
Supplementary Material for:
Parametrized Quantum Policies for Reinforcement Learning

Sofiene Jerbi, Casper Gyurik, Simon C. Marshall, Hans J. Briegel, Vedran Dunjko

Outline The Supplementary Material is organized as follows. In Appendix A, we derive the
expression of the log-policy gradient for SOFTMAX-PQCs presented in Lemma 1. In Appendix B,
we prove Lemmas 2 and 3 on the efficient policy sampling and the efficient estimation of the log-
policy gradient for SOFTMAX-PQC policies. In Appendix C, we clarify the role of the trainable
observables in our definition of SOFTMAX-PQC policies. In Appendix D, we give a specification of
the environments considered in our numerical simulations, as well the hyperparameters we used to
train all RL agents. In Appendix E, we present additional plots and numerical simulations that help
our understanding and visualization of PQC polices. In Appendix F, we give a succinct description
of the DLP classification task of Liu et al. In Appendices G to I, we prove our main Theorem 1 on
learning separations in DLP environments. In appendix J, we construct PQC agents with provable
guarantees of solving the DLP environments, stated and proven in Theorem 2.

A Derivation of the log-policy gradient

For a SOFTMAX-PQC defined in Def. 1, we have:

∇θ log πθ(a|s) = ∇θ log e
β⟨Oa⟩s,θ −∇θ log

∑

a′

eβ⟨Oa′ ⟩s,θ

= β∇θ ⟨Oa⟩s,θ −
∑

a′

eβ⟨Oa′ ⟩s,θβ∇θ ⟨Oa′⟩s,θ∑
a′′ e

β⟨Oa′′ ⟩s,θ

= β

(
∇θ ⟨Oa⟩s,θ −

∑

a′

πθ(a
′|s)∇θ ⟨Oa′⟩s,θ

)
.

B Efficient implementation of SOFTMAX-PQC policies

B.1 Efficient approximate policy sampling

In this section we prove Lemma 2, restated below:
Lemma 2. For a SOFTMAX-PQC policy πθ defined by a unitary U(s,θ) and observables Oa,
call ⟨Õa⟩s,θ approximations of the true expectation values ⟨Oa⟩s,θ with at most ε additive error.

Then the approximate policy π̃θ = softmaxβ(⟨Õa⟩s,θ) has total variation distance O(βε) to πθ =
softmaxβ(⟨Oa⟩s,θ). Since expectation values can be efficiently estimated to additive error on a
quantum computer, this implies efficient approximate sampling from πθ.

Proof. Consider |A| estimates
{
⟨Õa⟩s,θ

}
1≤a≤|A|

, obtained all to additive error ε, i.e.,

∣∣∣⟨Õa⟩s,θ − ⟨Oa⟩s,θ
∣∣∣ ≤ ε, ∀a

and used to compute an approximate policy

π̃θ(a|s) =
eβ⟨Õa⟩s,θ

∑
a′ eβ⟨Õa′ ⟩s,θ

.

1

Due to the monoticity of the exponential, we have, for all a:

e−βεeβ⟨Oa⟩s,θ

eβε
∑

a′ e
β⟨Oa′ ⟩s,θ

≤ eβ⟨Õa⟩s,θ
∑

a′ eβ⟨Õa′ ⟩s,θ
≤ eβεeβ⟨Oa⟩s,θ

e−βε
∑

a′ e
β⟨Oa′ ⟩s,θ

⇔ e−2βεπθ(a|s) ≤ π̃θ(a|s) ≤ e2βεπθ(a|s). (7)

Hence,

TV(πθ, π̃θ) =
∑

a

|π̃θ(a|s)− πθ(a|s)|

≤
∑

a

∣∣e2βεπθ(a|s)− e−2βεπθ(a|s)
∣∣

=
∑

a

∣∣e2βε − e−2βε
∣∣πθ(a|s)

= 2|sinh(2βε)| =
βε→0+

4βε+O
(
(βε)3

)
,

where we used {π̃θ(a|s), πθ(a|s)} ∈ [e−2βεπθ(a|s), e2βεπθ(a|s)] in the first inequality.

B.2 Efficient estimation of the log-policy gradient

Using a similar approach to the proof of the previous section, we show the following lemma:
Lemma 3. For a SOFTMAX-PQC policy πθ defined by a unitary U(s,θ) and observables Oa, call
∂i⟨Õa⟩s,θ approximations of the true derivatives ∂i⟨Oa⟩s,θ with at most ε additive error, and ⟨Õa⟩s,θ
approximations of the true expectation values ⟨Oa⟩s,θ with at most ε′ = ε(4βmaxa ∥Oa∥)−1

additive error. Then the approximate log-policy gradient ∇θ log π̃θ(a|s) = β
(
∇θ⟨Õa⟩s,θ −∑

a′ π̃θ(a
′|s)∇θ⟨Õa′⟩s,θ

)
has distance O(βε) to ∇θ log πθ(a|s) in ℓ∞-norm.

Proof. Call xa,i = πθ(a|s)∂i⟨Oa⟩s,θ and x̃a,i = π̃θ(a|s)∂i⟨Õa⟩s,θ, such that:

∂i log π̃θ(a|s) = β
(
∂i⟨Õa⟩s,θ −

∑
a′
x̃a′,i

)
.

and similarly for ∂i log πθ(a|s).
Using Eq. (7) and that |∂i⟨Oa⟩s,θ − ∂i⟨Õa⟩s,θ| ≤ ε,∀a, i, we have:

e−2βε′πθ(a|s) (∂i⟨Oa⟩s,θ − ε) ≤ π̃θ(a|s)∂i⟨Õa⟩s,θ ≤ e2βε
′
πθ(a|s) (∂i⟨Oa⟩s,θ + ε)

⇒ e−2βε′

(∑

a

xa,i − ε

)
≤

∑

a

x̃a,i ≤ e2βε
′

(∑

a

xa,i + ε

)

where we summed the first inequalities over all a. Hence:
∣∣∣∣∣
∑

a

xa,i −
∑

a

x̃a,i

∣∣∣∣∣ ≤
∣∣∣∣∣e

2βε′

(∑

a

xa,i + ε

)
− e−2βε′

(∑

a

xa,i − ε

)∣∣∣∣∣

≤
∣∣∣∣∣(e

2βε′ + e−2βε′)ε+ (e2βε
′ − e−2βε′)

∑

a

xa,i

∣∣∣∣∣

≤
∣∣∣∣∣2 cosh(2βε

′)ε+ 2 sinh(2βε′)
∑

a

xa,i

∣∣∣∣∣

=
βε′→0+

∣∣∣∣∣ε+ 4βε′
∑

a

xa,i +O
(
(βε′)2ε

)
+O

(
(βε′)3

)
∣∣∣∣∣. (8)

We also have ∣∣∣∣∣
∑

a

xa,i

∣∣∣∣∣ =
∣∣∣∣∣
∑

a

πθ(a|s)∂i⟨Oa⟩s,θ
∣∣∣∣∣ ≤ max

a,i
|∂i⟨Oa⟩s,θ| ≤ max

a
∥Oa∥

2

where the last inequality derives from the parameter-shift rule (Eq. (5)) formulation of ∂i ⟨Oa⟩ for
derivatives w.r.t. rotation angles of the PQC and the fact that ∂i ⟨Oa⟩ are simply expectation values
⟨Ha,i⟩ with ∥Ha,i∥ ≤ ∥Oa∥ for observable weights.
Applying the triangular inequality on the right side of Eq. (8), we hence have:∣∣∣∣∣

∑

a

xa,i −
∑

a

x̃a,i

∣∣∣∣∣ ≤
βε′→0+

ε+ 4βε′ max
a

∥Oa∥+O
(
(βε′)2ε

)
+O

(
(βε′)3

)
.

For ε′ = ε(4βmaxa ∥Oa∥)−1 and using |∂i⟨Oa⟩s,θ − ∂i⟨Õa⟩s,θ| ≤ ε, ∀a, i, we finally have:

|∂i log πθ(a|s)− ∂i log π̃θ(a|s)| ≤
βε→0+

3βε+O(βε3) ∀i

C The role of trainable observables in SOFTMAX-PQC policies

In Sec. 2.2, we presented a general definition of the SOFTMAX-PQC observables Oa =
∑

i wa,iHa,i

in terms of an arbitrary weighted sum of Hermitian matrices Ha,i. In this appendix, we clarify the
role of such a decomposition.

