
Under review as a conference paper at ICLR 2023

WASSERSTEIN BARYCENTER-BASED MODEL FUSION
AND LINEAR MODE CONNECTIVITY OF NEURAL NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Based on the concepts of Wasserstein barycenter (WB) and Gromov-Wasserstein
barycenter (GWB), we propose a unified mathematical framework for neural net-
work (NN) model fusion and utilize it to reveal new insights about the linear mode
connectivity of SGD solutions. In our framework, the fusion occurs in a layer-wise
manner and builds on an interpretation of a node in a network as a function of the
layer preceding it. The versatility of our mathematical framework allows us to
talk about model fusion and linear mode connectivity for a broad class of NNs,
including fully connected NN, CNN, ResNet, RNN, and LSTM, in each case ex-
ploiting the specific structure of the network architecture. We present extensive
numerical experiments to: 1) illustrate the strengths of our approach in relation to
other model fusion methodologies and 2) from a certain perspective, provide new
empirical evidence for recent conjectures which say that two local minima found
by gradient-based methods end up lying on the same basin of the loss landscape
after a proper permutation of weights is applied to one of the models.

1 INTRODUCTION

The increasing use of edge devices like mobile phones, tablets, and vehicles, along with the sophisti-
cation in sensors present in them (e.g. cameras, GPS, and accelerometers), has led to the generation
of an enormous amount of data. However, data privacy concerns, communication costs, bandwidth
limits, and time sensitivity prevent the gathering of local data from edge devices into one single
centralized location. These obstacles have motivated the design and development of federated learn-
ing strategies which are aimed at pooling information from locally trained neural networks (NNs)
with the objective of building strong centralized models without relying on the collection of local
data (McMahan et al., 2017; Kairouz et al., 2019). Due to these considerations, the problem of
NN fusion–i.e. combining multiple models which were trained differently into a single model–is a
fundamental task in federated learning.

A standard fusion method for aggregating models with the same architecture is FedAvg (McMahan
et al., 2017), which involves element-wise averaging of the parameters of local models. This is also
known as vanilla averaging (Singh & Jaggi, 2019). Although easily implementable, vanilla averag-
ing performs poorly when fusing models whose weights do not have a one-to-one correspondence.
This happens because even when models are trained on the same dataset it is possible to obtain
models that differ only by a permutation of weights (Wang et al., 2020; Yurochkin et al., 2019); this
feature is known as permutation invariance property of neural networks. Moreover, vanilla aver-
aging is not naturally designed to work when using local models with different architectures (e.g.,
different widths). In order to address these challenges, (Singh & Jaggi, 2019) proposed to first find
the best alignment between the neurons (weights) of different networks by using optimal transport
(OT) (Villani, 2008; Santambrogio, 2015; Peyré & Cuturi, 2018) and then carrying out a vanilla
averaging step. In (Liu et al., 2022), the authors formulate the model fusion as a graph matching
problem, which utilizes the second-order similarity of model weights to align neurons. Other ap-
proaches, like those proposed in (Yurochkin et al., 2019; Wang et al., 2020), interpret nodes of local
models as random permutations of latent “global nodes” modeled according to a Beta-Bernoulli
process prior (Thibaux & Jordan, 2007). By using “global nodes”, nodes from different input NNs
can be embedded into a common space where comparisons and aggregation are meaningful. Most

1

Under review as a conference paper at ICLR 2023

works in the literature discussing the fusion problem have mainly focused on the aggregation of fully
connected (FC) neural networks and CNNs, but have not, for the most part, explored other kinds of
architectures like RNNs and LSTMs. One exception to this general state of the art is the work (Wang
et al., 2020), which considers the fusion of RNNs by ignoring hidden-to-hidden weights during the
neurons’ matching, thus discarding some useful information in the pre-trained RNNs. For more
references on the fusion problem see in the Appendix A.1.

A different line of research that has attracted considerable attention in the past few years is the quest
for a comprehensive understanding of the loss landscape of deep neural networks, a fundamen-
tal component in studying the optimization and generalization properties of NNs (Li et al., 2018;
Mei et al., 2018; Neyshabur et al., 2017; Nguyen et al., 2018; Izmailov et al., 2018). Due to over-
parameterization, scale, and permutation invariance properties of neural networks, the loss land-
scapes of DNNs have many local minima (Keskar et al., 2016; Zhang et al., 2021). Different works
have asked and answered affirmatively the question of whether there exist paths of small-increasing
loss connecting different local minima found by SGD (Garipov et al., 2018; Draxler et al., 2018).
This phenomenon is often referred to as mode connectivity (Garipov et al., 2018) and the loss in-
crease along paths between two models is often referred to as (energy) barrier (Draxler et al., 2018).
It has been observed that low-barrier paths are non-linear, i.e., linear interpolation of two different
models will not usually produce a neural network with small loss. These observations suggest that,
from the perspective of local structure properties of loss landscapes, different SGD solutions belong
to different (well-separated) basins (Neyshabur et al., 2020). However, recent work (Entezari et al.,
2021) has conjectured that local minima found by SGD do end up lying on the same basin of the
loss landscape after a proper permutation of weights is applied to one of the models. The question
of how to find these desired permutations remains in general elusive.

The purpose of this paper is twofold. On one hand, we present a large family of barycenter-based
fusion algorithms that can be used to aggregate models within the families of fully connected NNs,
CNNs, ResNets, RNNs and LSTMs. The most general family of fusion algorithms that we intro-
duce relies on the concept of Gromov-Wasserstein barycenter (GWB), which allows us to use the
information in hidden-to-hidden layers in RNNs and LSTMs in contrast to previous approaches in
the literature like that proposed in (Wang et al., 2020). In order to motivate the GWB based fusion
algorithm for RNNs and LSTMs, we first discuss a Wasserstein barycenter (WB) based fusion algo-
rithm for fully connected, CNN, and ResNet models which follows closely the OT fusion algorithm
from (Singh & Jaggi, 2019). By creating a link between the NN model fusion problem and the
problem of computing Wasserstein (or Gromov-Wasserstein) barycenters, our aim is to exploit the
many tools that have been developed in the last decade for the computation of WB (or GWB) —see
the Appendix A.2 for references— and to leverage the mathematical structure of OT problems. Us-
ing our framework, we are able to fuse models with different architectures and build target models
with arbitrary specified dimensions (at least in terms of width). On the other hand, through several
numerical experiments in a variety of settings (architectures and datasets), we provide new evidence
backing certain aspects of the conjecture put forward in (Entezari et al., 2021) about the local struc-
ture of NNs’ loss landscapes. Indeed, we find out that there exist sparse couplings between different
models that can map different local minima found by SGD into basins that are only separated by
low energy barriers. These sparse couplings, which can be thought of as approximations to actual
permutations, are obtained using our fusion algorithms, which, surprisingly, only use training data to
set the values of some hyperparameters. We explore this conjecture in imaging and natural language
processing (NLP) tasks and provide visualizations of our findings. Consider, for example, Figure 1
(left), which is the visualization of fusing two FC NNs independently trained on the MNIST dataset.
We can observe that the basins where model 1 and permuted model 2 (i.e. model 2 after multiplying
its weights by the coupling obtained by our fusion algorithm) land are close to each other and are
only separated by low energy barriers.

Our main contributions can then be summarized as follows: (a) we formulate the network model
fusion problem as a series of Wasserstein (Gromov-Wasserstein) barycenter problems, bridging in
this way the NN fusion problem with computational OT; (b) we empirically demonstrate that our
framework is highly effective at fusing different types of networks, including RNNs and LSTMs. (c)
we visualize the result of our fusion algorithm when aggregating two neural networks in a 2D-plane.
By doing this we not only provide some illustrations on how our fusion algorithms perform, but also
present empirical evidence for the conjecture made in (Entezari et al., 2021), casting light over the
loss landscape of a variety of neural networks.

2

Under review as a conference paper at ICLR 2023

−5 0 5 10 15 20 25 30 35

0

5

10

15

20

25 Base model 1

Base model 2

Permuted model 2

Fused model

1.7

1.9

2.1

2.4

2.9

3.8

5.3

8

> 8

Figure 1: Left: The test error surface of FC NNs trained on MNIST. The permuted model 2 is
model 2 after multiplying its weights by the coupling obtained by our fusion algorithm. Right: The
illustration of our interpretations of FC NNs. Following our definitions, node v := (γ2, w), where
γ2 is a probability measure on layer N2 and w : N2 → R is the weight function corresponding to
node v. For example, the scalar w(z2) is the weight between nodes v and z2, and we use w2 as the
shorthand notation of w(z2).

At the time of completing this work, we became aware of two very recent preprints which also
explore the conjecture made in (Entezari et al., 2021) empirically. In particular, (Ainsworth et al.,
2022) demonstrates that there is zero-barrier LMC (after permutation) between two independently
trained NNs (including ResNet) provided the width of layers is large enough. In (Benzing et al.,
2022), the conjecture is explored for FC NNs, finding that the average of two randomly initialized
models using the permutation revealed through training gives a non-trivial NN. Compared to our
work, none of these two works explored this conjecture for recurrent NNs; we highlight that our
GWB fusion method is of particular relevance for this aim. To the best of our knowledge, we thus
provide the first-ever exploration of the conjecture posited in (Entezari et al., 2021) for NLP tasks.

1.1 NOTATION

We first introduce some basic notation and briefly review a few relevant concepts from OT. A simplex
of histograms with n bins is denoted by Σn := {a ∈ Rn

+ :
∑

i ai = 1}. The set of couplings between
histograms a ∈ Σn1

and b ∈ Σn2
is denoted by Γ(a, b) := {Π ∈ Rn1×n2

+ : Π1n2
= a,ΠT1n1

= b},
where 1n := (1, . . . , 1)T ∈ Rn. For any 4-way tensor L =

[
Lijkl

]
i,j,k,l

and matrix Π =
[
πij

]
i,j

,
we define the tensor-matrix multiplication of L and Π as the matrix L ⊗Π :=

[∑
k,l Lijklπkl

]
i,j

.

1.2 OPTIMAL TRANSPORT AND WASSERSTEIN BARYCENTERS

Let X be an arbitrary topological space and let c : X × X → [0,∞) be a cost function assumed to
satisfy c(x, x) = 0 for every x. We denote byM+

1 (X) the space of (Borel) probability measures
on X . For {xi}n1

i=1, {yj}n2
j=1 ∈ X , define discrete measures µ =

∑n1

i=1 aiδxi and ν =
∑n2

j=1 bjδyj

in M+
1 (X), where a ∈ Σn1 , b ∈ Σn2 , and δx denotes the Dirac delta measure at x ∈ X . The

Wasserstein “distance” between µ and ν, relative to the cost c, is defined as

W (µ, ν) := inf
Π∈Γ(µ,ν)

⟨C,Π⟩, (1)

where C :=
[
c(xi, yj)

]
i,j

is the “cost” matrix between {xi}i, {yj}j ∈ X , Π :=
[
πij

]
i,j
∈ Γ(µ, ν)

is the coupling matrix between µ and ν, and ⟨A,B⟩ := tr(ATB) is the Frobenius inner product.

