-
grable distributions, i.e., there are submanifolds of M with these eigenspaces as tangent spaces.

A simple example is the product M = V × V ∗ of a real vector space V with its dual. Here

• G is defined by G((u, v), (u′, v′)) = ⟨u′,v⟩+⟨u,v′⟩
2

• ω is defined by ω((u, v), (u′, v′)) = ⟨u′,v⟩−⟨u,v′⟩
2

• J : (u, v) 7→ (u,−v)

The primal and dual subspace hence appear as the eigenspaces of the inversion J with eigenvalues
±1. Swapping these eigenspaces then corresponds to a multiplication of J by 1. In the theory of
para-Kähler spaces J is associated to the para-complex unit e, which is similar to the imaginary
unit i, but instead of i2 = −1 satisfies the relation e2 = 1. Swapping the primal and dual space
is hence equivalent to the para-complex conjugation. The squared distance between two points
(u, v), (u′, v′) ∈ M in this space is given by

G((u− u′, v − v′), (u− u′, v − v′)) = ⟨u− u′, v − v′⟩. (8)

A Lagrangian submanifold of M (of dimension 2n) is a submanifold M of dimension n such that
the restriction of the symplectic form ω on M vanishes. The Lagrangian manifold inherits the
metric of the ambient space M, denote it by g. We then may define the extrinsic curvature II on M ,
measuring the deviation of M from a totally geodesic submanifold. Recall that II is a bilinear form
on the tangent subspace TM to M with values in the normal subspace NM . Now for Lagrangian
manifolds the map J takes NM bijectively to TM . Hence the composition J ◦ II is a bilinear map
from TM to TM , i.e., a (1, 2) tensor field. It is well-known that lowering the contra-variant index
of this tensor by means of the metric g leads to a totally symmetric tri-linear form (see (Chen, 2011,
Section 3)). In other words, let x ∈ M be a point and u, v, w ∈ TxM three tangent vectors. Then
the tri-linear map

ωII : (u, v, w) 7→ g((J ◦ II)(u, v), w) (9)
is totally symmetric.

A submanifold M ⊂ M is called minimal if the convolution of its extrinsic curvature with the
inverse of its metric g vanishes.

3 BARRIERS FROM THE VIEWPOINT OF AFFINE DIFFERENTIAL GEOMETRY

In this section we establish how logarithmically homogeneous barriers relate to centro-affine geom-
etry, which deals with centro-affine hypersurfaces in V .
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3.1 SPLITTING OF THE METRIC

The domain on which F is defined is the interior Ko of a regular convex cone, which naturally splits
into a disjoint union of rays. Now equation 3 implies that for every α ∈ R, there exists exactly
one point x on each ray such that F (x) = α. Hence the domain splits also into a disjoint union
of mutually homothetic level hypersurfaces of F . The whole domain can hence be considered as a
direct product of R and a level surface of F . The key result which relates barriers to centro-affine
immersions is that the Hessian metric F ′′ splits accordingly into a direct product of a trivial part and
a part proportional to the affine metric.

Let F : Ko → R be a smooth locally strongly convex function on the interior of a regular convex
cone K satisfying the logarithmic homogeneity equation 3 with some ν > 0. Let Fα = {x ∈
Ko |F (x) = α} be the level surfaces of F . For every α ∈ R, define a diffeomorphism Iα :
Fα × R+ → Ko by Iα : (x, β) 7→ βx.
Proposition 3.1. (Loftin, 2002, Theorem 1, p.428) The Riemannian manifold (Ko, F ′′), consisting
of the interior of K equipped with the Hessian metric generated by F , is isometric under I−1

α to the
product (Fα, νh) × (R+, νβ

−2dβ2), where h is the centro-affine metric of the inclusion Fα ↪→ V ,
considered as centro-affine immersion.

The Hessian metric F ′′ hence splits into a direct product of a trivial radial part and a non-trivial
transversal part, which turns out to be proportional to the affine metric defined by the level hypersur-
faces of F , considered as centro-affine immersions. The splitting result, which itself follows from
logarithmic homogeneity, has an interesting consequence. Since the co-vector field F ′ has constant
length

√
ν in the Hessian metric F ′′ (Nesterov & Nemirovskii, 1994, Prop. 2.3.4), is everywhere

orthogonal to the non-trivial factor, and constant length vector fields in one dimension are parallel,
this field must be parallel with respect to the connection defined by the metric F ′′. Interestingly, the
converse is also true in the following sense.
Theorem 3.2. (Hildebrand, 2014b, Theorem 4.1) Let F : U → R be a C3 function defined on some
simply connected domain U ⊂ An in an affine space. Suppose that F has a non-degenerate Hessian
and denote by ∇̂ the Levi-Civita connection of the Hessian metric F ′′. Then the first derivative
F ′ is ∇̂-parallel if and only if F is locally logarithmically homogeneous with some homogeneity
parameter ν with respect to some central point c ∈ An.