C.1 Training the eigenbasis and the eigenvalues of an observable

Consider a projective measurement defined by an observable O =
∑

m αmPm, to be performed on a
quantum state of the form V (θ) |ψ⟩, where V (θ) denotes a (variational) unitary. Equivalently, one
could also measure the observable V †(θ)OV (θ) on the state |ψ⟩. Indeed, these two measurements
have the same probabilities p(m) = ⟨ψ|V †(θ)PmV (θ) |ψ⟩ of measuring any outcome αm. Note
also that the possible outcomes αm (i.e., the eigenvalues of the observable O) remain unchanged.

From this observation, it is then clear that, by defining an observable O =
∑

m αmPm using projec-
tions Pm on each computational basis state of the Hilbert space H and arbitrary eigenvalues αm ∈ R,
the addition of a universal variational unitary V (θ) prior to the measurement results in a family of
observables {V †(θ)OV (θ)}θ,α that covers all possible Hermitian observables in H. Moreover, in
this setting, the parameters that define the eigenbasis of the observables V †(θ)OV (θ) (i.e., θ) are
completely distinct from the parameters that define their eigenvalues (i.e., α). This is not the case for
observables that are expressed as linear combinations of non-commuting matrices, for instance.

In our simulations, we consider restricted families of observables. In particular, we take the Hermitian
matrices Ha,i to be diagonal in the computational basis (e.g., tensor products of Pauli-Z matrices),
which means they, as well as Oa, can be decomposed in terms of projections on the computational ba-
sis states. However, the resulting eigenvalues α that we obtain from this decomposition are in our case
degenerate, which means that the weights wa underparametrize the spectrums of the observables Oa.
Additionally, the last variational unitaries Vvar(ϕL) of our PQCs are far from universal, which restricts
the accessible eigenbasis of all variational observables V †

var(ϕL)OaVvar(ϕL).

C.2 The power of universal observables

Equivalently to the universal family of observables {V †(θ)OV (θ)}θ,α that we defined in the previous
section, one can construct a family of observables {Ow =

∑
i wiHi}w that parametrizes all Hermi-

tian matrices in H (e.g., by taking Hi to be single components of a Hermitian matrix acting on H).
Note that this family is covered by our definition of SOFTMAX-PQC observables. Now, given access
to data-dependent quantum states |ψs⟩ that are expressive enough (e.g., a binary encoding of the input
s, or so-called universal quantum feature states [1]), one can approximate arbitrary functions of s
using expectations values of the form ⟨ψs|Ow |ψs⟩. This is because the observables Ow can encode
an arbitrary quantum computation. Hence, in the case of our SOFTMAX-PQCs, one could use such
observables and such encodings |ψs⟩ of the input states s to approximate any policy π(a|s) (using an
additional softmax), without the need for any variational gates in the PQC generating |ψs⟩.
As we mentioned in the previous section, the observables that we consider in this work are more
restricted, and moreover, the way we encode the input states s leads to non-trivial encodings |ψs,ϕ,λ⟩
in general. This implies that the variational parameters ϕ,λ of our PQCs have in general a non-trivial
role in learning good policies. One can even show here that these degrees of freedom are sufficient to
make such PQCs universal function approximators [2].

3

D Environments specifications and hyperpameters

In Table 1, we present a specification of the environments we consider in our numerical simulations.
These are standard benchmarking environments from the OpenAI Gym library [3], described in Ref.
[4], PQC-generated environments that we define in Sec. 4.2, and the CognitiveRadio environment of
Ref. [5] that we discuss in Appendix E.

Environment
State

dimension
Number of
actions

Horizon Reward function Termination conditions

CartPole-v1 4 2 500 +1 until termination

� Pole angle or cart position
outside of bounds

� Reaching horizon

MountainCar-v0 2 3 200
−1 + height

until termination
Reaching goal or horizon

Acrobot-v1 6 3 500 −1 until termination Reaching goal or horizon

SL-PQC 2 2 20
+1 for good action

Reaching horizon−1 for wrong action

Cliffwalk-PQC 2 2 20
+1 for good action � Doing wrong action

−1 for wrong action � Reaching horizon

CognitiveRadio
2 to 5

2 to 5 100
+1 for good action

Reaching horizon
(discrete) −1 for wrong action

Table 1: Environments specifications. The reward function of Mountaincar-v0 has been modified
compared to the standard specification of OpenAI Gym [3], similarly to Ref. [6].

In Tables 2 and 3, we list the hyperparameters used to train our agents on the various environments
we consider. All agents use an ADAM optimizer. For the plots presented in this manuscript, all
quantum circuits were implemented using the Cirq library [7] in Python and simulated using a Qulacs
backend [8] in C++. For the tutorial [9], the TensorFlow Quantum library [10] was used.
All simulations were run on the LEO cluster (more than 3000 CPUs) of the University of Innsbruck,
with an estimated total compute time (including hyperparametrization) of 20 000 CPU-hours.

E Deferred plots and shape of policies learned by PQCs v.s. DNNs

E.1 Influence of architectural choices on RAW-PQC agents

In Fig. 6, we run a similar experiment to that of Sec. 3.2 in the main text, but on RAW-PQC agents
instead of SOFTMAX-PQC agents. We observe that both increasing the depth of the PQCs and
training the scaling parameters λ have a similar positive influence on the learning performance, and
even more pronounced than for SOFTMAX-PQC agents. Nonetheless, we also observe that, even
at greater depth, the final performance, as well as the speed of convergence, of RAW-PQC agents
remain limited compared to that of SOFTMAX-PQC agents.

0 250 500 750 1000 1250 1500 1750 2000
Episode

0

100

200

300

400

500

Av
er
ag

e
co
lle

ct
ed

re
w
ar
ds

CartPole - raw-PQC

Depth 5
Reference (depth 1)
Fixed lambdas

0 250 500 750 1000 1250 1500 1750 2000
Episode

-180

-160

-140

-120

-100

-80

-60
MountainCar - raw-PQC

Depth 6
Reference (depth 4)
Fixed lambdas

0 250 500 750 1000 1250 1500 1750 2000
Episode

-500

-450

-400

-350

-300

-250

-200

-150

-100
Acrobot - raw-PQC

Depth 5
Reference (depth 2)
Fixed lambdas

Figure 6: Influence of the model architecture for RAW-PQC agents. The blue curves in each plot
correspond to the learning curves from Fig. 3 and are taken as a reference.

4

Environment Model
Learning
rates

Discount
γ

Final
β

Batch
size

Depth Width

CartPole-v1
softmax-PQC [0.01, 0.1, 0.1] 1 1 10 {1, 5} 4

raw-PQC [0.01, 0., 0.1] 1 ✗ 10 {1, 5} 4

MountainCar-v0
softmax-PQC [0.01, 0.1, 0.01] 1 1.5 10 {4, 6} 2

raw-PQC [0.01, 0., 0.01] 1 ✗ 10 {4, 6} 2

Acrobot-v1
softmax-PQC [0.01, 0.1, 0.1] 1 1 10 {2, 5} 6

raw-PQC [0.01, 0., 0.1] 1 ✗ 10 {2, 5} 6

SL-PQC
softmax-PQC [0.01, 0.1, 0.01] 0.9 1 10 4 2

DNN 0.01 0.9 1 10 4 16

Cliffwalk-PQC
softmax-PQC [0.01, 0.1, 0.1] 0.9 1 10 4 2

DNN 0.01 0.9 1 10 4 16

CognitiveRadio softmax-PQC [0.01, 0.1, 0.1] 0.9 1 1 3 2 to 5

Table 2: Hyperparmeters 1/2. For PQC policies, we choose 3 distinct learning rates [αϕ, αw, αλ]
for rotation angles ϕ, observable weights w and scaling parameters λ, respectively. For SOFTMAX-
PQCs, we take a linear annealing schedule for the inverse temperature parameter β starting from 1
and ending up in the final β. The batch size is counted in number of episodes used to evaluate the
gradient of the value function. Depth indicates the number of encoding layers Denc for PQC policies,
or the number of hidden layers for a DNN policy. Width corresponds to the number of qubits n on
which acts a PQC (also equal to the dimension d of the environment’s state space), or the number of
units per hidden layer for a DNN.

Environment Model
Entang.
topology

Train
entang.

Observables
Number

of
params.