Let {γi}ni=1 ∈M+
1 (X) be a collection of discrete probability measures. The Wasserstein barycenter

problem (WBP) (Agueh & Carlier, 2011) associated with these measures reads

min
γ∈M+

1 (X)

1

n

n∑
i=1

W (γ, γi). (2)

A minimizer of this problem is called a Wasserstein barycenter (WB) of the measures {γi}ni=1 and
can be understood as an average of the input measures. In the sequel we will use the concept of WB
to define fusion algorithms for FC NN, CNN, and ResNet. For RNN and LSTM the fusion reduces

3

Under review as a conference paper at ICLR 2023

to solving a series of Gromov-Wasserstein barycenter-like problems (see the reviews of GWBP in
the Appendix).

2 WASSERSTEIN BARYCENTER BASED FUSION

In this section, we discuss our layer-wise fusion algorithm based on the concept of WB. First we
introduce the necessary interpretations of nodes and layers of NNs in Section 2.1. Next in Section
2.2, we describe how to compare layers and nodes across different NNs so as to make sense of
aggregating models through WB. Finally we present our fusion algorithm in Section 2.3.

2.1 NESTED DEFINITION OF FULLY CONNECTED NN

For a fully connected network N , we use v to index the nodes in its l-th layer Nl. Let γl denote a
probability measure on the l-th layer defined as the weighted sum of Dirac delta measure over the
nodes in that layer, i.e.,

γl :=
1

|Nl|
∑
v∈Nl

δv ∈M+
1 (Nl). (3)

We interpret a node v from the l-th layer as an element in Nl that couples a function on the domain
Nl−1 (previous layer) with a probability measure. In particular, the node v is interpreted as v :=
(γl−1, w), where γl−1 is a measure on the previous layer Nl−1 and w represents the weights between
the node v and the nodes in previous layer Nl−1. These weights can be interpreted as a function w :
Nl−1 → R and we use the notation wq to denote the value of function w evaluated at the q-th node
in the previous layer Nl−1. For the first layer i.e. l = 1, the nodes simply represent placeholders for
the input features. The above interpretation is illustrated in Figure 1 (right). This interpretation of
associating nodes with a function of previous layer allows us to later define “distance” between nodes
in different NNs (see Section 2.2) and is motivated from TLp spaces and distance (Garcı́a Trillos &
Slepčev, 2015; Thorpe et al., 2017) which is designed for comparing signals with different domains
(see more details in Appendix C.1).

2.2 COST FUNCTIONS FOR COMPARING LAYERS AND NODES

Having introduced our interpretations of NNs, we now define the cost functions for comparing layers
and nodes which will be used to aggregate models through WB. Consider the l-th layers Nl and N ′

l
of two NNs N and N ′ respectively. We use Wasserstein distance between the measures γl and γ′

l
over Nl and N ′

l respectively to define distance between the layers:

dµ(γl, γ
′
l) := W (γl, γ

′
l) = inf

Πl∈Γ(γl,γ′
l)
⟨Cl,Πl⟩ (4)

where matrix Πl = [πl,jg]j,g is a coupling between the measures γl and γ′
l; and Cl is the cost matrix

give by Cl :=
[
cl(v, v

′)
]
v,v′ , where cl is a cost function between nodes on the l-th layers.

Following our inductive interpretation of NNs, the cost function cl can also be defined inductively.
Consider nodes v and v′ from l-th layer of NNs N and N ′ respectively. For the first layer l = 1,
we pick a natural candidate for cost function, namely c1(v, v

′) := 1v ̸=v′ , a reasonable choice given
that all networks have the same input layer. For l ≥ 2, recall our interpretation of nodes v =
(γl−1, w), v

′ = (γ′
l−1, w

′), where γl−1 and γ′
l−1 denotes the respective measures associated with

previous layer l− 1 and w,w′ denotes the respective weight functions for nodes v and v′. Since the
domains of the weight functions w and w′ are layers in different NNs, it is not clear how to compare
them directly. However in TLp interpretation, after finding a suitable coupling between the support
measures γl−1 and γ′

l−1, one can couple the functions w and w′ and use a direct L2-comparison.
Motivated by computational and methodological considerations, we use a slight modification of
the TLp distance and decouple the problem for the measures from the weights. Specifically, we
define cl(v, v

′) := dµ(γl−1, γ
′
l−1) + dW (w,w′); where dµ is the Wasserstein distance (as defined

in equation 4) between the measures γl−1 and γ′
l−1 from layers l − 1. And dW is defined using the

optimal coupling of weight functions’ support measures, i.e.,

dW (w,w′) :=
∑
q,s

(
wq − w′

s

)2
(πl−1,qs)

∗ =: ⟨L(w,w′), (Πl−1)
∗⟩, (5)

4

Under review as a conference paper at ICLR 2023

where L(w,w′) :=
[
(wq−w′

s)
2
]
q,s

and (Πl−1)
∗ =

[
(πl−1,qs)

∗]
q,s

is the optimal coupling between
γl−1 and γ′

l−1. Note that dµ(γl−1, γ
′
l−1) is a fixed constant when comparing any two nodes on the

l-th layers Nl and N ′
l . For simplicity, we let cl(v, v′) = dW (W,W ′) in what follows, and the

information of support measures γl−1 and γ′
l−1 is implicitly included in their optimal coupling

(Πl−1)
∗. Here we have omitted bias terms to ease the exposition of our framework, but a natural

implementation that accounts for bias terms can be obtained by simply concatenating them with the
weight matrix.

We set (Π1)
∗ equal to the identity matrix normalized by the size of input layer given that this is

a solution to equation 4 when the cost c1 is defined as c1(v, ṽ) := 1v ̸=ṽ . Other choices of cost
function cl are possible, e.g. the activation-based cost function proposed in (Singh & Jaggi, 2019).

2.3 FUSION ALGORITHM

In the following we consider n input FC NNs N1, . . . , Nn. We use N i
l to denote the l-th layer of

the i-th network N i and kil to denote the number of nodes in that layer, i.e. kil = |N i
l |. Let γi

l to
be the probability measure on layer N i

l similar to definition in equation 3 with the support points
being nodes in that layer. We denote the target model (i.e. the desired fusion output) by N new and
use k2, . . . , km to denote the sizes of its layers N new

2 , . . . , N new
m , respectively. We assume that all

networks, including the target model, have the same input layer and the same number of layers m.

Based on the discussion in Sections 2.1 and 2.2, we now describe an inductive construction of the
layers of the target network N new by fusing all n input NNs. First, N new

1 is set to be equal to N1
1 : this

is the base case of the inductive construction and simply means that we set the input layer of N new

to be the same as that of the other models; we also set γ1 := γ1
1 . Next, assuming that the fusion has

been completed for the layers 1 to l − 1 (l ≥ 2), we consider the fusion of the l-th layer. For the
simplicity of notations, we drop the index l while referring to nodes and their corresponding weights
in this layer. In particular, we use vig and wi

g to denote the nodes in layer N i
l and their corresponding

weights. To carry out fusion of the l-th layer of the input models, we aggregate their corresponding
measures through finding WB which provides us with a sensible “average” l-th layer for the target
model. Hence, we consider the following WBP over γ1

l , . . . , γ
n
l :

min
γl,{Πi

l}i

1

n

n∑
i=1

W (γl, γ
i
l) :=

1

n

n∑
i=1

⟨Ci
l ,Π

i
l⟩ s.t. γl =

1

kl

kl∑
j=1

δvj , vj = (γl−1, wj). (6)

Here the measure γl is the candidate l-th layer “average” of the input models and is forced to take a
specific form (notice that we have fixed the size of its support and the masses assigned to its support
points). Nodes vj in the support of γl are set to take the form vj = (γl−1, wj), i.e. the measure γl−1

obtained when fusing the (l − 1)-th layers is the first coordinate in all the vj . This plugs the current
layer of the target model with its previous layer. As done for the input models, wj is interpreted
as a function from the (l − 1)-th layer into the reals, and represents the actual weight vector from
the (l − 1)-layer to the j-th node in the l-th layer of the new model. Ci

l :=
[
cl(vj , v

i
g)
]
j,g

are the
cost matrices corresponding to WBP in equation 6, where cl is a cost function between nodes on the
l-th layers (see in Section 2.2). Let Wl and W i

l to be the weight function matrices of the l-th layer
of target models N new and input model N i respectively (e.g. Wl := (w1, . . . , wkl

)T) and define
L(Wl,W

i
l) :=

[(
wjq −wi

gs

)2]
j,g,q,s

, where wjq denotes the function wj evaluated at the q-th node
in layer l − 1 and similarly for wi

gs. The cost matrices Ci
l can now be rewritten as

Ci
l :=

[
cl(vj , v

i
g)
]
j,g

=
[
dW (wj , w

i
g)
]
j,g

= L(Wl,W
i
l)⊗ (Πi

l−1)
∗, (7)

where (Πi
l−1)

∗ is the optimal coupling between measures γl−1 and γi
l−1. Combining equation 7

with equation 6 gives us the following optimization problem which we solve to obtain the fused
layer:

min
Wl,{Πi

l}i

B(Wl; {Πi
l}i) :=

1

n

n∑
i=1

⟨L(Wl,W
i
l)⊗ (Πi

l−1)
∗,Πi

l⟩. (8)

In order to solve the minimization problem 8, we can follow a strategy discussed in (Cuturi &
Doucet, 2014; Anderes et al., 2016; Claici et al., 2018), i.e., alternatingly update weights Wl and

5

Under review as a conference paper at ICLR 2023

couplings {Πi
l}i (remember that the (Πi

l−1)
∗ are computed once and for all and are fixed in equa-

tion 8. In particular, after initializing weight matrices, we alternate between two steps until some
stopping criterion is reached:

Step 1: For fixed Wl, we update the couplings {Πi
l}i. Note that the minimization of B(Wl; {Πi

l}i)
over the couplings {Πi

l}i splits into n OT problems, each of which can be solved using any of the
algorithms used in computational OT (e.g. Sinkhorn’s algorithm (Cuturi, 2013)).

