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A MORE IMPLEMENTATION DETAILS

All experiments are conducted with ViT-B/16 backbones. The numbed of RBFs is set as N = 4
and the centers [c1, c2, · · · , cN ] are evenly distributed between -2 and 2, and the σ of the Gaussian
functions is set as 1.3, allowing for an average division of the range from -2 to 2.

B MORE EXPERIMENTAL RESULTS

Experiments on CIFAR-100. Tab. 5 compares the average incremental accuracy between the
baseline methods and those with KAC in the CIFAR-100 dataset. Replacing the linear classifiers
with KAC improves most of the methods, with a little drop in CPrompt and L2P. Due to the low
pixel resolution of CIFAR-100, it is generally suitable for training smaller-scale networks. For pre-
trained backbones, performance tends to be saturated, which is why our method does not show
significant improvement on this dataset.

Table 5: The average incremental accuracy of CIFAR-100 10 steps scenario.

Method Linear KAN CLF

L2P 83.78 83.71 (-0.07)

DualPrompt 84.80 85.74 (+0.94)

CODAPrompt 86.65 87.26 (+0.61)

CPrompt 87.50 87.19 (-0.31)

More results on CUB200 and ImageNet-R. Tab. 7 and Tab. 6 report the average incremental
accuracy and the accuracy of the last task, in which most results demonstrate that with KAC, the
approaches will achieve an improvement prepared with linear classifier.

Table 6: The average incremental accuracy and the accuracy of the last task in scenarios on
ImageNet-R dataset.

Model 5 steps 10 steps 20 steps 40 steps

Avg Last Avg Last Avg Last Avg Last

L2P 78.42 73.57 79.58 73.10 77.93 70.35 74.28 66.02
+KAN 77.98 73.56 79.22 73.14 78.94 72.11 76.34 69.74

DualPrompt 79.75 74.57 79.50 72.48 78.35 70.68 74.51 66.31
+KAN 79.96 76.37 80.72 75.67 80.40 74.68 76.87 71.24

CODAPrompt 82.27 77.62 82.49 77.01 80.92 74.40 76.80 69.34
+KAN 83.75 80.14 84.43 79.24 83.59 77.94 79.79 74.31

CPrompt 84.07 78.68 83.13 76.80 81.83 74.32 78.98 70.07
+KAN 84.51 79.08 83.97 78.07 82.56 75.73 80.89 72.05

C MORE ABLATION STUDIES

Ablation on the linear shortcut. In KAC, we don’t follow conventional KAN, in which a linear
shortcut is added with the spline functions. In this section, we show that the linear shortcut cannot
help KAC achieve better performance. Tab. 8 reports the accuracy of the last task in ImageNet-R 20
steps scenario. It demonstrates that when linear shortcut is added, it achieves even worse accuracy,
supporting our decision to remove the linear shortcut.
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Table 7: The average incremental accuracy and the accuracy of the last task in scenarios on CUB200
dataset.

Model 5 steps 10 steps 20 steps 40 steps

Avg Last Avg Last Avg Last Avg Last

L2P 80.05 76.04 74.02 65.28 63.31 51.78 46.84 35.41
+KAN 84.42 83.80 81.54 79.77 73.70 70.13 66.08 60.43

DualPrompt 81.84 76.38 75.10 64.60 66.89 54.68 50.61 37.55
+KAN 86.20 85.03 82.18 79.61 76.93 71.91 71.31 64.69

CODAPrompt 83.09 78.73 79.30 71.87 69.49 58.00 52.57 37.81
+KAN 86.56 85.61 85.04 82.59 77.23 73.32 71.36 64.56

CPrompt 88.62 82.02 85.77 76.80 83.97 72.99 77.34 64.80
+KAN 89.60 83.08 89.04 80.75 87.06 78.54 85.11 76.51

Table 8: Comparison of the KAC and KAC with shortcut on the last accuracy in ImageNet-R 20
steps scenario.

Method Baseline KAC + Shortcut KAC

L2P 70.35 71.09 72.11
DualPrompt 70.68 72.83 74.68
CODAPrompt 74.40 75.57 77.94
CPrompt 74.32 73.55 75.73

D MORE VISUALIZATIONS

Visualization of performance on CUB200. To investigate the reasons behind the superior perfor-
mance of KAC on CUB200, we make an observation on the accuracy curves of CUB200 across
experiments with different steps. As shown in Fig. 6, with the arriving of tasks, KAC demonstrates
a growing advantage. In several steps, the baseline frequently experiences significant forgetting,
while KAC often exhibits less forgetting compared to the linear classifier during these steps, which
helps KAC accumulate a higher final accuracy.
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Figure 6: The accuracy curves for scenarios of different steps on the CUB200 dataset. The x-axis
represents the gradually increasing tasks and the y-axis represents accuracy at each step. It can be
observed that KAC follows the same trend as the baseline, but exhibits less forgetting at each step.
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