Baseline

CartPole-v1
softmax-PQC All-to-all Yes [wZ0Z1Z2Z3, (− . . .)] {31, 119} No

raw-PQC All-to-all Yes [Z0Z1Z2Z3, (− . . .)] {30, 118} No

MountainCar-v0
softmax-PQC One-to-one No [w0Z0, w1Z0Z1, w2Z1] {39, 55} Yes

raw-PQC One-to-one No [P0,1, P2, P3] {36, 52} Yes

Acrobot-v1
softmax-PQC Circular Yes

[
wi · (Z0, . . . , Z5)

T
]
1≤i≤3

{90, 180} Yes

raw-PQC Circular Yes [P0..21, P22..42, P43..63] {72, 162} Yes

SL-PQC
softmax-PQC One-to-one No [wZ0Z1, (− . . .)] 37 No

DNN ✗ ✗ ✗ 902 No

Cliffwalk-PQC
softmax-PQC One-to-one No [wZ0Z1, (− . . .)] 37 No

DNN ✗ ✗ ✗ 902 No

CognitiveRadio softmax-PQC Circular No [w0Z0, w1Z1, . . . , wnZn] 30 to 75 No

Table 3: Hyperparmeters 2/2. We call entangling layer a layer of 2-qubit gates in the PQC. Circular
and all-to-all topologies of entangling layers are equivalent for n = 2 qubits, so we call them one-
to-one in that case. When trained, entangling layers are composed of Rzz = e−iθ(Z⊗Z)/2 rotations,
otherwise, they are composed of Ctrl-Z gates. For policies with 2 actions, the same observable, up
to a sign change, is used for both actions. Zi refers to a Pauli-Z observable acting on qubit i, while
Pi..j indicates a projection on basis states i to j. In the experiments of Sec. 3.2, when the weights
of the SOFTMAX-PQC are kept fixed, the observables used for MountainCar-v0 and Acrobot-v1
are [Z0, Z0Z1, Z1], and those used for CartPole-v1 are [Z0Z1Z2Z3,−Z0Z1Z2Z3]. The different
number of parameters in a given row correspond to the different depths in that same row in Table 2.

5

E.2 Shape of the policies learned by PQCs v.s. DNNs

In CartPole-v1 The results of the Sec. 3 demonstrate that our PQC policies can be trained to good
performance in benchmarking environments. To get a feel of the solutions found by our agents, we
compare the SOFTMAX-PQC policies learned on CartPole to those learned by standard DNNs (with
a softmax output layer), which are known to easily learn close-to-optimal behavior on this task. More
specifically, we look at the functions learned by these two models, prior to the application of the
softmax normalization function (see Eq. (3)). Typical instances of these functions are depicted in
Figure 8. We observe that, while DNNs learn simple, close to piece-wise linear functions of their
input state space, PQCs tend to naturally learn very oscillating functions that are more prone to
instability. While the results of Schuld et al. [11] already indicated that these highly oscillating
functions would be natural for PQCs, it is noteworthy to see that these are also the type of functions
naturally learned in a direct-policy RL scenario. Moreover, our enhancements to standard PQC
classifiers show how to make these highly oscillating functions more amenable to real-world tasks.

In PQC-generated environments Fig. 9 shows the analog results to Fig. 5 in the main text but
with two different random initializations of the environment-generating PQC. Both confirm our
observations. In Fig. 10, we compare the policies learned by prototypical SOFTMAX-PQC and DNN
agents in these PQC-generated environments. We observe that the typical policies learned by DNNs
are rather simple, with up to 2 (or 3) regions, delimited by close-to-linear boundaries, as opposed to
the policies learned by SOFTMAX-PQCs, which delimit red from blue regions with wide margins.
These observations highlight the inherent flexibility of SOFTMAX-PQC policies and their suitability
to these PQC-generated environments, as opposed to the DNN (and RAW-PQC) policies we consider.

E.3 Additional numerical simulation on the CognitiveRadio environment

In a related work on value-based RL with PQCs, the authors of Ref. [5] introduced the CognitiveRadio
environment as a benchmark to test their RL agents. In this environment, the agent is presented at
each interaction step with a binary vector (0, 0, 0, 1, 0) of size n that describes the occupation of n
radio channels. Given this state, the agent must select one of the n channels as its communication
channel, such as to avoid collision with occupied channels (a ±1 reward reflects these collisions).
The authors of Ref. [5] consider a setting where, in any given state, only one channel is occupied, and
its assignment changes periodically over time steps, for an episode length of 100 steps. While this
constitutes a fairly simple task environment with discrete state and action spaces, it allows to test the
performance of PQC agents on a family of environments described by their system size n and make
claims on the parameter complexity of the PQCs as a function of n. As to reproduce the findings of
Ref. [5] in a policy-gradient setting, we test the performance of our SOFTMAX-PQC agents on this
environment. We find numerically (see Fig. 7) that these achieve a very similar performance to the
PQC agents of Ref. [5] on the same system sizes they consider (n = 2 to 5), using PQCs with the
same scaling of number of parameters, i.e., O(n).

0 100 200 300 400 500
Episode

0

20

40

60

80

100

Av
er
ag

e
co
lle

ct
ed

re
w
ar
ds

2 channels

softmax-PQC
0 100 200 300 400 500

Episode
0

20

40

60

80

100
3 channels

softmax-PQC
0 100 200 300 400 500

Episode
0

20

40

60

80

100
4 channels

softmax-PQC
0 100 200 300 400 500

Episode
0

20

40

60

80

100
5 channels

softmax-PQC

Figure 7: Performance of our SOFTMAX-PQC agents on the CognitiveRadio environment
proposed in Ref. [5]. Average performance of 20 agents for system sizes (and number of qubits)
n = 2 to 5.

6

Pole angle

-0.4
-0.2

0.0
0.2

0.4

Ca
rt
po
sit
ion

-2
-1

0
1

2

U
nn

or
m
al
iz
ed

pr
ob

ab
ili
ty

-4
-2
0

2

4

Pole angle

-0.4
-0.2

0.0
0.2

0.4
Ca
rt
ve
loc
ity

-2
-1

0
1

2

U
nn

or
m
al
iz
ed

pr
ob

ab
ili
ty

-3
-2
-1
0
1
2

Pole angle

-0.4
-0.2

0.0
0.2

0.4 Po
le
an
gu
lar

ve
loc
ity

-2
-1

0
1

2

U
nn

or
m
al
iz
ed

pr
ob

ab
ili
ty

-6
-4
-2
0
2
4
6
8

(a)

Pole angle

-0.4
-0.2

0.0
0.2

0.4

Ca
rt
po
sit
ion

-2
-1

0
1

2

U
nn

or
m
al
iz
ed

pr
ob

ab
ili
ty

-2
0

2

4

6

Pol
e a

ngl
e

-0.4
-0.2

0.0
0.2

0.4

Cart velocity

-2
-1

0
1

2

-10

-5

0

5

10

Pol
e a

ngl
e

-0.4
-0.2

0.0
0.2

0.4

Pole angular velocity

-2
-1

0
1

2

U
nnorm

alized
probability

-20
-10
0
10
20

(b)

Figure 8: Prototypical unnormalized policies learned by SOFTMAX-PQC agents and DNN
agents in CartPole. Due to the 4 dimensions of the state space in CartPole, we represent the
unnormalized policies learned by (a) SOFTMAX-PQC agents and (b) DNN agents on 3 subspaces of
the state space by fixing unrepresented dimensions to 0 in each plot. To get the probability of the
agent pushing the cart to the left, one should apply the logistic function (i.e., 2-dimensional softmax)
1/(1 + exp(−z)) to the z-axis values of each plot.

7

0 π 2π0

π

2π (a) PQC labeling function

(a)

0 200 400 600 800 1000
Episode

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er
ag

e
co
lle

ct
ed

re
w
ar
ds

(b) SL-PQC

softmax-PQC
raw-PQC
DNN

(b)

0 200 400 600 800 1000
Episode

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0 (c) Cliffwalk-PQC

softmax-PQC
raw-PQC
DNN

(c)

0 π 2π0

π

2π (a) PQC labeling function

(d)

0 200 400 600 800 1000
Episode

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er
ag

e
co
lle

ct
ed

re
w
ar
ds

(b) SL-PQC

softmax-PQC
raw-PQC
DNN

(e)

0 200 400 600 800 1000
Episode

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0 (c) Cliffwalk-PQC

softmax-PQC
raw-PQC
DNN

(f)

Figure 9: Different random initializations of PQC-generated environments and their associated
learning curves. See Fig. 5 for details. The additional learning curves (20 agents per curve) of
randomly-initialized RAW-PQC agents highlight the hardness of these environments for PQC policies
drawn from the same family as the environment-generating PQCs.

0 π 2π0

π

2π DNN policy

(a)

0 π 2π0

π

2π softmax-PQC policy

(b)

0 π 2π0

π

2π DNN policy

(c)

0 π 2π0

π

2π softmax-PQC policy

(d)

Figure 10: Prototypical policies learned by SOFTMAX-PQC agents and DNN agents in PQC-
generated environments. All policies are associated to the labeling function of Fig. 9.d. Policies
(a) and (b) are learned in the SL-PQC environment while policies (c) and (d) are learned in the
Cliffwalk-PQC environment.