Step 2: For fixed couplings {Πi
l}i, we update the weights Wl. Note that for fixed couplings the

objective B(Wl; {Πi
l}i) is quadratic in Wl and hence we obtain the following update formula:

Wl ← klkl−1
1

1kl−1
1T
kl

1

n

n∑
i=1

Πi
lW

i
l (Π

i
l−1)

∗T , (9)

where ·
· is elementwise division. We refer to the above fusion algorithm as Wasserstein barycenter-

based fusion (WB fusion). The pseudo-code for this algorithm and corresponding computational
complexity can be found in the Appendix C, where we also provide some details on how to adapt
our fusion method to handle convolutional layers and skip-connections.

3 GROMOV-WASSERSTEIN BARYCENTER-BASED FUSION

In this section we discuss extension of our fusion framework to cover RNNs and LSTMs. Compared
to FC networks, RNNs contain “self-loops” in each layer (hidden-to-hidden recurrent connections)
which allows information to be passed from one step of the neural network to the next. Similar
to our interpretation of neurons in the FC case, a node vig on the l-th layer will be represented
as vig :=

[
(γi

l−1, w
i
g); (γ

i
l , h

i
g)
]
, where wi

g is the weight function between inputs of the preceding
layer and hidden states, and hi

g is the weight function between hidden states; γi
l−1 and γi

l are the
probability measures corresponding to layer l − 1 and layer l respectively. This definition comes
from the observation that hidden-to-hidden weight functions hi

g are supported on the l-th layer itself,
whereas wi

g is supported on the (l − 1)-th layer.

Having carried out the fusion of the first l − 1 layers we consider the following problem to fuse the
l-th layers:

min
Wl,Hl,{Πi

l}i

B(Wl, Hl; {Πi
l}i) :=

1

n

n∑
i=1

⟨L(Wl,W
i
l)⊗ (Πi

l−1)
∗ + αHL(Hl, H

i
l)⊗Πi

l,Π
i
l ⟩, (10)

where αH is a hyperparameter that balances the importance of input-to-hidden weights and hidden-
to-hidden weights during the fusion; we’ll use (Πi

l)
∗ to denote an optimal Πi

l . We use Hl and Hi
l to

denote the hidden-to-hidden weight function matrices of layer N new
l and N i

l respectively, and we let
L(Hl, H

i
l) :=

[(
hjq − hi

gs

)2]
j,g,q,s

. L(Wl,W
i
l) is defined the same as in the fully connected case.

Notice that this is a GW-like barycenter problem.

We provide more detailed explanation on how to derive optimization problem 10 and adapt the
GWB fusion for RNNs discussed in this section to the LSTM case in Appendix E. In Section 4.3 we
show that the models obtained when setting αH > 0 in equation 10 greatly outperform the models
obtained when setting αH = 0, justifying in this way the use of GWBs.

4 EXPERIMENTS

Overview: We present an empirical study of our proposed WB and GWB based fusion algorithms
to assess its performance in comparison to other state of the art fusion methodologies and reveal new
insights about the loss landscapes for different types of network architectures and datasets. We first
consider the fusion of models trained on heterogeneous data distributions. Next we present results
for WB fusion of FC NNs and deep CNNs, and draw connections between workings of WB fusion
and LMC of SGD solutions. Finally, we consider GWB fusion and present results on RNNs, LSTMs
and extend the conjecture made in Entezari et al. (2021) for recurrent NNs.

Baselines: For baselines, we consider vanilla averaging and the state-of-the-art fusion methodolo-
gies like OT fusion Singh & Jaggi (2019) and FedMA Wang et al. (2020). For a fair comparison

6

Under review as a conference paper at ICLR 2023

under the experimental settings of one-shot fusion we consider FedMA without the model retraining
step and restrict its global model to not outgrow the base models. We refer to this as “one-shot
FedMA”. For RNNs and LSTMs, our baselines additionally include slightly modified versions of
WB based fusion and OT fusion where we ignore the hidden-to-hidden connections. Other methods
which require extensive training are not applicable in one-shot model aggregation settings.

Base models & General-setup: For our experiments on FC NNs, we use MLPNET introduced
in Singh & Jaggi (2019), which consists of 3 hidden layers of sizes {400, 200, 100}. Addition-
ally, we introduce MLPLARGE and MLPSMALL with hidden layers of size {800, 400, 200} and
{200, 100, 50} respectively. For deep CNNs, we use VGG11 Simonyan & Zisserman (2014) and
RESNET18 He et al. (2016). For recurrent NNs, we work with RNNs and LSTMs with one hidden
layer of size 256 and 4 × 256 respectively. Hyperparameters are chosen using a validation set and
final results are reported on a held out test set. More training details are provided in the Appendix.

Visualization methodology: We visualize the result of fusing two pre-trained models on a two-
dimensional subspace of NNs’ loss landscape by using the method proposed in Garipov et al. (2018).
In particular, each plane is formed by all affine combinations of three weight vectors corresponding
to the parameters of base model 1, base model 2 and permuted model 2 (i.e. base model 2 after
multiplying its weights by the coupling obtained by our fusion algorithm) respectively.

4.1 WB FUSION UNDER HETEROGENEOUS DATA DISTRIBUTIONS

Setup: We first apply WB fusion in aggregating models trained on heterogeneous data distributions
which is a setting often found in federated learning where the clients have local data generated from
different distributions and privacy concerns prevent data sharing among them. Here we follow the
setup described in Singh & Jaggi (2019). To simulate heterogeneous data-split on MNIST digit
classification one of the models (named A) is trained with a special skill to recognize one of the
digits (eg. digit 4) that is not known to the other model, named B. Model B is trained on 90% of the
training data for remaining digits while model A uses the other 10% data. Under this data split, we
consider two settings. For the first setting, the base models are fused into a target model of the same
architecture (MLPNET). For the second setting, we consider the fusion of two small base models
(MLPSMALL) into a large target model (MLPNET). This simulates the setting where clients in
federated learning are constrained by memory resources to train smaller models. In both cases we
use model fusion to aggregate knowledge learned from the base models into a single model, a more
memory-efficient strategy than its ensemble-based counterparts.

Quantitative results: Figure 2 shows the results of single shot fusion when different proportions of
the base models are considered. We find that (a) WB fusion consistently outperforms the baselines,
(b) for certain combinations WB produces fused models with accuracy even better than the base
model and demonstrates successful one shot knowledge aggregation. Note that for each proportion
of model aggregation (x-axis), the results are reported over multiple runs where one of the base
models is randomly chosen to initialize the target model in the fusion algorithm. We find that WB
fusion is more stable against initialization as indicated by the lower variance in Figure 2. For fusion
into different architectures vanilla averaging is not applicable, and we do not include “one-shot
FedMA” for comparison here since it is not clear how to assign different proportions to base models
in FedMA, or to specify a target architecture different from the base models.

4.2 WB FUSION UNDER HOMOGENEOUS DATA DISTRIBUTIONS AND CONNECTIONS TO LMC

Setup: In this section we perform WB fusion for various models and architectures, and provide
loss landscape visualizations which reveal workings of the fusion algorithm and shed light on linear
model connectivity (LMC) of SGD solutions after applying appropriate permutations. We first con-
sider fusion of FC NNs on the MNIST dataset Deng (2012) and train MLPNET following Singh &
Jaggi (2019). For this we consider two different settings. In the first setting, the target model has
the same architecture as the base models. For the second one, we fuse the base models into a larger
model MLPLARGE. As noted before, the latter scenario is relevant for federated learning, given the
limitations of memory and computational resources on edge devices. Next, we consider fusion of
deep CNNs like VGG11, RESNET18 trained on CIFAR10 dataset Krizhevsky et al. (2009). For all
these cases, we fuse 2 trained models initialized differently. For the skip-connection and fusion into
different architectures, FedMA is not directly applicable and hence not considered for comparisons.

7

Under review as a conference paper at ICLR 2023

Figure 2: Left / Right: Test accuracy % for fused models when base models are trained on het-
erogeneous data distributions and combined with various proportions into a target model of same /
different architecture. Some models obtained by WB fusion outperform even the base models.

Quantitative results: Table 1 contains the results of fusion for FC NNs and deep CNNs. We find
that (a) WB fusion produces models at par or outperforms other fusion methods for all considered
model types and datasets, (b) for fusion into different architectures and ResNets, we find that WB
fusion is more effective and robust.

Table 1: Performance comparison (Test accuracy ± standard deviation %) of different fusion algo-
rithms under various network architectures and datasets. “BASE” means initializing target model
with one of the base models. For each case, the target model obtained by WB fusion gets the highest
test accuracy and smallest standard deviation.

MNIST CIFAR10

MLPNET/BASE MLPLARGE VGG11/BASE RESNET18/BASE

BASE MODEL AVG 98.31± 0.02 - 90.14± 0.19 91.56± 0.34

VANILLA AVG 86.50± 4.60 - 30.82± 4.49 20.56± 3.90

ONE-SHOT FEDMA 97.89± 0.10 - 85.42± 1.01 -

OT 97.84± 0.12 91.53± 2.64 85.39± 0.93 71.37± 6.53

WB 97.92± 0.12 94.93± 1.18 85.39± 0.93 73.75± 4.39

Visualizations: Figure 1 (left) contains the visualization of fusing two MLPNET trained on MNIST
dataset under WB framework and Figure 3 (left) contains the fusion result of WB fusion of two
VGG11 models trained on CIFAR10. We find that (a) the couplings obtained in WB fusion (refer
to equation 8) between the layers of target model and base models are sparse, i.e. they are almost
permutations; (b) the basins of the permuted model 2 (obtained by multiplying the weights of base
model 2 by the found couplings) and base model 1 lie close to each other and are separated by
a low energy barrier. These visualizations thus provide new empirical evidence in support of the
conjecture made in Entezari et al. (2021). They also shed light on the workings on WB fusion
algorithm. In particular, equation 9 can be interpreted as coordinate-wise averaging of the permuted
models. Since permuted models land in basins that are separated by low energy barriers, their linear
interpolation gives a good fused model.

4.3 GWB FUSION FOR RECURRENT NEURAL NETWORKS

Setup: In this section, we consider the fusion of NNs like RNNs and LSTMs on sequence based
tasks. We use 4 different datasets for this setting: i) MNIST Deng (2012): Images of 28×28 dimen-
sions are interpreted as 28 length sequences of vectors ∈ R28; ii) SST-2 Socher et al. (2013): Binary
classification task of predicting positive and negative phrases; iii) AGNEWS Zhang et al. (2015):
Corpus of news articles from 4 classes; and iv) DBpedia Zhang et al. (2015): Ontology classifica-
tion dataset containing 14 non-overlapping classes. For the NLP tasks, we use pre-trained GloVe
embeddings Pennington et al. (2014) of dimensions 100 and 50 for RNNs and LSTMs respectively.
The embedding layer is not updated during the model training. We set the target model to have the
same architecture as the base models.