3.2 SELF-CONCORDANCE AND CUBIC FORM

We now consider how the cubic form C on the level surface relates to the third derivative F ′′′.
Lemma 3.3. Assume the notations and conditions of Section 3.1. Then for every α ∈ R, the cubic
form C of the inclusion Fα ↪→ V , considered as centro-affine immersion, equals the restriction of
the symmetric (0, 3) tensor field ν−1F ′′′ on Fα.

Proof. Let y ∈ Fα be an arbitrary point and let u ∈ TyFα be a tangent vector at y. We shall now
compute the value C[u, u, u] of the cubic form on this vector. Let ∇ be the induced centro-affine
connection on Fα and D the canonical affine connection on V . We then have C = ∇h = ν−1∇F ′′

by the definition of the cubic form and by Proposition 3.1.

Let σ(t) be the ∇-geodesic through y = σ(0) with velocity u. Then by definition u(t) = σ̇(t) is the
vector obtained by ∇-parallel transport of u from y to σ(t) along σ. Applying equation 7 we get

u̇(t)− h(u(t), u(t)) · σ(t) = 0. (10)
Let further γ(t) = F ′′(σ(t))[u(t), u(t)] be the value of F ′′ on the vector u(t). On the one hand, we
get by differentiation

γ̇(t) = F ′′′(σ(t))[σ̇(t), u(t), u(t)] + 2F ′′(σ(t))[u̇(t), u(t)]

= F ′′′(σ(t))[u(t), u(t), u(t)] + 2h(u(t), u(t))F ′′(σ(t))[σ(t), u(t)]

= F ′′′(σ(t))[u(t), u(t), u(t)].

Here the second equality comes from equation 10, and the third equality holds because the position
vector σ(t) and the tangent vector u(t) are orthogonal by virtue of Proposition 3.1. On the other
hand, we have

γ̇(t) = ∇u(t)γ(t) = (∇F ′′)(σ(t))[u(t), u(t), u(t)] = νC(σ(t))[u(t), u(t), u(t)].
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Here the first equality holds because the covariant derivative of a scalar equals its partial derivative.
The second equality holds by the Leibniz rule, taking into account that the ∇-derivative of u vanishes
because u(t) is ∇-parallel. The third equality comes from the definition of the cubic form C.

Equalling the two expressions for γ̇(t) completes the proof.

Hence, just as the affine metric h is proportional to the restriction of the Hessian F ′′ on the level
surface of F , the cubic form C is proportional to the restriction of the third derivative F ′′′ to this level
surface. In particular, self-concordance of F implies that the cubic form is uniformly bounded when
measured in the metric h. However, the converse implication is not immediately evident, because
the affine metric and the cubic form on the level surface Fα determine the derivatives F ′′, F ′′′ only
on those vectors which are tangent to Fα. The logarithmic homogeneity condition, however, allows
to obtain the following result.
Theorem 3.4. (Hildebrand, 2022, Theorem 1.5) Let F : Ko → R be a logarithmically homoge-
neous convex C3 function with homogeneity degree ν on a convex cone K ⊂ V , n ≥ 2. Then F is
self-concordant if and only if the cubic form on the level surfaces of F has ∞-norm not exceeding
2ϑ with ϑ = ν−2√

ν−1
as measured in the affine metric.

As a consequence, F is self-concordant if and only if the cubic form is bounded when measured
in the affine metric h, and the norm of C is in an explicit monotone correspondence with the self-
concordance parameter ν.

The pair (h,C) plays a fundamental role in affine differential geometry. By the fundamental unique-
ness result (Nomizu & Sasaki, 1994, Theorem 8.1) the centro-affine hypersurface and hence the
barrier and the underlying cone can be recovered from this pair up to linear isomorphism.