8

F Supervised learning task of Liu et al.

Define p a large prime number, n = ⌈log2(p− 1)⌉, and g a generator of Z∗
p = {1, 2, . . . , p− 1} (i.e.,

a g ∈ Z∗
p such that {gy, y ∈ Zp−1} = Z∗

p). The DLP consists in computing logg x on input x ∈ Z∗
p.

Based on DLP, Liu et al. [12] define a concept class C = {fs}s∈Zp−1
over the input space X = Z∗

p,
where each labeling function of this concept class is defined as follows:

fs(x) =

{
+1, if logg x ∈ [s, s+ p−3

2],

−1, otherwise.
(9)

Each function fs : Z∗
p → {−1, 1} hence labels half the elements in Z∗

p with a label +1 and the other
half with a label −1. We refer to Figure 1 in Ref. [12] for a good visualization of all these objects.
The performance of a classifier f is measured in terms of its testing accuracy

Accf (fs) = Prx∼X [f(x) = fs(x)].

G Proof of Theorem 1

In the following, we provide constructions of a) fully random, b) partially random and c) fully
deterministic environments satisfying the properties of Theorem 1. We consider the three families of
environments separately and provide individual lemmas specifying their exact separation properties.

Fully random: the SL-DLP environment. This result is near-trivially obtained by noting that any
classification problem can be easily mapped to a (degenerate) RL problem. For this, the environment
will be an MDP defined as follows: its state space is the input space of the classification problem,
its action space comprises all possible labels, rewards are trivially +1 for assigning a correct label
to an input state and −1 otherwise, and the initial and next-state transition probabilities are state-
independent and equal to the input distribution of the classification task. The optimal policy of this
MDP is clearly the optimal classifier of the corresponding SL task. Consider now the classification
task of Liu et al., defined in detail in Appendix F: the input distribution is taken to be uniform on the
state space, i.e., P (st) = 1

|S| , and the performance of a classifier f w.r.t. a labeling (or ground truth)
function f∗ is measured in terms of a testing accuracy

Accf (f∗) =
1

|S|
∑

s

Pr[f(s) = f∗(s)]. (10)

For the MDP associated to this classification task and length-1 episodes of interaction, the value
function of any policy π(a|s) is given by

Vπ(s0) =
1

|S|
∑

s0

(π(f∗(s0)|s0)− π(−f∗(s0)|s0))

=
1

|S|
∑

s0

2π(f∗(s0)|s0)− 1

= 2Accπ(f∗)− 1,

which is trivially related to the testing accuracy of this policy on the classification task. Note that we
also have Vrand(s0) = 0 and Vopt(s0) = 1.
Since these observations hold irrespectively of the labeling function f∗, we can show the following
result:
Lemma 4 (Quantum advantage in SL-DLP). There exists a uniform family of SL-DLP MDPs, each
derived from a labeling function f∗ of the DLP concept class C (see Appendix F), for which classical
hardness and quantum learnability holds. More specifically, the performance of any classical learner
is upper bounded by 1/poly(n), while that of a class of quantum agents is lower bounded by 0.98
with probability above 2/3 (over the randomness of their interaction with the environment and noise
in their implementation).

Proof. Classical hardness is trivially obtained by contraposition: assuming no classical polynomial-
time algorithm can solve DLP, then using Theorem 1 of Liu et al., any classical policy would have

9

testing accuracy Accπ(f∗) ≤ 1/2 + 1/poly(n), and hence its value function would be Vπ(s0) ≤
1/poly(n).

For quantum learnability, we define an agent that first collects poly(n) random length-1 interactions
(i.e., a random state s0 and its associated reward for an action +1, from which the label f∗(s0) can be
inferred), and use Theorem 2 of Liu et al. to train a classifier that has test accuracy at least 0.99 with
probability at least 2/3 (this process can be repeated O

(
log
(
δ−1
))

times to increase this probability
to 1− δ via majority voting). This classifier has a value function Vπ(s0) ≥ 0.98.

Note that this proof trivially generalizes to episodes of interaction with length greater than 1, when
preserving the absence of temporal correlation in the states experienced by the agents. For episodes of
length H , the only change is that the value function of any policy, and hence the bounds we achieve,
get multiplied by a factor of 1−γH

1−γ for a discount factor γ < 1 and by a factor H for γ = 1.

Partially random: the Cliffwalk-DLP environment. One major criticism to the result of Lemma
4 is that it applies to a very degenerate, fully random RL environment. In the following, we show
that similar results can be obtained in environments based on the same classification problem, but
while imposing more temporal structure and less randomness (such constructions were introduced
in Ref. [13], but for the purpose of query separations between RL and QRL). For instance, one can
consider cliffwalk-type environments, inspired by the textbook “cliff walking” environment of Sutton
& Barto [14]. This class of environments differs from the previous SL-DLP environments in its state
and reward structure: in any episode of interaction, experienced states follow a fixed “path” structure
(that of the cliff) for correct actions, and a wrong action yields to immediate “death” (negative reward
and episode termination). We slightly modify this environment to a “slippery scenario” in which,
with a δ probability, any action may lead to a uniformly random position on the cliff. This additional
randomness allows us to prove the following separation:

Lemma 5 (Quantum advantage in Cliffwalk-DLP). There exists a uniform family of Cliffwalk-DLP
MDPs with arbitrary slipping probability δ ∈ [0.86, 1] and discount factor γ ∈ [0, 0.9], each derived
from a labeling function f∗ of the DLP concept class C, for which classical hardness and quantum
learnability holds. More specifically, the performance of any classical learner is upper bounded by
Vrand(s0) + 0.1, while that of a class of quantum agents is lower bounded by Vopt(s0) − 0.1 with
probability above 2/3 (over the randomness of their interaction with the environment and noise in
their implementation). Since Vrand(s0) ≤ − 1

2 and Vopt = 0, we always have a classical-quantum
separation.

The proof of this lemma is deferred to Appendix H for clarity.

Fully deterministic: the Deterministic-DLP environment. The simplest example of a determinis-
tic RL environment where separation can be proven is a partially observable MDP (POMDP) defined
as follows: it constitutes a 1-D chain of states of length k+2, where k is poly(n). We refer to the first
k states as “training states", and we call the last two states “test” and “limbo” states, respectively. The
training states are of the form (x, fs(x)), i.e., a point uniformly sampled and its label. The actions
are +1,−1, and both lead to the same subsequent state on the chain (since the same (x, fs(x)) can
appear twice in the chain, this is the reason why the environment is partially observable), and no
reward is given for the first k states. In the test state, the agent is only given a point x with no label.
A correct action provides a reward of 1 and leads to the beginning of the chain, while an incorrect
action leads to the limbo state, which self-loops for both actions and has no rewards. In other words,
after poly-many examples where the agent can learn the correct labeling, it is tested on one state.
Failure means it will never obtain a reward.

For each concept fs, we define exponentially many environments obtained by random choices of the
states appearing in the chain. In a given instance, call T = (x0, . . . , xk−1) the training states of that
instance, xk its testing state and l its limbo state. The interaction of an agent with the environment is
divided into episodes of length k+1, but the environment keeps memory of its state between episodes.
This means that, while the first episode starts in x0, depending on the performance of the agent, later
episodes start either in x0 or in l. For a policy π, we define the value Vπ(s0) as the expected reward1

1Note that we assume here a discount factor γ = 1, but our results would also hold for an arbitrary γ > 0, if
we scale the reward of the testing state to γ−k.

10

of this policy in any episode of length k + 1 with an initial state s0 ∈ {x0, l}. Since the testing state
xk is the only state to be rewarded, we can already note that Vπ(x0) = π(f∗(xk)|T, xk), that is, the
probability of the policy correctly labeling the testing state xk after having experienced the training
states T . Also, since s0 ∈ {x0, l} and Vπ(l) = 0, we have Vπ(x0) ≥ Vπ(s0).

With this construction, we obtain the following result:

Lemma 6 (Quantum advantage in Deterministic-DLP). There exists a uniform family of Deterministic-
DLP POMDPs (exponentially many instances for a given concept fs of the DLP classification
problem) where:
1) (classical hardness) if there exists a classical learning agent which, when placed in a randomly
chosen instance of the environment, has value Vc(s0) ≥ 1/2 + 1/poly(n) (that is, 1/poly(n) better
than a random agent), with probability at least 0.845 over the choice of environment and the
randomness of its learning algorithm, then there exists an efficient classical algorithm to solve DLP,
2) (quantum learnability) there exists a class of quantum agents that attains a value Vq(s0) = 1 (that
is, the optimal value) with probability at least 0.98 over the choice of environment and randomness
of the learning algorithm.