8

Under review as a conference paper at ICLR 2023

0 10 20 30 40

−5

0

5

10

15

20

25

30
Base model 1

Base model 2

Permuted model 2

Fused model

9.9

11

12

13

15

17

20

25

> 25

0 20 40 60 80

−10

0

10

20

30

40

50

60
Base model 1

Base model 2

Permuted model 2

Fused model

1

1.3

1.5

1.8

2.5

3.7

6

10

> 10

−10 0 10 20 30 40 50 60

0

10

20

30

40

50 Base model 1

Base model 2

Permuted model 2

Fused model

1.3

2

2.4

3.1

4.2

6.2

9.5

15

> 15

Figure 3: Visualizations of the fusion results on the test error surface, which is a function of network
weights in a two-dimensional subspace, for different models and datasets. Left: Fusion of two
VGG11 models trained on CIFAR10 dataset using WB framework. Middle: Fusion of two LSTM
models trained on MNIST dataset . Right: Fusion of two LSTM models trained on DBpedia dataset.
We can observe that in all these cases the basins of permuted model 2 (obtained by multiplying the
weights of base model 2 by the found coupling) and base model 1 lie close to each other and are
separated by a low energy barrier.

Quantitative results: Table 2 contains the result of fusion for various datasets and model architec-
tures. We find that (a) our GWB framework outperforms other fusion algorithms for each combi-
nation of model type and dataset, which highlights the importance of using hidden-to-hidden con-
nections for the fusion of recurrent NNs; (b) the accuracy gains for GWB over WB is different for
different tasks, which indicates that relative importance of hidden-to-hidden connections is task de-
pendent; (c) the accuracy of fused model is higher for LSTMs in comparison to RNNs, which we
attribute to the fact that LSTMs have four hidden states and thus four input-to-hidden and hidden-
to-hidden weight matrices. More information for each hidden node allows the algorithm to uncover
better couplings. Our results in (a) and (b) show the usefulness of hyperparameter αH (set between
[1, 20]) from equation 10 in balancing the relative importance of hidden-to-hidden weights.

Table 2: Performance comparison (Test accuracy ± standard deviation %) of different fusion algo-
rithms under various network architectures and datasets. For each case, target model obtained by
GWB fusion reaches the highest test accuracy and small standard deviation.

MNIST AGNEWS DBPEDIA SST-2

RNN LSTM RNN LSTM RNN LSTM RNN LSTM

BASE MODEL AVG 96.68± 0.29 98.99± 0.09 88.68± 0.12 92.38± 0.17 97.12± 0.21 98.62± 0.11 87.32± 1.03 90.31± 0.27

VANILLA AVG 28.54± 10.70 31.92± 4.86 40.77± 4.94 74.01± 3.89 30.95± 4.53 50.93± 2.17 73.91± 2.73 74.25± 1.92

OT 36.78± 14.13 68.33± 7.07 53.05± 4.30 86.19± 2.14 37.91± 4.86 77.95± 3.20 78.92± 2.97 82.13± 0.60

ONE-SHOT FEDMA 34.16± 7.26 66.98± 5.17 55.78± 3.64 86.30± 2.40 42.16± 6.24 81.81± 3.29 79.17± 2.27 82.53± 1.01

WB 29.41± 7.05 67.66± 6.27 55.63± 4.18 86.25± 2.37 42.52± 6.26 82.57± 3.55 79.57± 2.36 82.87± 1.09

GWB 81.39± 2.97 93.27± 1.86 61.01± 3.87 87.96± 0.91 55.15± 5.97 87.50± 2.89 82.60± 1.05 84.04± 0.77

Visualizations: Figure 3 (middle, right) contains visualization of fusing LSTM models under the
GWB framework. As noted for the FC NNs and deep CNNs visualizations, we find that (a) the
couplings found by GWB fusion algorithm are sparse, and (b) these couplings map different local
minima into neighboring basins that are separated by low energy barriers. This empirical evidence
suggests that the original conjecture in Entezari et al. (2021) can be extended to richer network
architectures and tasks (RNNs and LSTMs on NLP datasets).

5 CONCLUSION

In this paper we have proposed neural network fusion algorithms that are based on the concept of
Wasserstein/Gromov-Wasserstein barycenter. Our fusion algorithms allow us to aggregate models
within a variety of NN architectures, including RNN and LSTM. Through extensive experimentation
we: 1) illustrated the strengths of our algorithms 2) provided new empirical evidence backing recent
conjectures about the linear mode connectivity of different neural networks with architectures such
as RNN or LSTM and for different imaging and NLP datasets.

Limitations and future work: NNs with ReLU activation are also scale-invariant across the layers
which is currently not handled in our cost functions. Although the empirical evidence in (Du et al.,

9

Under review as a conference paper at ICLR 2023

2018; Entezari et al., 2021) suggests that the models trained on same datasets using SGD converges
to solutions with more balanced weights, it might be the case that for certain heterogeneous settings
the weights across models become less balanced. For future work we would like to explore fusion
using scale-invariant cost functions and apply WB/GWB fusion algorithms to federated learning.

REFERENCES

Martial Agueh and Guillaume Carlier. Barycenters in the wasserstein space. SIAM Journal on
Mathematical Analysis, 43(2):904–924, 2011.

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. arXiv preprint arXiv:2209.04836, 2022.

Ethan Anderes, Steffen Borgwardt, and Jacob Miller. Discrete wasserstein barycenters: Optimal
transport for discrete data. Mathematical Methods of Operations Research, 84(2):389–409, 2016.

Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré. Iterative
bregman projections for regularized transportation problems. SIAM Journal on Scientific Com-
puting, 37(2):A1111–A1138, 2015.

Frederik Benzing, Simon Schug, Robert Meier, Johannes von Oswald, Yassir Akram, Nicolas Zuc-
chet, Laurence Aitchison, and Angelika Steger. Random initialisations performing above chance
and how to find them. arXiv preprint arXiv:2209.07509, 2022.

Hong-You Chen and Wei-Lun Chao. Fedbe: Making bayesian model ensemble applicable to feder-
ated learning. arXiv preprint arXiv:2009.01974, 2020.

Sebastian Claici, Edward Chien, and Justin Solomon. Stochastic wasserstein barycenters. arXiv
preprint arXiv:1802.05757, 2018.

Sebastian Claici, Mikhail Yurochkin, Soumya Ghosh, and Justin Solomon. Model fusion with
kullback–leibler divergence. arXiv preprint arXiv:2007.06168, 2020.

N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy. Optimal transport for domain adaptation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(9):1853–1865, 2017. doi:
10.1109/TPAMI.2016.2615921.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in
neural information processing systems, pp. 2292–2300, 2013.

Marco Cuturi and Arnaud Doucet. Fast computation of wasserstein barycenters. 2014.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Pierre Dognin, Igor Melnyk, Youssef Mroueh, Jerret Ross, Cicero Dos Santos, and Tom Sercu.
Wasserstein barycenter model ensembling. arXiv preprint arXiv:1902.04999, 2019.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers
in neural network energy landscape. In International conference on machine learning, pp. 1309–
1318. PMLR, 2018.

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous
models: Layers are automatically balanced. Advances in Neural Information Processing Systems,
31, 2018.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. arXiv preprint arXiv:2110.06296,
2021.

Nicolás Garcı́a Trillos and Dejan Slepčev. Continuum limit of total variation on point clouds.
Archive for Rational Mechanics and Analysis, pp. 1–49, 2015. ISSN 1432-0673. doi: 10.1007/
s00205-015-0929-z. URL http://dx.doi.org/10.1007/s00205-015-0929-z.

10

http://dx.doi.org/10.1007/s00205-015-0929-z

Under review as a conference paper at ICLR 2023

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss
surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information pro-
cessing systems, 31, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Nhat Ho, XuanLong Nguyen, Mikhail Yurochkin, Hung Hai Bui, Viet Huynh, and Dinh Phung.
Multilevel clustering via wasserstein means. arXiv preprint arXiv:1706.03883, 2017.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Paul Knopp and Richard Sinkhorn. A note concerning simultaneous integral equations. Canadian
Journal of Mathematics, 20:855–861, 1968.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. Advances in neural information processing systems, 31, 2018.

Xin-Chun Li, Yi-Chu Xu, Shaoming Song, Bingshuai Li, Yinchuan Li, Yunfeng Shao, and De-
Chuan Zhan. Federated learning with position-aware neurons. arXiv preprint arXiv:2203.14666,
2022.

Chang Liu, Chenfei Lou, Runzhong Wang, Alan Yuhan Xi, Li Shen, and Junchi Yan. Deep neural
network fusion via graph matching with applications to model ensemble and federated learning.
In International Conference on Machine Learning, pp. 13857–13869. PMLR, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282. PMLR, 2017.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-
layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671,
2018.

Facundo Mémoli. Gromov–wasserstein distances and the metric approach to object matching. Foun-
dations of computational mathematics, 11(4):417–487, 2011.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring general-
ization in deep learning. Advances in neural information processing systems, 30, 2017.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer learn-
ing? Advances in neural information processing systems, 33:512–523, 2020.

Dang Nguyen, Khai Nguyen, Dinh Phung, Hung Bui, and Nhat Ho. Model fusion of heterogeneous
neural networks via cross-layer alignment. arXiv preprint arXiv:2110.15538, 2021.

Quynh Nguyen, Mahesh Chandra Mukkamala, and Matthias Hein. On the loss landscape of a class
of deep neural networks with no bad local valleys. arXiv preprint arXiv:1809.10749, 2018.

11

Under review as a conference paper at ICLR 2023

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-wasserstein averaging of kernel and
distance matrices. In International Conference on Machine Learning, pp. 2664–2672. PMLR,
2016.

Gabriel Peyré and Marco Cuturi. Computational optimal transport. 2018.

Ievgen Redko, Nicolas Courty, Rémi Flamary, and Devis Tuia. Optimal transport for multi-source
domain adaptation under target shift. In The 22nd International Conference on Artificial Intelli-
gence and Statistics, pp. 849–858, 2019.

Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58-63):94,
2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. arXiv preprint
arXiv:1910.05653, 2019.

Richard Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums. The
American Mathematical Monthly, 74(4):402–405, 1967.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Sanvesh Srivastava, Volkan Cevher, Quoc Dinh, and David Dunson. Wasp: Scalable bayes via
barycenters of subset posteriors. In Artificial Intelligence and Statistics, pp. 912–920, 2015.

Sanvesh Srivastava, Cheng Li, and David B Dunson. Scalable bayes via barycenter in wasserstein
space. The Journal of Machine Learning Research, 19(1):312–346, 2018.

Romain Thibaux and Michael I. Jordan. Hierarchical beta processes and the indian buffet process.
2007.