3.3 LEGENDRE DUALITY AND THE CONORMAL MAP

In this subsection we show that Legendre duality for barriers is closely linked to the duality in affine
differential geometry defined by the conormal map. By applying the first order optimality condition
to the maximization problem in Definition 1.2 we obtain the condition s = −F ′(x). Let us denote
the corresponding map from Ko to Rn by Φ, Φ(x) = −F ′(x). By (Nesterov & Nemirovskii, 1994,
Theorem 2.4.4) the image of Φ is exactly the interior of the dual cone K∗. Positive definiteness of the
Hessian F ′′ implies that Φ is actually a bijection between the interiors of K and K∗. Moreover, it is
an isometry when the interiors of K,K∗ are equipped with the Hessian metrics F ′′, F ′′

∗ , respectively
(Nesterov & Nemirovskii, 1994, p.45),Nesterov & Todd (2002). By the Definition 1.2 of the dual
barrier we have

F (x) + F∗(Φ(x)) = −⟨x,Φ(x)⟩ = ⟨x, F ′(x)⟩ = −ν, (11)
and hence Φ maps level surfaces of F to level surfaces of F∗. As a consequence, the isometry
Φ preserves the product structure in Proposition 3.1, but as is easily seen from equation 11, the
orientation of the rays is reversed: a ray pointing away from the origin in the primal cone is mapped
to a ray pointing towards the origin in the dual cone.

Let us now choose α ∈ R and consider the level surface Fα = {x ∈ Ko |F (x) = α}. By definition
the conormal map of the hypersurface immersion Fα ↪→ Rn maps the point x ∈ Fα to p ∈ Rn such
that p is proportional to F ′(x) and ⟨p,−x⟩ = 1. From the identity F ′(x)[x] = −ν we obtain the
explicit expression p = ν−1F ′(x) = −ν−1Φ(x). We get the following result.
Lemma 3.5. Let F : Ko → R be a self-concordant barrier on a regular convex cone K ⊂ Rn with
parameter ν. Let Fα be a level surface of F . Then the conormal map of the hypersurface immersion
Fα ↪→ Rn is given by −ν−1Φ, where Φ is the isometry between the interiors of K and K∗ defined
by Legendre duality.

3.4 SELF-SCALED BARRIERS AND PARALLEL CUBIC FORMS

Self-scaled barriers are a special kind of barriers existing only on symmetric cones. This property
can be described by a parallelism condition on the third derivative F ′′′, much like logarithmic ho-
mogeneity is described by a parallelism condition on F ′. Therefore from the viewpoint of affine
differential geometry the self-scaled barriers are the simplest class of self-concordant logarithmi-
cally homogeneous barriers after the familiar log-quadratic barrier on the Lorentz cone, which is
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characterized by the vanishing of the cubic form itself. We have the following results (Hildebrand,
2014b, Section 5), (Hildebrand, 2015, Section 2).

Theorem 3.6. Let K ⊂ V be a regular convex cone and F : Ko → R a logarithmically homoge-
neous self-concordant barrier on K. Then the following conditions are equivalent:

(a) F is self-scaled;

(b) F satisfies D̂F ′′′ = 0, where D̂ is the Levi-Civita connection of the Hessian metric F ′′;

(c) the cubic form C on the level surfaces of F is parallel with respect to the Levi-Civita
connection ∇̂ of the centro-affine metric h on these level surfaces.

This provides also a radically different view on self-scaled barriers. Initially they are defined by
a global algebraic property, while the parallelism condition is local and geometric. The condition
D̂F ′′′ = 0 amounts to a quasi-linear fourth order PDE (Hildebrand, 2014b, eq. (2)).

4 LAGRANGIAN SUBMANIFOLDS

Due to the symmetry of the Hessian F ′′ the gradient graph M of a C2 function F : V ⊃ D → R is
a Lagrangian submanifold of the para-Kähler space M = V × V ∗. Moreover, the metric g induced
by G on M coincides with the Hessian metric F ′′ on D. The scaling point then has the following
interpretation.

Lemma 4.1. Let D ⊂ V be a conic domain, F a logarithmically homogeneous C2 function on
D, x ∈ D, s = −F ′(x), and let M = {(y,−F ′(y)) | y ∈ D}. Let further w ∈ D be such that
F ′′(w)x = s. Then (w,−F ′(w)) ∈ M is a stationary point of the distance function from (x, s) on
M , measured in the metric G of the para-Kähler space M.

Proof. The squared distance from (x, s) to an arbitrary point (y,−F ′(y)) ∈ M is given by

⟨x− y, s+ F ′(y)⟩.

due to equation 8. Differentiating with respect to y, we obtain the condition

−s+ F ′′(y)x− F ′′(y)y − F ′(y) = F ′′(y)x− s = 0

for stationary points. Here F ′′(y)y + F ′(y) = 0 due to logarithmic homogeneity.

Hence if (x, s) is close enough to the manifold M , the scaling point can be interpreted as the closest
point on M to (x, s).