The proof of this lemma is deferred to Appendix I for clarity.

By combining our three lemmas, and taking the weakest separation claim for the cases ii) and iii), we
get Theorem 1. For the interested reader, we list the following remarks, relating to the proofs of these
lemmas:

• SL-DLP and Deterministic-DLP are the two closest environments to the DLP classification task
of Liu et al. While the value function in SL-DLP is trivially equivalent to the accuracy of the
classification problem, we find the value function in Deterministic-DLP to be weaker than this
accuracy. Namely, a high accuracy trivially leads to a high value while a high (or non-trivial) value
does not necessarily lead to a high (or non-trivial) accuracy (in all these cases, the high probability
over the randomness of choosing the environments and of the learning algorithms is implied). This
explains why the classical hardness statement for Deterministic-DLP is weaker than in SL-DLP.

• In Cliffwalk-DLP, it is less straightforward to relate the testing accuracy of a policy to its per-
formance on the deterministic parts of the environment, which explains why we trivially upper
bound this performance by 0 on these parts. We believe however that these deterministic parts will
actually make the learning task much harder, since they strongly restrict the part of the state space
the agents can see. This claim is supported by our numerical experiments in Sec. 4.2. Also, since
we showed classical hardness for fully deterministic environments, it would be simple to construct
a variant of Cliffwalk-DLP where these deterministic parts would be provably hard as well.

H Proof of Lemma 5

Consider a slippery cliffwalk environment defined by a labeling function f∗ in the concept class C of
Liu et al. This cliffwalk has p− 1 states ordered, w.l.o.g., in their natural order, and correct actions
(the ones that do not lead to immediate “death") f∗(i) for each state i ∈ Z∗

p. For simplicity of our
proofs, we also consider circular boundary conditions (i.e, doing the correct action on the state p− 1
of the cliff leads to the state 1), random slipping at each interaction step to a uniformly sampled state
on the cliff with probability δ > 0, an initialization of each episode in a uniformly sampled state
i ∈ Z∗

p, and a 0 (−1) reward for doing the correct (wrong) action in any given state.

H.1 Upper bound on the value function

The value function of any policy π which has probability π(i) (we abbreviate π(f∗(i)|i) to π(i)) of
doing the correct action in state i ∈ Z∗

p is given by:

Vπ(i) = π(i)γ


(1− δ)Vπ(i+ 1) + δ

1

p− 1

p−1∑

j=1

Vπ(j)


− (1− π(i)) (11)

11

Since this environment only has negative rewards, we have that Vπ(i) ≤ 0 for any state i and policy
π, which allows us to write the following inequality:

Vπ(i) ≤ π(i)γ


δ 1

p− 1

p−1∑

j=1

Vπ(j)


− (1− π(i))

We use this inequality to bound the following term:

1

p− 1

p−1∑

i=1

Vπ(i) ≤
1

p− 1

p−1∑

i=1


π(i) γδ

p− 1

p−1∑

j=1

Vπ(j)− (1− π(i))




=

(
1

p− 1

p−1∑

i=1

π(i)

)
 γδ

p− 1

p−1∑

j=1

Vπ(j) + 1


− 1

We note that the first factor is exactly the accuracy of the policy π on the classification task of Liu et
al.:

Accπ(f∗) =
1

p− 1

p−1∑

i=1

π(i).

We hence have:

1

p− 1

p−1∑

i=1

Vπ(i) ≤ Accπ(f∗)


γδ 1

p− 1

p−1∑

j=1

Vπ(j) + 1


− 1

which is equivalent to:
1

p− 1

p−1∑

i=1

Vπ(i) ≤
Accπ(f∗)− 1

1− Accπ(f∗)γδ

when Accπ(f∗)γδ < 1.
We now note that this average value function is exactly the value function evaluated on the initial
state s0 of the agent, since this state is uniformly sampled from Z∗

p for every episode. Hence,

Vπ(s0) ≤
Accπ(f∗)− 1

1− Accπ(f∗)γδ
(12)

H.2 Lower bound on the value function

Again, by noting in Eq. (11) that we have Vπ(i) ≤ 0 and π(i) ≤ 1 for any policy π and state i ∈ Z∗
p,

we have:

Vπ(i) ≥ γ


(1− δ)Vπ(i+ 1) +

δ

p− 1

p−1∑

j=1

Vπ(j)


− (1− π(i))

We use this inequality to bound the value function at the initial state s0:

Vπ(s0) =
1

p− 1

p−1∑

i=1

Vπ(i)

≥ γ


1− δ

p− 1

p−1∑

i=1

Vπ(i+ 1) +
δ

p− 1

p−1∑

j=1

Vπ(j)


+

1

p− 1

p−1∑

i=1

π(i)− 1

= γ ((1− δ)Vπ(s0) + δVπ(s0)) + Accπ(f∗)− 1

= γVπ(s0) + Accπ(f∗)− 1

by using the circular boundary conditions of the cliffwalk in the third line.
This inequality is equivalent to:

Vπ(s0) ≥
Accπ(f∗)− 1

1− γ
(13)

when γ < 1.

12

H.3 Bounds for classical hardness and quantum learnability

We use the bounds derived in the two previous sections to prove classical hardness and quantum
learnability of this task environment, as stated in Lemma 5.

For this, we start by noting the following expression for the value function of a random policy (one
that does random actions in all states):

Vrand(s0) =
γ

2


1− δ

p− 1

p−1∑

i=1

Vrand(i+ 1) +
δ

p− 1

p−1∑

j=1

Vrand(j)


− 1

2

=
γ

2
Vrand(s0)−

1

2
= − 1

2− γ

again due to the circular boundary conditions of the cliffwalk and the resulting absence of termination
conditions outside of “death".
As for the value function of the optimal policy, this is trivially Vopt = 0.

H.3.1 Proof of classical hardness

For any policy π, we define the function g(x, δ, γ) = V (x, δ, γ) − Vrand(γ), where we adopt the
short-hand notation x = Accπ(f∗) and call V the upper bound on the value function Vπ(s0) of π.
The expression of g(x, δ, γ) (for (x, δ, γ) ̸= (1, 1, 1)) is given by:

g(x, δ, γ) =
x− 1

1− δγx
+

1

2− γ
(14)

To prove classical hardness, it is sufficient to show that x ≤ 0.51 implies g(x, δ, γ) ≤ 0.1 for
δ ∈ [δ0, 1], γ ∈ [0, γ1] and a {δ0, γ1} pair of our choosing. To see this, notice that the contraposition
gives x = Accπ(f∗) > 0.51 which is sufficient to construct an efficient algorithm that solves DLP. To
achieve this result, we show the three following inequalities, ∀ x ≤ 0.51 and ∀ (δ, γ) ∈ [δ0, 1]×[0, γ1]:

g(x, δ, γ)
(i)

≤ g(0.51, δ, γ)
(ii)

≤ g(0.51, δ0, γ)
(iii)

≤ g(0.51, δ0, γ1)

where δ0 and γ1 are chosen such that g(0.51, δ0, γ1) ≤ 0.1.

Proof of (i). We look at the derivative of g w.r.t. x:
∂g(x, δ, γ)

∂x
=

1− δγ

(1− δγx)2
≥ 0 ∀(x, δ, γ) ∈ [0, 1]3\(1, 1, 1)

and hence g is an increasing function of x, which gives our inequality.

Proof of (ii). We look at the derivative of g w.r.t. δ:
∂g(x, δ, γ)

∂δ
=

γ(x− 1)x

(1− δγx)2
≤ 0 ∀(x, δ, γ) ∈ [0, 1]3\(1, 1, 1)

and hence g is a decreasing function of δ, which gives our inequality.

Proof of (iii). We look at the derivative of g w.r.t. γ:
∂g(x, δ, γ)

∂γ
=

δ(x− 1)x

(1− δγx)2
+

1

(2− γ)2
∀(x, δ, γ) ∈ [0, 1]3\(1, 1, 1)

We have:
∂g(x, δ, γ)

∂γ
≥ 0 ⇔

(
(δx)2 + δ(x2 − x)

)
γ2 − 2δ(2x2 − x)γ + 4δ(x2 − x) + 1 ≥ 0

By setting x = 0.51 and δ = 0.86, we find
∂g(0.51, 0.86, γ)

∂γ
≥ 0 ∀γ ∈ [0, 1]

since the roots of the second-degree polynomial above are approximately {−2.91, 2.14} and we have
(δx)2 + δ(x− 1)x ≈ −0.0225 < 0.
Hence g(0.51, δ0, γ) is an increasing function of γ, which gives our inequality.