Matthew Thorpe, Serim Park, Soheil Kolouri, Gustavo K Rohde, and Dejan Slepčev. A transporta-
tion lp distance for signal analysis. Journal of mathematical imaging and vision, 59(2):187–210,
2017.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media,
2008.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. arXiv preprint arXiv:2002.06440, 2020.

Hongteng Xu, Dixin Luo, and Lawrence Carin. Scalable gromov-wasserstein learning for graph
partitioning and matching. Advances in neural information processing systems, 32:3052–3062,
2019a.

Hongteng Xu, Dixin Luo, Hongyuan Zha, and Lawrence Carin Duke. Gromov-wasserstein learning
for graph matching and node embedding. In International conference on machine learning, pp.
6932–6941. PMLR, 2019b.

Fuxun Yu, Weishan Zhang, Zhuwei Qin, Zirui Xu, Di Wang, Chenchen Liu, Zhi Tian, and Xiang
Chen. Fed2: Feature-aligned federated learning. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pp. 2066–2074, 2021.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Trong Nghia Hoang,
and Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. arXiv
preprint arXiv:1905.12022, 2019.

12

Under review as a conference paper at ICLR 2023

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. Advances in neural information processing systems, 28, 2015.

A RELATED WORKS

A.1 OTHER MODEL FUSION ALGORITHMS

Different from the post-processing strategies proposed in (Singh & Jaggi, 2019; Yurochkin et al.,
2019; Wang et al., 2020; Liu et al., 2022), which propose aligning different models after training,
works like (Yu et al., 2021; Li et al., 2022) solve the alignment problem during the training process
of local models. In particular, the work (Yu et al., 2021) proposes to align features during training
by separating features into different groups; (Li et al., 2022), on the other hand, proposes to break
permutation invariance by adding position encodings during training. With any of these approaches
coordinate-wise (vanilla) averaging becomes sensible and local models can get aligned during local
updates using direct averaging. The work (Claici et al., 2020) considers a general model fusion prob-
lem (e.g. topic models, not restricted to NN) and takes a Bayesian approach. In their framework, the
parameters specifying the target global model are obtained by minimizing the sum of KL distances
between “posterior distributions” of global and local models. (Chen & Chao, 2020) also takes a
Bayesian perspective: local models are used to estimate an ensemble of Gaussian or Dirichlet distri-
butions and the output ensemble is used to generate the global model using knowledge distillation.
In (Nguyen et al., 2021), the problem of fusing NNs with different number of layers is considered.
Their idea is to first apply dynamic programming to find one-to-one cross-layer alignments. Based
on these alignments, the number of layers of local NNs gets balanced, and they can then reduce their
fusion problem to one where existing layer-wise fusion methods can be used.

A.2 COMPUTATION OF WASSERSTEIN BARYCENTERS

Solving Wasserstein barycenter problems (WBP) has become computationally more feasible be-
cause of recent substantial advancements in OT algorithms. This development started with the work
(Cuturi, 2013) where they proposed to add an entropic regularization term in the transport problem
and use the Sinkhorn algorithm (Sinkhorn, 1967; Knopp & Sinkhorn, 1968) to solve it. (Cuturi &
Doucet, 2014) and (Benamou et al., 2015) extended the entropic regularization idea to the barycen-
ter problem and proposed to solve it through sub-gradient descent and Bregman projection iterations
respectively. In (Claici et al., 2018), the authors proposed to alternatively update the measure sup-
port and the weights of the barycenter by using stochastic algorithms. The work (Peyré et al., 2016)
proposed to use projected gradient descent to solve the minimization problem corresponding to the
entropic Gromov-Wasserstein (GW) discrepancy, which is shown to be equivalent to solve a entropy-
regularized OT problem at each iteration. (Xu et al., 2019a;b) replaced the entropy regularizer with
KL-divergence in the GW discrepancy and similarly solve it with proximal point methods. Both of
the above methods are applied to solve GWBP. Thanks to the development of these computational
techniques, Wasserstein barycenters have been applied to various machine learning problems such
as clustering (Ho et al., 2017), Bayesian inference (Srivastava et al., 2015; 2018), domain adaptation
(Redko et al., 2019), ensemble learning (Dognin et al., 2019), among others. Here we apply some
of these computational tools for NN fusion.

B COMPUTATIONAL OPTIMAL TRANSPORT

In this section, we review the computational optimal transport methods used in our paper.

B.1 ENTROPIC OPTIMAL TRANSPORT

Let p ∈ ΣN1 and q ∈ ΣN2 be two histograms and let C ∈ RN1×N2
+ be a cost matrix, where

Cij represents the transportation cost between positions indexed by i and j. Define the solution of

13

Under review as a conference paper at ICLR 2023

entropically-regularized optimal transport between p and q as

T (C, p, q) := argmin
Π∈Γ(p,q)

⟨C,Π⟩ − εH(Π), (11)

where H(Π) := −∑N
i,j=1 Πij(logΠij − 1) is the entropy of Π. It can be shown that the solution

to this problem reads T (C, p, q) = diag(a)Kdiag(b), where K := e−
c
ε ∈ RN1×N2

+ is the so-called
Gibbs kernel associated to c, and (a, b) ∈ RN1

+ × RN2
+ can be computed using Sinkhorn iterations

(Cuturi, 2013)

a← p

Kb
and b← q

K⊤a
, (12)

where here ·
· denotes elementwise division.

B.2 GROMOV-WASSERSTEIN DISTANCE AND GROMOV-WASSERSTEIN BARYCENTERS

The Gromov-Wasserstein problem (Mémoli, 2011; Peyré et al., 2016) is a variant of the OT problem
introduced with the purpose of comparing different spaces when each of them is endowed with a
base probability distribution and a notion of similarity (or dissimilarity) between pairs of its ele-
ments. For two matrices C ∈ Rn1×n1 and C̄ ∈ Rn2×n2 representing the similarity between pairs of
points in the support of µ =

∑n1

i=1 aiδxi
and ν =

∑n2

j=1 bjδyj
respectively, we define the Gromov-

Wasserstein distance between the two measured similarity matrices (C, a) ∈ Rn1×n1 × Σn1 and
(C̄, b) ∈ Rn2×n2 × Σn2 as follows:

GW ((C, a), (C̄, b)) := min
Π∈Γ(a,b)

⟨L(C, C̄)⊗Π,Π⟩, (13)

where L(C, C̄) :=
[
L(Cik, C̄jl)

]
i,j,k,l

and L is some loss function to account for the misfit between
the similarity matrices. In direct analogy with the barycenter problem in optimal transport, we
define the Gromov-Wasserstein barycenter problem (GWBP) for the measured similarity matrices
{(Ci, bi)}ni=1 using a Fréchet mean formulation:

min
C∈Rm×m, {Πi}i

1

n

n∑
i=1

GW ((C, a), (Ci, bi)) =
1

n

n∑
i=1

⟨L(C,Ci)⊗Πi,Πi⟩, (14)

where we assume a ∈ Σm to be known. A minimizer of this problem is called Gromov-Wasserstein
barycenter (GWB) of the measured similarity matrices {(Ci, bi)}ni=1 (for fixed a). We used the
concept of GWB to define fusion algorithms for RNN and LSTM—see Section 3.

B.3 ENTROPIC GROMOV-WASSERSTEIN DISTANCE

In order to solve the minimization problem (13), consider the following entropic approximation of
the initial GW formulation:

GWε((C, p), (C̄, q)) := min
Π∈Γ(p,q)

EC,C̄(Π)− εH(Π). (15)

In (Peyré et al., 2016), the authors propose to use projected gradient descent to solve this non-convex
optimization problem, where both the gradient step and the projection are computed according to
the Kullback-Leibler (KL) divergence. Iterations of the corresponding algorithm are given by

T ← ProjKL
Γ(p,q)

(
T ⊙ e−τ(∇EC,C̄(Π)−ε∇H(Π))

)
, (16)

where τ > 0 is a small enough step size, and the KL projector of any matrix K is defined as

ProjKL
Γ(p,q) := argmin

Π′∈Γ(p,q)

KL(Π′|K). (17)

Propostition 1 (Proposition 2 in (Peyré et al., 2016)). In the special case τ = 1
ε , iteration (16)

reads
Π← T (L(C, C̄)⊗Π, p, q). (18)

14

Under review as a conference paper at ICLR 2023

C DETAILS ON WB FUSION USING TLp FORMALISM

C.1 TLp SPACE

We first review concepts from TLp spaces which we use to motivate our interpretations of nodes
in NNs. Let µ ∈ M+

1 (X) be a probability measure and let Lp(µ;Rr) :=
{
f : X →

Rr |
∫
X ∥f∥ppdµ(x) < ∞

}
. We define the TLp space associated to X (see (Garcı́a Trillos &

Slepčev, 2015; Thorpe et al., 2017) and references within) as

TLp(X) :=
{
(µ, f) |µ ∈M+

1 (X), f ∈ Lp(µ;Rr)
}
. (19)

The TLp distance for pairs (µ1, f1), (µ2, f2) ∈ TLp(X) is defined by

dpTLp

(
(µ1, f1), (µ2, f2)

)
:= min

π∈Γ(µ1,µ2)

∫
X×X

c(x1, x2; f1, f2)dπ, (20)

where the cost function is chosen to be c(x1, x2; f1, f2) := |x1 − x2|pp + |f1(x1)− f2(x2)|pp.

In this paper we will mainly consider the case p = 2. The idea behind the above construction
of TLp space is to provide a common space where it is possible to compare functions that have
different supports. In other words, suppose that f1 : X1 → R and f2 : X2 → R are two functions
where X1,X2 are subsets of X . While a direct comparison between f1 and f2 would be possible if
X1 and X2 were the same, it is less clear how to compare them when their domains are different. In
the TLp interpretation we think of f1 as a pair (µ1, f1) where µ1 is a probability measure supported
on X1 and f2 is interpreted similarly. Then, after finding a suitable coupling between the measures
µ1 and µ2, one can couple the functions f1 and f2 and use a direct L2-comparison. The notation
TLp suggests the use of an Lp comparison after solving an optimal transport problem. This idea has
been used for the task of domain adaptation (Courty et al., 2017).

Figure 4: Following our definitions, node v = (γ2, w) ∈ TL2(N2), where γ2 is a probability
measure on layer N2 and w : N2 → R is the weight function corresponding to node v. For example,
w(z2) is the true parameter (weight) between nodes v and z2.