The connection between Lagrangian submanifolds of the mentioned para-Kähler space and centro-
affine immersions has been elaborated in Hildebrand (2011b), and in a more general setup in Hilde-
brand (2011a). In particular, the totally symmetric form defined by equation 9 is related to the cubic
form C, and the metric g to the affine metric h.

5 CANONICAL BARRIER

A classical family of hypersurfaces studied already in Blaschke & Reidemeister (1923) are the affine
spheres. A central conjecture that has been proven by many authors over decades is the Calabi
conjecture, which states that the interior of every regular convex cone K can be foliated by a unique
homothetic family of complete hyperbolic affine spheres. It is then not far-fetched to construct a
logarithmically homogeneous function F : Ko → R which has exactly these affine spheres as level
surfaces and to try it as a candidate for a barrier. Hildebrand (2014c) and Fox (2015) independently
showed that such a function is indeed a self-concordant barrier with parameter ν ≤ n, now known
as the canonical barrier.

The canonical barrier is a universal construction. It shares with the universal barrier all invariance
properties, but in addition it behaves well under duality. It can be represented as the solution of
the PDE log detF ′′ = 2F with boundary condition F |∂K = +∞. On homogeneous cones its

8
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level surfaces equal those of the universal barrier, and on this class of cones the two barriers are
essentially the same object. That the universal barrier on homogeneous cones satisfies above PDE
has been shown already in (Güler, 1996, Theorem 4.4, p.868). Güler also conjectured that the
solution of this PDE defines a self-concordant barrier for general cones.

A different characterization of canonical barriers is that they correspond exactly to the complete
minimal Lagrangian surfaces in the para-Kähler space of Hildebrand (2011b).

5.1 SEMI-HOMOGENEOUS CONES

If K has a rich automorphism group, then one may use this group to reduce the dimension of the
PDE defining the canonical barrier, loosely speaking by considering it as an equation on the orbits
with respect to the group. If the orbits in the interior intK form a 1-parametric family, then the
PDE reduces to an ODE. One may then attempt to solve this ODE explicitly. In the case of 3-
dimensional cones this program has been successfully accomplished, yielding analytic expressions
for the canonical barrier on those cones whose automorphism group has dimension at least two. We
call such cones semi-homogeneous. Hildebrand (2014a) gave the following classification.

Theorem 5.1. Let K ⊂ R3 be a regular convex cone such that dimAutK ≥ 2. Then K is linearly
isomorphic to exactly one of the following cones.

1. the cone obtained by the homogenization of the epigraph of the exponential function,

2. the positive orthant R3
+,

3. the cone given by {x | z ≥ −x1/py1/q, x ≥ 0, y ≥ 0} for some p ∈ [2,∞), 1
p + 1

q = 1,

4. the cone given by {x | − αx1/py1/q ≤ z ≤ x1/py1/q, x ≥ 0, y ≥ 0} for some p ∈ [2,∞),
1
p + 1

q = 1, α ∈ (0, 1],

5. the cone given by {x | 0 ≤ z ≤ x1/py1/q, x ≥ 0, y ≥ 0} for some p ∈ [2,∞), 1
p + 1

q = 1.

In general, the canonical barrier on these cones can be expressed by Weierstrass special functions Lin
& Wang (2016), with simpler expressions for the boundary cases Hildebrand (2014c), Hildebrand
(2014a). Case 4 with α = 1 corresponds to the well-known power cone which is nowadays available
for modeling problems solvable by some conic solvers. The barrier parameter ν = 3max(p,q)

max(p,q)+1 of
the canonical barrier on this cone is better than the best-known values ν = 3 (analytically) and
ν = 3− 2

max(p,q) (numerically) reported in (Chares, 2008, Section 3.1).

6 CONCLUSIONS

We have presented three different viewpoints on logarithmically homogeneous barriers used in conic
optimization. The following table gives an overview of the relations established in this paper.

self-concordant barriers centro-affine immersions para-Kähler spaces
barrier F : intK → R level surface {x | F (x) = 0} gradient graph {(x, F ′(x))}
Legendre duality conormal map para-complex conjugation
Hessian metric centro-affine metric gradient graph submanifold metric
third derivative cubic form extrinsic curvature
self-concordance condition bound on cubic form bound on extrinsic curvature
self-concordance parameter ∞-norm of the cubic form ∞-norm of extrinsic curvature
canonical barrier affine hypersphere minimal Lagrangian submanifold
self-scaled barrier parallel cubic form parallel extrinsic curvature
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