13

Given that g(0.51, 0.86, 0.9) ≈ 0.0995 < 0.1, we then get our desired result for δ0 = 0.86 and
γ1 = 0.9. Noting that Vπ(s0)− Vrand(γ) ≤ g(x, δ, γ) ≤ 0.1 from Eq. (12), we hence have classical
hardness ∀ (δ, γ) ∈ [δ0, 1]× [0, γ1].

H.3.2 Proof of quantum learnability

Proving quantum learnability is more trivial, since, for Accπ(f∗) ≥ 0.99 and γ ≤ 0.9, we directly
have, using Eq. (13):

Vπ(s0) ≥ −0.1 = Vopt − 0.1

To conclude this proof, we still need to show that we can obtain in this environment a policy π
such that Accπ(f∗) ≥ 0.99 with high probability. For that, we use agents that first collect poly(n)
distinct samples (states s and their inferred labels f∗(s)) from the environment (distinct in order to
avoid biasing the distribution of the dataset with the cliffwalk temporal structure). This can be done
efficiently in poly(n) interactions with the environment, since each episode is initialized in a random
state s0 ∈ Z∗

p. We then use the learning algorithm of Liu et al. to train a classifier π with the desired
accuracy, with high probability.

I Proof of Lemma 6

I.1 Proof of classical hardness

Suppose that a polynomial-time classical agent achieves a value Vc(s0) ≥ 1
2 +

1
poly(n) with probability

(1−δ) over the choice of environment and the randomness of its learning algorithm. We call “success"
the event Vc(s0) ≥ 1

2+
1

poly(n) and Sδ the subset of the instances S = {T, xk} for which, theoretically,
a run of the agent would “succeed" (this is hence a set that depends on the randomness of the agent).

Note that, on every instance in Sδ, π(f∗(xk)|T, xk) = Vc(x0) ≥ Vc(s0) ≥ 1
2 + 1

poly(n) . Since this
probability is bounded away from 1/2 by an inverse polynomial, this means that we can “boost" it to
a larger probability (1−ε). More specifically, out of the policy π obtained after interacting for k steps
with the environment, we define a classifier fc acting on xk such that we sample O

(
log
(
ε−1
))

-many
times from π(a|T, xk) and label xk by majority vote. For the instances in Sδ, the probability of
correctly labeling xk is Pr [fc(xk) = f∗(xk)] ≥ 1− ε.

Define P (T) = Pr[T = T] and P (xk) = Pr[xk = xk] the probabilities of sampling certain training
states T and a testing state xk, when choosing an instance of the environment. We now look at the
following quantity:

EP (T) [Accfc(T)] =
∑

T

P (T)
∑

xk

P (xk)Pr [fc(xk) = f∗(xk)|T, xk]

=
∑

T,xk

P (T, xk)Pr [fc(xk) = f∗(xk)|T, xk]

≥
∑

T,xk

P (T, xk)Pr
[
success|T, xk

]
× Pr

[
fc(xk) = f∗(xk)|T, xk, success

]

≥ (1− δ)(1− ε)

since Pr [fc(xk) = f∗(xk)|T, xk] ≥ 1−ε for instances in Sδ and
∑

T,xk
P (T, xk)Pr

[
success|T, xk

]

≥ 1− δ by definition.
In the following, we set 1 − ε = 0.999 and 1 − δ ≥ 0.845 (the reason for this becomes apparent
below), such that:

EP (T) [Accfc(T)] ≥ 0.844155 >
5

6
+

1

96
(15)

Now, consider the following learning algorithm: given a training set T , construct a Deterministic-DLP
environment that uses this T and a randomly chosen xk, and define the classifier fc that boosts the
π(a|T, xk) obtained by running our classical agent on this environment (as explained above). We
want to show that fc has accuracy Accfc(T) ≥ 1

2 + 1
poly(n) with probability at least 2/3 over the

choice of T and the randomness of its construction, which is sufficient to solve DLP classically. For
that, we show a stronger statement. Call Tsucc the subset of all instances of training states T = {T}

14

for which Accfc(T) ≥ 1
2 + 1

poly(n) . We prove by contradiction that |Tsucc| ≥ 2|T |
3 :

Assume |Tsucc| < 2|T |
3 , then

EP (T) [Accfc(T)] =
∑

T

P (T)Accfc(T)

=
1

|T |


 ∑

T∈Tsucc

Accfc(T) +
∑

T /∈Tsucc

Accfc(T)




<
|Tsucc|
|T | × 1 +

|T | − |Tsucc|
|T |

(
1

2
+

1

poly(n)

)

<
5

6
+

1

3poly(n)
< 0.844155

for large enough n, in contradiction with Eq. (15).

Hence, with probability at least 2/3 over the choice of training states and the randomness of the
learning algorithm, our constructed classifier has accuracy Accfc(T) ≥ 1

2 + 1
poly(n) . By using

Theorem 8, Remark 1 of Liu et al., this is sufficient to construct an efficient classical algorithm that
solves DLP.

I.2 Proof of quantum learnability

Using the learning algorithm of Liu et al., we can construct a quantum classifier that achieves accuracy
Accq(T) ≥ 0.99 with probability at least 2/3 over the randomness of the learning algorithm and the
choice of training states T , of length |T | = poly(n). Now define instead training states T of length
|T | =Mpoly(n), for M = O

(
log
(
δ′−1

))
(hence |T | is still polynomial in n), and use each of the

M segments of T to train M independent quantum classifiers. Define fq as a classifier that labels xk
using a majority vote on the labels assigned by each of these classifiers. This constructed classifier
has accuracy Accfq (T) ≥ 0.99 with now probability 1− δ′ over the choice of training states T and
the randomness of the learning algorithm.

We then note that, by calling “success" the event Accfq (T) ≥ 0.99, we have:
∑

T,xk

P (T, xk)Pr
[
Vq(x0) = 1|T, xk

]

≥
∑

T

P (T)
∑

xk

P (xk)Pr
[
success|T

]
× Pr

[
Vq(x0) = 1|T, xk, success

]

=
∑

T

P (T)Pr
[
success|T

]∑

xk

P (xk)× Pr
[
fq(xk) = f∗(xk)|T, xk, success

]

=
∑

T

P (T)Pr
[
success|T

]
Accfq (T)

≥ (1− δ′)× 0.99

which means that our constructed agent achieves a value Vq(x0) = 1 (which also implies Vq(s0) = 1)
with probability at least (1− δ′)× 0.99 over the choice of environment and the randomness of the
learning algorithm. By setting (1− δ′) = 0.98/0.99, we get our statement.

J Construction of a PQC agent for the DLP environments

In the two following appendices, we construct a PQC classifier that can achieve close-to-optimal
accuracy in the classification task of Liu et al. [12] (see Appendix F), and can hence also be used as a
learning model in the DLP environments defined in Sec. 4.1.

J.1 Implicit v.s. explicit quantum SVMs

To understand the distinction between the quantum learners of Liu et al. and the PQC policies we are
constructing here, we remind the reader of the two models for quantum SVMs defined in Ref. [15]:

15

the explicit and the implicit model. Both models share a feature-encoding unitary U(x) that encodes
data points x into feature state |ϕ(x)⟩ = U(x) |0⊗n⟩.
In the implicit model, one first evaluates the kernel values

K(xi, xj) = |⟨ϕ(xi)|ϕ(xj)⟩|2 (16)

for the feature states associated to every pair of data points {xi, xj} in the dataset, then uses the
resulting kernel matrix in a classical SVM algorithm. This algorithm returns a hyperplane classifier
in feature space, defined by its normal vector ⟨w| =∑i αi ⟨ϕ(xi)| and bias b, such that the sign of
|⟨w|ϕ(x)⟩|2 + b gives the label of x.
In the explicit model, the classifier is instead obtained by training a parametrized |wθ⟩. Effectively,
this classifier is implemented by applying a variational unitary V (θ) on the feature states |ϕ(x)⟩ and
measuring the resulting quantum states using a fixed observable, with expectation value |⟨wθ|ϕ(x)⟩|2.

In the following sections, we describe how the implicit quantum SVMs of Liu et al. can be transformed
into explicit models while guaranteeing that they can still represent all possible optimal policies in
the DLP environments. And in Appendix K, we show that, even under similar noise considerations as
Liu et al., these optimal policies can also be found using poly(n) random data samples.