C.2 NESTED DEFINITION OF FULLY CONNECTED NNS USING TLp FORMALISM

We now provide detailed explanations for our interpretations of a node in a neural network based
on TLp formalism. Intuitively, we need to construct a common space that allows us to talk about
the “distance” between neurons in different neural networks (at the same layer). Therefore, inspired
by the idea of TLp space, we interpret node v in the l-th layer Nl (for l > 1) as an element in
TL2(Nl−1), that is, as a function on the domain Nl−1 (previous layer) coupled with a probability
measure. In particular, the node v is interpreted as v := (γl−1, w), where γl−1 is a measure on the
previous layer Nl−1 and w represents the collection of weights between the node v and the nodes in
previous layer Nl−1, which can be interpreted as a function w : Nl−1 → R. An illustration of the
above interpretation for v is shown in Figure 4.

Next, to construct a common space using the above interpretations, we let Nl := TL2(Nl−1) to be
the collection of all the neurons on the l-th layer for l ≥ 2 (over different neural networks). A simple
inductive argument shows that N i

l ⊆ Nl for all i and all l ≥ 2. We can now embed the nodes on
the l-th layers of different input models into a single common space Nl, and in turn we can define a

15

Under review as a conference paper at ICLR 2023

notion of “distance” to compare neurons in different neural networks (see subsection 2.2). For the
first layer, we simply letN1 := N1

1 , since we assume all the base models have the same input layer.

C.3 WB FUSION ALGORITHM

The WB fusion algorithm is summarized in Algorithm 1.

Algorithm 1 WB Fusion

Input: Neural networks N1, · · · , Nn (m layers);
Number of nodes kl for layer N new

l , for l = 2, · · · ,m;
Initialized weight functions W2, · · · ,Wm;
Set (Πi

1)
∗ to be the identity matrix in Rk1 for all i = 1, . . . , n. Set also γ1 = γ1

1 ;
for l = 2, · · · ,m do

repeat
Step 1: for Wasserstein barycenter problem (8), fix Wl and obtain couplings Πi

l by solving
n independent OT problems;
Step 2: fix current optimal couplings Πi

l and update weight function Wl using formula (9);
until Wl and the Πi

l converge;
Obtain measure γl based on γl−1 and Wl;
Obtain optimal couplings (Πi

l)
∗ ∈ Γ(γl, γ

i
l) for i = 1, · · · , n.

end for
Output: The new NN N new as specified by the measures γ1, . . . , γm.

Remark 1 (Total computational complexity for WB fusion). Without loss of generality, we assume
that all the layers in each of the models has M number of nodes. In practice, we set the maximum
number of iterations of Steps 1 and 2 as T (in the numerical experiments, we observe convergence
within T = 10). From Proposition 1 in (Peyré et al., 2016), one can compute L(Wl,W

i
l)⊗ (Πi

l−1)
∗

in O(M3) operations, and by using Sinkhorn algorithm (Cuturi, 2013), the time complexity of
solving an OT problem is roughly O(M2). Therefore, minimization with respect to {Πi

l}i needs
O(nM3 + nM2) operations. On the other hand, minimization w.r.t. Wl reduces to a simple matrix
multiplication, which can be computed in O(M3) operations. Therefore, the complexity of updating
{Πi

l}i and Wl for one round of Steps 1 and 2 is O(nM3). Then the total computational complexity
of WB fusion algorithm is O(nmM3), where m is the number of layers for the input models. Note
that for modern neural networks, the number of nodes on each layer is not large, i.e., M is rela-
tively small. Therefore, our algorithm is quite fast especially when compared to training a NN from
scratch.

C.4 EXTENSION TO CONVOLUTIONAL NEURAL NETWORKS

For CNNs, we substitute “nodes” for “channels” in the discussion in Sections 2.1 and 2.2, and
instead of defining probability measures and functions on sets of nodes, we define them on sets
of channels . To be more concrete, let us consider a convolutional layer Nl with weights having
dimensions RC in×k×k×Cout

, where C in, Cout are the number of input and output channels and k × k
is the size of filters. Then, in formula (3), v must be interpreted as a channel on layer Nl, and its
corresponding weight w must be interpreted as a function mapping Nl−1 into Rk×k (illustrated in
Figure 5). Since now w(zq) is a Rk×k matrix, we can redefine the cost function dW in (5) using the
Frobenius norm.

C.5 EXTENSION TO RESNETS

ResNet models are neural networks that contain skip connections that “jump” over some layers to
avoid the problem of vanishing gradients. Figure 6 shows a typical building block of a ResNet
model. For a layer Nl we let Cl = {Nα}α∈Λ be the collection of all the previous layers that connect
with it. Since the outputs of layers in Cl are added up before feeding them into layer Nl, skip
connections constrain the layers in Cl to share the same coupling, i.e Πα = Π∗ ∀α. This constraint
allows us to use any of the previous layers in Cl as the support for Nl since they share the same
coupling Π∗ and hence produce the same cost to be used in optimization equation 8. Our convention

16

Under review as a conference paper at ICLR 2023

Figure 5: A channel v in the convolutional layer Nl is interpreted as a node in our framework, with
weight function w mapping previous layer elements (channels) to Rk×k.

is to find a coupling for the earliest layer in Cl first and then use the same coupling when we fuse the
other layers in Cl .

Figure 6: A building block of ResNet. Due to skip connection, outputs X1 and X3 of layers N1 and
N3 are added up before feeding them to layer N4.

C.6 THEORETICAL ANALYSIS OF WB FUSION

Theorem C.1. Let fv1,U1(x) = v1σ(U1x), fv2,U2(x) = v2σ(U2x) be two one-hidden layer neural
networks where σ(·) is the activation function, v1, v2 ∈ R1×h and U1, U2 ∈ Rh×d are the parame-
ters, and x ∈ Rd is the input data. LetW2,W3 denote the Wasserstein barycenter problem’s (WBP)
objective on the hidden and last layers respectively:

W2 = inf
γ2

1

2
W (γ2, γ

1
2) +

1

2
W (γ2, γ

2
2) (21)

W3 = inf
γ3

1

2
W (γ3, γ

1
3) +

1

2
W (γ3, γ

2
3) (22)

Let Π1, Π2 be the permutation matrices corresponding to solutions of WBP for fv1,U1 , fv2,V2 yield-
ing permuted models fv′

1,U
′
1
= fv1ΠT

1 ,Π1U1
and fv′

2,U
′
2
= fv2ΠT

2 ,Π2U2
respectively. If the WBP

minimizations are bounded byW2 ≤ ε2 andW3 ≤ η2, then ∀||x||2 ≤
√
d and α ∈ [0, 1]:

|fαv′
1+(1−α)v′

2,αU
′
1+(1−α)U ′

2
(x)− αfv1,U1

(x)− (1− α)fv2,U2
(x)| ≤ α(1− α)C(ε, η,

√
d), (23)

where (i) C(ε, η,
√
d) = 4εη

√
d for σ(x) = x, and (ii) C(ε, η,

√
d) = ε(4η + 2||v2||2)

√
d for

σ(x) = ReLU(x).

Proof. Let’s first consider the WBP for the hidden layer. Since the optimal couplings for the first
layer are identity matrices (we assume the input layers are the same), using the notations in equa-

17

Under review as a conference paper at ICLR 2023

tion 6 and equation 8, the WBP problem can be written as

min
γ2,Π1,Π2

1

2
W (γ2, γ

1
2) +

1

2
W (γ2, γ

2
2)

⇐⇒ min
U,Π1,Π2

1

2
⟨L(U,U1)⊗ I,Π1⟩+

1

2
⟨L(U,U1)⊗ I,Π2⟩

(24)

Assume Π1,Π2 and U := 1
2Π1U1 + 1

2Π2U2 (obtained by using equation 9 and the constants are
absorbed in the matrices Π1,Π2 to ensure they are permutation matrices) are the solutions to the
WBP problem. Then

ε2 ≥ min
U,Π1,Π2

1

2
⟨L(U,U1)⊗ I,Π1⟩+

1

2
⟨L(U,U1)⊗ I,Π2⟩

=
1

2

∑
i,j

∥ui − u1,j∥22Π1,ij +
1

2

∑
i,j

∥ui − u2,j∥22Π2,ij

(where ui is the i-th column of matrix U and similarly for u1,j and u2,j .)

=
1

2
∥U −Π1U1∥2F +

1

2
∥U −Π2U2∥2F (Since Π1 and Π2 are permutation matrices.)

=
1

2
∥1
2
Π1U1 +

1

2
Π2U2 −Π1U1∥2F +

1

2
∥1
2
Π1U1 +

1

2
Π2U2 −Π2U2∥2F

=
1

4
∥Π1U1 −Π2U2∥2F

(25)

Also note that v := αvΠT
1 + (1 − α)v2Π

T
2 is the solution of the last layer’s WBP problem. Then

similar to above derivation,

η2 ≥ 1

4
∥v1ΠT

1 − v2Π
T
2 ∥22 (26)

Then one can compute

|fαv′
1+(1−α)v′

2,αU
′
1+(1−α)U ′

2
(x)− αfv1,U1

(x)− (1− α)fv2,U2
(x)|

= |(αv1ΠT
1 + (1− α)v2Π

T
2)σ(αΠ1U1x+ (1− α)Π2U2x)− αv1Π

T
1 σ(Π1U1x)− (1− α)v2Π

T
2 σ(Π2U2x)|

(since Π1 and Π2 are permutation matrices)
= |(αv1 + (1− α)v2)σ(αU1x+ (1− α)U2x)− αv1σ(U1x)− (1− α)v2σ(U2x)|

(for notation simplicity, we use vi, Ui to represent v1ΠT
i ,ΠiUi for i = 1, 2 in all later derivations)

= |αv1
[
σ(αU1x+ (1− α)U2x)− σ(U1x)

]
+ (1− α)v2

[
σ(αU1x+ (1− α)U2x)− σ(U2x)

]
|

=: |αv1K1 + (1− α)v2K2|,(
where we denote K1 := σ(αU1x+ (1− α)U2x)− σ(U1x),K2 := σ(αU1x+ (1− α)U2x)− σ(U2x)

)
= |α2v1K1 + α(1− α)v1K1 + (1− α)2v2K2 + α(1− α)v2K2|
= |α2v1K1 − α2v2K1 + α(1− α)v1K1 − α(1− α)v2K1 + α(1− α)v2K1 + (1− α)2v2K2 + α(1− α)v2K2|
= |α2(v1 − v2)K1 + α(1− α)(v1 − v2)K1 + (1− α)v2(αK1 + (1− α)K2) + αv2(αK1 + (1− α)K2)|
= |α(v1 − v2)K1 + v2(αK1 + (1− α)K2)|
≤ α∥v1 − v2∥2∥K1∥2 + ∥v2∥2∥αK1 + (1− α)K2∥2

(27)
Case 1: If σ is a linear activation function, i.e., σ(x) = x, one can compute