J.2 Description of the PQC classifier

As we just described, our classifier belongs to a family of so-called explicit quantum SVMs. It
is hence described by a PQC with two parts: a feature-encoding unitary U(x), which creates
features |ϕ(x)⟩ = U(x) |0⊗n⟩ when applied to an all-0 state, followed by a variational circuit V (θ)
parametrized by a vector θ. The resulting quantum state is then used to measure the expectation value
⟨O⟩x,θ of an observable O, to be defined. We rely on the same feature-encoding unitary U(x) as the
one used by Liu et al., i.e., the unitary that creates feature states of the form

|ϕ(x)⟩ = 1√
2k

2k−1∑

i=0

∣∣x · gi
〉

(17)

for k = n − t log(n), where t is a constant defined later, under noise considerations. This feature
state can be seen as the uniform superposition of the image (under exponentiation s′ 7→ gs

′
) of an

interval of integers [logg(x), logg(x) + 2k − 1] in log-space. Note that U(x) can be implemented in
Õ(n3) operations [12].

By noting that every labeling functions fs ∈ C to be learned (see Eq. (9)) is delimiting two equally-
sized intervals of log

(
Z∗
p

)
, we can restrict the decision boundaries to be learned by our classifier

to be half-space dividing hyperplanes in log-space. In feature space, this is equivalent to learning
separating hyperplanes that are normal to quantum states of the form:

|ϕs′⟩ =
1√

(p− 1)/2

(p−3)/2∑

i=0

∣∣∣gs′+i
〉
. (18)

Noticeably, for input points x such that logg(x) is away from some delimiting regions around s and

s+ p−3
2 , we can notice that the inner product |⟨ϕ(x)|ϕs⟩|2 is either ∆ = 2k+1

p−1 or 0, whenever x is
labeled +1 or −1 by fs, respectively. This hence leads to a natural classifier to be built, assuming
overlaps of the form |⟨ϕ(x)|ϕs′⟩|2 can be measured:

hs′(x) =

{
1, if |⟨ϕ(x)|ϕs′⟩|2/∆ ≥ 1/2,

−1, otherwise
(19)

which has an (ideal) accuracy 1−∆ whenever s′ = s.

To complete the construction of our PQC classifier, we should hence design the composition of its
variational part V (θ) and measurement O such that they result in expectation values of the form
⟨O⟩x,θ = |⟨ϕ(x)|ϕs′⟩|2. To do this, we note that, for |ϕs′⟩ = V̂ (s′) |0⟩, the following equality holds:

|⟨ϕ(x)|ϕs′⟩|2 =
∣∣∣
〈
0⊗n

∣∣ V̂ (s′)†U(xi)
∣∣0⊗n

〉∣∣∣
2

= Tr
[∣∣0⊗n

〉 〈
0⊗n

∣∣ ρ(x, s′)
]

16

where ρ(x, s′) = |ψ(x, s′)⟩ ⟨ψ(x, s′)| is the density matrix of the quantum state |ψ(x, s′)⟩ =

V̂ (s′)†U(xi) |0⊗n⟩. Hence, an obvious choice of variational circuit is V (θ) = V̂ (s′), combined with
a measurement operator O = |0⊗n⟩ ⟨0⊗n|. Due to the similar nature of |ϕ′s⟩ and |ϕ(x)⟩, it is possible
to use an implementation for V̂ (s′) that is similar to that of U(xi) (take xi = gs

′
and k ≈ n/2).2 We

also note that, for points x such that logg(x) is (p− 1)∆/2 away from the boundary regions of hs′ ,
the non-zero inner products |⟨ϕ(x)|ϕs′⟩|2 are equal to ∆ = O(n−t). These can hence be estimated
efficiently to additive error, which allows to efficiently implement our classifier hs′ (Eq. (19)).

J.3 Noisy classifier

In practice, there will be noise associated with the estimation of the inner products |⟨ϕ(x)|ϕs′⟩|2,
namely due to the additive errors associated to sampling. Similarly to Liu et al., we model noise by
introducing a random variable eis′ for each data point xi and variational parameter gs

′
, such that

the estimated inner product is |⟨ϕ(xi)|ϕs′⟩|2 + eis′ . This random variable satisfies the following
equations: 




eis′ ∈ [−∆,∆]

E[eis′] = 0

Var[eis′] ≤ 1/R

where R is the number of circuit evaluations used to estimate the inner product. We hence end up
with a noisy classifier:

h̃s′(xi) =

{
1, if

(
|⟨ϕ(xi)|ϕs′⟩|2 + eis′

)
/∆ ≥ 1/2,

−1, otherwise

The noise has the effect that some points which would be correctly classified by the noiseless classifier
have now a non zero probability of being misclassified. To limit the overall decrease in classification
accuracy, we focus on limiting the probability of misclassifying points xi such that logg(xi) is
(p − 1)∆/2 away from the boundary points s′ and s′ + p−3

2 of gs′ . We call Is′ the subset of Z∗
p

comprised of these points. For points in Is′ , the probability of misclassification is that of having
|eis′ | ≥ ∆/2. We can use Chebyshev’s inequality to bound this probability:

Pr
(
|eis′ | ≥

∆

2

)
≤ 4

∆2R
(20)

since E[eis′] = 0 and Var[eis′] ≤ 1/R.

K Proof of trainability of our PQC agent in the SL-DLP environment

In this Appendix, we describe an optimization algorithm to train the variational parameter gs
′

of
the PQC classifier we defined in Appendix J. This task is non-trivial for three reasons: 1) even by
restricting the separating hyperplanes accessible by our classifier, there are still p − 1 candidates,
which makes an exhaustive search for the optimal one intractable; 2) noise in the evaluation of the
classifier can potentially heavily perturb its loss landscape, which can shift its global minimum
and 3) decrease the testing accuracy of the noisy classifier. Nonetheless, we show that all these
considerations can be taken into account for a simple optimization algorithm, such that it returns a
classifier with close-to-optimal accuracy with high probability of success. More precisely, we show
the following Theorem:

Theorem 2. For a training set of size nc such that c ≥ max
{
logn(8/δ), logn

(
log(δ/2)

log(1−2n−t)

)}
for

t ≥ max {3 logn(8/δ), logn(16/ε)} in the definition of ∆, and a number of circuit evaluations per

inner product R ≥ max
{

4n2(t+c)

δ , 128ε3

}
, then our optimization algorithm returns a noisy classifier

h̃s′ with testing accuracy Acch̃s′
(fs) on the DLP classification task of Liu et al. such that

Pr
(

Acch̃s′
(fs) ≥ 1− ε

)
≥ 1− δ.

2Note that we write V̂ (s′) and Us′ to be parametrized by s′ but the true variational parameter here is gs
′
,

since we work in input space and not in log-space.

17

The proof of this Theorem is detailed below.

Given a training set X ⊂ X polynomially large in n, i.e., |X| = nc, define the training loss:

L(s′) = 1

2|X|
∑

x∈X

|hs′(x)− fs(x)|

and its noisy analog:

L̃(s′) = 1

2|X|
∑

x∈X

∣∣∣h̃s′(x)− fs(x)
∣∣∣

Our optimization algorithm goes as follows: using the noisy classifier h̃s′ , evaluate the loss function
L̃
(
logg(x)

)
for each variational parameter gs

′
= x ∈ X , then set

gs
′
= argminx∈X L̃(logg(x)).

This algorithm is efficient in the size of the training set, since it only requires |X|2 evaluations of h̃s′ .
To prove Theorem 2, we show first that we can enforce argminx∈X L̃(logg(x)) =
argminx∈XL(logg(x)) with high probability (Lemma 7), and second, that this algorithm also leads
to s′ close to the optimal s in log-space with high probability (Lemma 8).
Lemma 7. For a training set of size nc such that c ≥ logn(8/δ), a t ≥ 3c in the definition of ∆, and
a number of circuit evaluations per inner product R ≥ 4n2(t+c)

δ , we have

Pr
(

argmin
x∈X

L̃(logg(x)) = argmin
x∈X

L(logg(x))
)

≥ 1− δ

2

Proof. In order for the minima of the two losses to be obtained for the same x ∈ X , it is sufficient to
ensure that the classifiers hlogg(xi) and h̃logg(xi) agree on all points xj , for all (xi, xj) ∈ X . This
can be enforced by having: 


⋂

i,j
i̸=j

xi ∈ Ilogg(xj)


 ∩


⋂

i,s′

|ei,s′ | ≤
∆

2




that is, having for all classifiers hlogg(xj) that all points xi ∈ X , xi ̸= xj , are away from its boundary
regions in log-space, and that the labels assigned to these points are all the same under noise.
We bound the probability of the negation of this event:

Pr



⋃

i,j
i̸=j

xi /∈ Ilogg(xj) ∪
⋃

i,s′

|ei,s′ | ≥
∆

2


 ≤ Pr



⋃

i,j
i̸=j

xi /∈ Ilogg(xj)


+ Pr


⋃

i,s′

|ei,s′ | ≥
∆

2




using the union bound.
We start by bounding the first probability, again using the union bound:

Pr



⋃

i,j
i̸=j

xi /∈ Ilogg(xj)


 ≤

∑

i,j
i̸=j

Pr
(
xi /∈ Ilogg(xj)

)

=
∑

i,j
i̸=j

∆

2
≤ n2c∆

2

By setting t ≥ 3c, we have ∆ ≤ 4n−t ≤ 4n−3c, which allows us to bound this first probability by
δ/4 when c ≥ logn(8/δ).
As for the second probability above, we have

Pr


⋃

i,s′

|ei,s′ | ≥
∆

2


 ≤

∑

i,s′

Pr
(
|ei,s′ | ≥

∆

2

)

≤ 4n2c

∆2R

18

using the union bound and Eq. (20). By setting R ≥ 4n2(t+c)

δ ≥ 16n2c

∆2δ (since ∆ ≥ 2n−t), we can
bound this second probability by δ/4 as well, which gives:

Pr
(

argmin
x∈X

L̃(logg(x)) = argmin
x∈X

L(logg(x))
)

≥ 1− Pr



⋃

i,j
i̸=j

xi /∈ Ilogg(xj) ∪
⋃

i,s′

|ei,s′ | ≥
∆

2




≥ 1− δ/2

Lemma 8. For a training set of size nc such that c ≥ logn

(
log(δ/2)
log(1−2ε)

)
, then s′ =

logg
(
argminx∈XL(logg(x))

)
is within ε distance of the optimal s with probability:

Pr
(|s′ − s|
p− 1

≤ ε

)
≥ 1− δ

2

Proof. We achieve this result by proving:

Pr
(|s′ − s|
p− 1

≥ ε

)
≤ δ

2

This probability is precisely the probability that no logg(x) ∈ logg(X) is within ε distance of s, i.e.,

Pr

(⋂

x∈X

log(x) /∈ [s− ε(p− 1), s+ ε(p− 1)]

)

As the elements of the training set are all i.i.d., we have that this probability is equal to

Pr (log(x) /∈ [s− ε(p− 1), s+ ε(p− 1)])
|X|

Since all the datapoints are uniformly sampled from Z∗
p, the probability that a datapoint is in any

region of size 2ε(p − 1) is just 2ε. With the additional assumption that |X| = nc ≥ log1−2ε(δ/2)
(and assuming ε < 1/2), we get:

Pr
(|s′ − s|
p− 1

≥ ε

)
≤ (1− 2ε)log1−2ε(δ/2) =

δ

2

Lemma 7 and Lemma 8 can be used to prove:

Corollary 1. For a training set of size nc such that c ≥ max
{
logn(8/δ), logn

(
log(δ/2)
log(1−2ε)

)}
, a

t ≥ 3c in the definition of ∆, and a number of circuit evaluations per inner product R ≥ 4n2(t+c)

δ ,
then our optimization algorithm returns a variational parameter gs

′
such that

Pr
(|s′ − s|
p− 1

≤ ε

)
≥ 1− δ

From here, we notice that, when we apply Corollary 1 for ε′ ≤ ∆
2 , our optimization algorithm returns

an s′ such that, with probability 1− δ, the set Is′ is equal to Is and is of size (p− 1)(1− 2∆). In the
event where |s′ − s|/(p− 1) ≤ ε′ ≤ ∆

2 , we can hence bound the accuracy of the noisy classifier:

Acch̃s′
(fs) =

1

p− 1

∑

x∈X
Pr
(
h̃s′(x) = fs(x)

)

≥ 1

p− 1

∑

x∈Is

Pr
(
h̃s′(x) = fs(x)

)

≥ (1− 2∆) min
xi∈Is

Pr
(
|ei,s′ | ≤

∆

2

)

≥ (1− 2∆)

(
1− 4

∆2R

)

= 1−
(
2∆

(
1− 4

∆2R

)
+

4

∆2R

)

19

with probability 1− δ.
We now set t ≥ max {3 logn(8/δ), logn(16/ε)}, ε′ = n−t and R ≥ max

{
4n2(t+c)

δ , 128ε3

}
, such that

2ε′ = 2n−t ≤ ∆ ≤ 4n−t ≤ ε
4 ,
(
1− 4

∆2R

)
≤ 1 and 4

∆2R ≤ ε
2 .

Using these inequalities, we get
Acch̃s′

(fs) ≥ 1− ε

with probability 1− δ, which proves Theorem 2.

References
[1] Takahiro Goto, Quoc Hoan Tran, and Kohei Nakajima. Universal approximation property

of quantum machine learning models in quantum-enhanced feature spaces. Physical Review
Letters, 127(9):090506, 2021.

[2] Adrián Pérez-Salinas, David López-Núñez, Artur García-Sáez, Pol Forn-Díaz, and José I
Latorre. One qubit as a universal approximant. Physical Review A, 104(1):012405, 2021.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[4] OpenAI. Leaderboard of openai gym environments. URL: github.com/openai/gym/wiki, 2020.
[5] Samuel Yen-Chi Chen, Chao-Han Huck Yang, Jun Qi, Pin-Yu Chen, Xiaoli Ma, and Hsi-

Sheng Goan. Variational quantum circuits for deep reinforcement learning. IEEE Access, 8:
141007–141024, 2020.

[6] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International conference on machine learning,
pages 1329–1338. PMLR, 2016.

[7] Google. Cirq: A python framework for creating, editing, and invoking noisy intermediate scale
quantum circuits. URL: github.com/quantumlib/Cirq, 2018.

[8] Yasunari Suzuki, Yoshiaki Kawase, Yuya Masumura, Yuria Hiraga, Masahiro Nakadai, Jiabao
Chen, Ken M Nakanishi, Kosuke Mitarai, Ryosuke Imai, Shiro Tamiya, et al. Qulacs: a fast
and versatile quantum circuit simulator for research purpose. arXiv preprint arXiv:2011.13524,
2020.

[9] TensorFlow Quantum. Parametrized quantum circuits for reinforcement learning.
URL: tensorflow.org/quantum/tutorials/quantum_reinforcement_learning, 2021.

[10] Michael Broughton, Guillaume Verdon, Trevor McCourt, Antonio J Martinez, Jae Hyeon Yoo,
Sergei V Isakov, Philip Massey, Murphy Yuezhen Niu, Ramin Halavati, Evan Peters, et al.
Tensorflow quantum: A software framework for quantum machine learning. arXiv preprint
arXiv:2003.02989, 2020.

[11] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran. Evaluating
analytic gradients on quantum hardware. Physical Review A, 99(3):032331, 2019.

[12] Yunchao Liu, Srinivasan Arunachalam, and Kristan Temme. A rigorous and robust quantum
speed-up in supervised machine learning. Nature Physics, 17(9):1013–1017, 2021.

[13] Vedran Dunjko, Yi-Kai Liu, Xingyao Wu, and Jacob M Taylor. Exponential improvements for
quantum-accessible reinforcement learning. arXiv preprint arXiv:1710.11160, 2017.

[14] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction. 1998.
[15] Maria Schuld and Nathan Killoran. Quantum machine learning in feature hilbert spaces.

Physical review letters, 122(4):040504, 2019.

20

https://github.com/openai/gym/wiki/Leaderboard
https://github.com/quantumlib/Cirq
https://www.tensorflow.org/quantum/tutorials/quantum_reinforcement_learning

	Derivation of the log-policy gradient
	Efficient implementation of softmax-PQC policies
	Efficient approximate policy sampling
	Efficient estimation of the log-policy gradient

	The role of trainable observables in softmax-PQC policies
	Training the eigenbasis and the eigenvalues of an observable
	The power of universal observables

	Environments specifications and hyperpameters
	Deferred plots and shape of policies learned by PQCs v.s. DNNs
	Influence of architectural choices on raw-PQC agents
	Shape of the policies learned by PQCs v.s. DNNs
	Additional numerical simulation on the CognitiveRadio environment

	Supervised learning task of Liu et al.
	Proof of Theorem 1
	Proof of Lemma 5
	Upper bound on the value function
	Lower bound on the value function
	Bounds for classical hardness and quantum learnability
	Proof of classical hardness
	Proof of quantum learnability

	Proof of Lemma 6
	Proof of classical hardness
	Proof of quantum learnability

	Construction of a PQC agent for the DLP environments
	Implicit v.s. explicit quantum SVMs
	Description of the PQC classifier
	Noisy classifier

	Proof of trainability of our PQC agent in the SL-DLP environment