∥K1∥2 = ∥σ(αU1x+ (1− α)U2x)− σ(U1x)∥2
= ∥αU1x+ (1− α)U2x− U1x∥
= (1− α)∥(U1 − U2)x∥2
≤ (1− α)∥U1 − U2∥F ∥x∥2

(28)

and

∥αK1 + (1− α)K2∥2 = ∥σ(αU1x+ (1− α)U2x)− ασ(U1x)− (1− α)σ(U2x)∥2 = 0 (29)

18

Under review as a conference paper at ICLR 2023

Then
|fαv′

1+(1−α)v′
2,αU

′
1+(1−α)U ′

2
(x)− αfv1,U1

(x)− (1− α)fv2,U2
(x)|

≤ α∥v1 − v2∥2∥K1∥2 + ∥v2∥2∥αK1 + (1− α)K2∥2
= α(1− α)∥v1 − v2∥2∥U1 − U2∥F ∥x∥2
≤ 4α(1− α)εη∥x∥2 (use equation 25 and equation 26)

(30)

Case 2: If σ is ReLU activation, i.e., σ(x) = max{x, 0}. One can compute

∥K1∥2 = ∥σ(αU1x+ (1− α)U2x)− σ(U1x)∥2
≤ ∥αU1x+ (1− α)U2x− U1x∥2 (|σ(y)− σ(z)| ≤ |y − z|)
≤ (1− α)∥U1 − U2∥F ∥x∥2

(31)

and

∥αK1 + (1− α)K2∥2 = ∥σ(αU1x+ (1− α)U2x)− ασ(U1x)− (1− α)σ(U2x)∥2
≤ α∥σ(αU1x+ (1− α)U2x)− σ(U1x)∥2 + (1− α)∥σ(αU1x+ (1− α)U2x)− σ(U2x)∥2
≤ α∥αU1x+ (1− α)U2x− U1x∥2 + (1− α)∥αU1x+ (1− α)U2x− U2x∥2
≤ 2α(1− α)∥U1 − U2∥F ∥x∥2

(32)
Then

|fαv′
1+(1−α)v′

2,αU
′
1+(1−α)U ′

2
(x)− αfv1,U1

(x)− (1− α)fv2,U2
(x)|

≤ α∥v1 − v2∥2∥K1∥2 + ∥v2∥2∥αK1 + (1− α)K2∥2
≤ α(1− α)∥v1 − v2∥2∥U1 − U2∥F ∥x∥2 + ∥v2∥22α(1− α)∥U1 − U2∥F ∥x∥2
≤ α(1− α)ε(4η + 2∥v2∥2)∥x∥2 (use equation 25 and equation 26)
≤ α(1− α)ε(4η + 2)∥x∥2

(33)

D COMPARISON BETWEEN WB FRAMEWORK AND OT FRAMEWORK

In this section, we explain in detail how our Wasserstein barycenter-based method is different from
OT fusion proposed in (Singh & Jaggi, 2019). Assume we have n pre-trained models N1, . . . , Nn

to aggregate. As before, denote the weights of the l-th layer in neural network N i and target model
N new as W i

l and Wl respectively. When doing the fusion on the l-th layer, OT fusion algorithm first
aligns the incoming edge for the current layer l by post-multiplying with the previous layer transport
matrix (Πi

l−1)
∗ and normalizing via the inverse of the probability measure over the l-th layer in the

target model, i.e.,

Ŵ i
l ← kl−1

1

1kl−1
W i

l (Π
i
l−1)

∗T (34)

Then the neurons in layer l of the pre-trained models N i
l are aligned with respect to the target model

N new by considering optimal transport problems with cost matrices:

Ci
l,OT :=

[
∥wj − ŵi

g∥22
]
j,g

, (35)

where wj is the j-th row vector of weight matrix Wl and ŵi
g is the g-th row vector of Ŵ i

l . On the
other hand, the cost function in our WB framework reads:

Ci
l,WB :=

[
cl(vj , v

i
g)
]
j,g

=
[
dW (wj , w

i
g)
]
j,g

=
[
(wjq − wi

gs)
2
]
j,g,q,s

⊗ (Πi
l−1)

∗ (36)

We can see that the cost functions used in our algorithm equation 36 are different from the ones in
OT fusion equation 35 . We highlight that our cost function equation 36 was derived from a first
principle, in this case a bona fide Wasserstein barycenter problem. In contrast, the aligning step
equation 34 in OT fusion is introduced without a similar derivation.

Since our target problem is from the beginning a minimization problem, it is clear that one should
iterate the proposed steps until convergence, rather than stopping after one iteration as in OT fu-
sion. As illustrated in the numerical experiments (Section 4.1, 4.2), iterating until convergence is
important.

19

Under review as a conference paper at ICLR 2023

Figure 7: A building block of unfolded RNN motivating problem equation 10. W
(t)
l and H

(t)
l are

collections of input-to-hidden and hidden-to-hidden weights functions at time step t respectively
(for actual RNNs, Wl and Hl don’t depend on t). x(t)

l denotes the output of layer Nl at time step t;
t changes horizontally and indexes the unfolded units.

E DETAILS ON GWB FUSION

Analogous to the fusion of FC networks, we can think of RNN fusion on the l-th layer following the
“layerwise” fashion with respect to the “time step”. Specifically, consider the unfolded RNN shown
in Figure 7 and the fusion for layer l at time step t. We assume that the fusion before time step t

has finished. Denote v
(t)
j = [(γl−1, w

(t)
j); (γ

(t−1)
l , h

(t)
j)] and vig = [(γi

l−1, w
i
g); (γ

i
l , h

i
g)] as the j-th

node in layer Nl at time t and the g-th node in layer N i
l respectively. Then the cost function between

nodes v(t)j and vig at time t could be defined as

cl(v
(t)
j , vig) := dµ(γl−1, γ

i
l−1) + dW (w

(t)
j , wi

g)︸ ︷︷ ︸
TLp cost for input-to-hidden weights

+ dµ(γ
(t−1)
l , γi

l) + dH(h
(t)
j , hi

g)︸ ︷︷ ︸
TLp cost for hidden-to-hidden weights

, (37)

where dµ(·, ·), dW (·, ·) are defined the same as equation 4 and equation 5 respectively. Denote

Π
i,(t−1)
l := argmin

Πi
l

dµ(γ
(t−1)
l , γi

l) = argmin
Πi

l

⟨Ci,(t−1)
l ,Πi

l⟩, (38)

where C
i,(t−1)
l := [cl(v

(t−1)
j , vig)]j,g is the cost matrix for l-th layer at time t − 1. We use H

(t)
l :=

(h
(t)
1 , h

(t)
2 , . . . , h

(t)
kl
)T to denote the hidden-to-hidden weight function matrix of layer N new

l at time

step t. Since H
(t)
l is supported on the l-th layer (at time step t− 1), we define

dH(H
(t)
l , Hi

l) := L(H(t)
l , Hi

l)⊗Π
i,(t−1)
l , (39)

where L(H(t)
l , Hi

l) :=
[(
h
(t)
jq − hi

gs

)2]
j,g,q,s

is a 4-way tensor. Now consider the WBP (6) again

(plugging-in the cost function equation 37). Note that γ(t−1)
l is given, then dµ(γ

(t−1)
l , γi

l) becomes
a constant and does not involve any optimization variable in (6) like dµ(γl−1, γ

i
l−1). Therefore, the

barycenter problem on the l-th layers at time step t is to minimize the objective function

B(W
(t)
l , H

(t)
l ; {Πi,(t)

l }i) :=
1

n

n∑
i=1

⟨L(W (t)
l ,W i

l)⊗ (Πi
l−1)

∗ +αHL(H(t)
l , Hi

l)⊗Π
i,(t−1)
l ,Π

i,(t)
l ⟩,

(40)
with respect to W

(t)
l , H

(t)
l and {Πi,(t)

l }i. However, since RNNs presuppose that all weights should
be the same for all unfolded units (i.e. for all t along a fixed l), it is natural to consider invariants
(i.e. independent of t) of the ensemble of problems indexed by t. One such invariant can be obtained
by formally taking the limit t→∞ in the above problem: this gives rise to the following problem

min
Wl,Hl,{Πi

l}i

B(Wl, Hl; {Πi
l}i) :=

1

n

n∑
i=1

⟨L(Wl,W
i
l)⊗ (Πi

l−1)
∗ + αHL(Hl, H

i
l)⊗Πi

l,Π
i
l ⟩ (41)

20

Under review as a conference paper at ICLR 2023

E.1 GWB FUSION ALGORITHM

Notice that equation 10 is a GW-like barycenter problem. Therefore, following the algorithm pro-
posed in (Peyré et al., 2016), we solve it using a block coordinate relaxation, i.e., alternatively
minimizing with respect to the couplings (Πi

l)i and weight functions Wl and Hl.

Minimization with respect to {Πi
l}i. The optimization (10) over (Πi

l)i alone decouples as n inde-
pendent GW-like optimization problems. For i = 1, · · · , n

min
Πi

l∈Γ(γl,γi
l)
⟨L(Wl,W

i
l)⊗ (Πi

l−1)
∗ + L(Hl, H

i
l)⊗Πi

l, Π
i
l⟩. (42)

As proposed in (Peyré et al., 2016), a stationary point of this optimization problem can be reached
following the iterations:

Πi
l ← T

(
L(Wl,W

i
l)⊗ (Πi

l−1)
∗ + L(Hl, H

i
l)⊗Πi

l, γl, γ
i
l

)
. (43)

Minimization with respect to Wl and Hl. For given {Πi
l}i, the minimization with respect to Wl

and Hl reads

min
Wl,Hl

1

n

n∑
i=1

⟨L(Wl,W
i
l)⊗ (Πi

l−1)
∗ + L(Hl, H

i
l)⊗Πi

l, Π
i
l⟩. (44)

By first-order optimality conditions, we have the update formulas,

Wl ← klkl−1
1

1kl−1
1T
kl

1

n

n∑
i=1

Πi
lW

i
l (Π

i
l−1)

∗T , (45)

Hl ← k2l
1

1kl
1T
kl

1

n

n∑
i=1

Πi
lH

i
l (Π

i
l)

T (46)

The GWB fusion algorithm is summarized in Algorithm 2.

Algorithm 2 GWB Fusion

Input: Neural networks N1, · · · , Nn (m layers);
Number of nodes kl for layer N new

l , for l = 2, · · · ,m;
Initialized weight functions {Wl}nl=2 and {Hl}nl=2;
Set (Πi

1)
∗ to be the identity matrix in Rk1 for all i = 1, . . . , n. Set also γ1 = γ1

1 ;
for l = 2, · · · ,m do

repeat
for i = 1, · · · , n do

Initialize Πi
l;

repeat
Compute Ci

l := L(Wl,W
i
l)⊗ (Πi

l−1)
∗ + L(Hl, H

i
l)⊗Πi

l;
Updating Πi

l by solving entropy-regularized optimal transport problem equation 43;
until Πi

l converges;
end for
Updating Wl and Hl using (45) and (46);

until Wl, Hl and {Πi
l}i converge;

Obtain measure γl based on γl−1, Wl and Hl;
Obtain optimal couplings (Πi

l)
∗ ∈ Γ(γl, γ

i
l) for i = 1, · · · , n;

end for
Output: The new NN N new as specified by the measures γ1, . . . , γm.

Remark 2 (Total computational complexity for GWB fusion). Similar to the analysis of WB fusion,
we assume each layer has M number of neurons and we set the maximum number of times we run
the outer repeat loop in Algorithm 2 to be T . Also, we let T̃ be maximum number of times we run the
inner repeat loop in Algorithm 2 (in our numerical experiments, we observe convergence within T̃ =
10). From Proposition 1 in (Peyré et al., 2016), one can compute the cost matrix Ci

l = L(Wl,W
i
l)⊗

21

Under review as a conference paper at ICLR 2023

(Πi
l−1)

∗+L(Hl, H
i
l)⊗Πi

l in O(M3) operations. The time complexity of solving entropy-regularized
OT problem equation 43 using Sinkhorn algorithm is O(M2). Therefore, minimizing with respect
to {Πi

l}i needs O(nT̃M3 + nT̃M2) operations. On the other hand, minimizing w.r.t Wl and Hl

can be computed in O(M3) operations. Therefore, the complexity of updating {Πi
l}i, Wl and Hl

for one iteration is O(nM3). Then, the total computational complexity of GWB fusion algorithm is
O(nmM3).

E.2 EXTENSION TO LSTM

Our GWB framework for RNN models can be easily extended to the case of LSTMs. LSTMs are
more sophisticated than RNNs. For the purpose of fusion the major difference is that LSTMs have
4 cell states (hidden states) in comparison to RNNs which have one hidden state. We consider
each cell of LSTM as an individual unit during the fusion process, i.e., treating each of the cells
as a basic RNN unit. However, since these cells share the same input from the previous layer, the
alignments of cells should also be the same, and thus we add the constraint that the coupling matrices
corresponding to each cell should be the same. To reflect this constraint, the cost function for each
hidden layer in LSTM is updated to be the sum of cost functions defined for each cell unit.

F EXPERIMENT DETAILS

In this section, we provide more details on model training and related hyperparameters for our
experiments.

F.1 MODEL TRAINING

MLPNET training details. For the fusion and distillation experiments, MLPNET, MLPSMALL
and MLPLARGE models are trained using SGD optimizer at a constant learning rate of 0.05 and
momentum of 0.5 for 20 epochs. In the fusion experiments for heterogeneous data distributions,
we follow (Singh & Jaggi, 2019) and training the MLPSMALL models using SGD optimizer with
learning rate of 0.01, momentum of 0.5 for 10 epochs.

VGG11 training details. We follow (Singh & Jaggi, 2019), and train the VGG11 model using
SGD optimizer for 300 epochs. The initial learning rate of 0.05 decays after every 30 epochs by a
multiplicative factor of 0.5. We use SGD with momentum of 0.9 and weight decay of 0.0005. The
batch size used in training is 128. The model with best validation accuracy is selected for fusion.

RESNET18 training details. The models are trained using SGD optimizer for 300 epochs with an
initial learning rate of 0.1 which gets decayed by a multiplicative factor of 0.1 at epoch 150. We use
momentum of 0.9 and weight decay of 0.0001.

We skip the batch normalization layer in RESNET18 models for the current work. However, our
framework can be extended to handle batch normalization parameters by appropriately including
them as a part of the node and using the coupling associated with the previous layers. We leave this
extension for the future work.

RNN training details. For all our experiments the RNN model has one hidden layer of dimension
256. In general, the RNN base models are trained using Adam (Kingma & Ba, 2014) optimizer. We
use momentum of 0.9 and weight decay of 1 × 10−4. For MNIST dataset, the images of 28 × 28
dimensions are interpreted as 28 length sequences of vectors ∈ R28. For the NLP tasks, we use pre-
trained GloVe embeddings (Pennington et al., 2014) of dimension 100. The pre-trained embedding
layer does not get updated during the training phase. The dataset specific training details are as
follows: i) MNIST: Models are trained for 20 epoch with a constant learning rate of 0.001 and a
batch size of 64; ii) SST-2: Models are trained for 20 epochs with a constant learning rate of 0.001
and batch size of 256. The maximum sequence length for the dataset is set to 56; iii) AGNEWS:
Models are trained for 10 epochs. The constant learning rate is 0.0001 and the batch size used in
training is 128. The maximum sequence length for each training data is set to 60 for stable training
of RNN; and iv) DBpedia: Models are trained for 30 epochs with a constant learning rate 0.0001,
batch size 256 and a maximum sequence length of 60.

22

Under review as a conference paper at ICLR 2023

LSTM training details. Similar to the RNN case, for all our experiments the LSTM model has
one hidden layer of hidden dimension 256. Since LSTMs have 4 hidden states, this corresponds to
a hidden layer of total 4 × 256 dimensions. In general, the LSTM base models are trained using
Adam (Kingma & Ba, 2014) optimizer with a constant learning rate 0.001. We use momentum
of 0.9 and weight decay of 1 × 10−4. For the NLP tasks, we use pre-trained GloVe embeddings
(Pennington et al., 2014) of dimension 50 and the pre-trained embedding layer does not get updated
during the training phase. As for the RNNs, the images of 28 × 28 dimensions in MNIST dataset
are interpreted as 28 length sequences of vectors ∈ R28. The dataset specific training details are
as follows: i) MNIST: Models are trained for 50 epochs with batch size of 64; ii) SST-2: Models
are trained for 20 epochs. The batch size used for training is 256. The maximum sequence length
is set to 56; iii) AGNEWS: Models are trained for 10 epochs with batch size 128 and a maximum
sequence length of 160; and iv) DBpedia: Models are trained for 5 epochs and the batch size used
for training is 256. The maximum sequence length for this dataset is set to 100.

F.2 HYPERPARAMETER SELECTION

The hyperparameters are selected using a separate validation split. For solving the optimal transport
problem in our proposed framework, we use Sinkhorn algorithm (Cuturi, 2013) with regularization
hyperparameters 0.01, 0.005, 0.001, 0.0005. The hyperparameter αH in equation 10 is chosen in the
interval [1, 20]. Note that in our implementation, we use the variable alpha h to capture αH and
set it between [100, 2000] since we simplify the implementations and don’t normalize the coupling
matrices Πi

1 by the size of layers.

G ADDITIONAL EXPERIMENTS AND RESULTS

G.1 FUSION OF MULTIPLE MODEL COUNTS

Setup: In this experiment, we consider fusion of 2, 4 and 6 base models into a target model of
different architecture. We use MLPNET trained on MNIST dataset as the base models. The target
model is set to be MLPLARGE which has twice the width of the base models. Since the base and
target models have different architectures, we initialize the target model randomly before starting
fusion.

Quantitative results: Table 3 shows the results for fusion of multiple models. We find that the
WB framework performs much better than OT fusion algorithm (higher accuracy and low standard
deviations). These improvements in accuracy are especially higher when the number of base models
being fused is large. These experiments illustrate that in comparison to OT fusion WB fusion is
much more robust to randomness in initialization.

Table 3: Performance comparison (Test accuracy ± standard deviation %) of OT and WB frame-
works for fusing multiple models into a different target architecture. For each case, the target model
obtained by WB fusion has higher test accuracy and smaller standard deviation.

MNIST/MLPLARGE

OF MODELS=2 # OF MODELS=4 # OF MODELS=6

BASE MODEL AVG 98.31± 0.02 98.31± 0.02 98.31± 0.02

OT 91.53± 2.64 52.10± 8.35 43.16± 6.17

WB 94.93± 1.18 89.03± 4.05 86.40± 4.29

23

Under review as a conference paper at ICLR 2023

G.2 FURTHER VISUALIZATIONS UNDER DIFFERENT NETWORK ARCHITECTURES AND
DATASETS

In this section, we include more visualizations of the models produced by our algorithms when
fusing different network architectures trained over different datasets 1. We find that in each setting,
the basins of the permuted model 2 and base model 1 lie close to each other and are separated by a
relatively low energy barrier, especially when compared to the energy barriers between the basins of
model 1 and model 2. However, we also observe that, for cases like RESNET18 trained on CIFAR10
dataset (Figure 9 (right)) or RNN trained on AGNEWS and DBpedia datasets (Figure 10 (left) and
Figure 11 (left)), the energy barrier between the basins of model 1 and permuted model 2 is not as
low as for our other experiments. This might be attributed to specific properties of the model types
(deep network architectures) and datasets. We leave further exploration of this as an important future
work.

−5 0 5 10 15 20 25 30 35

0

5

10

15

20

25 Base model 1

Base model 2

Permuted model 2

Fused model

1.7

1.9

2.1

2.4

2.9

3.8

5.3

8

> 8

0 10 20 30 40 50

0

10

20

30

40 Base model 1

Base model 2

Permuted model 2

Fused model

2.8

3.1

3.3

3.8

4.6

6.2

9.2

15

> 15

0 20 40 60 80

−10

0

10

20

30

40

50

60
Base model 1

Base model 2

Permuted model 2

Fused model

1

1.3

1.5

1.8

2.5

3.7

6

10

> 10

Figure 8: The test error surface of (Top) MLPNET trained on MNIST dataset, (Bottom Left) RNN
trained on MNIST dataset, (Bottom Right) LSTM trained on MNIST dataset.

0 10 20 30 40

−5

0

5

10

15

20

25

30
Base model 1

Base model 2

Permuted model 2

Fused model

9.9

11

12

13

15

17

20

25

> 25

0 20 40 60 80 100 120

0

20

40

60

80

Base model 1

Base model 2

Permuted model 2

Fused model

8.1

9.6

11

12

14

18

23

32

> 32

Figure 9: The test error surface of (Left) VGG11 trained on CIFAR10 dataset, (Right) RESNET18
trained on CIFAR10 dataset.

1We use the visualization method proposed in (Garipov et al., 2018); their code is available at https:
//github.com/timgaripov/dnn-mode-connectivity

24

https://github.com/timgaripov/dnn-mode-connectivity
https://github.com/timgaripov/dnn-mode-connectivity

Under review as a conference paper at ICLR 2023

−2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0 Base model 1

Base model 2

Permuted model 2

Fused model

11

15

17

19

23

28

35

45

> 45

0 20 40 60 80

−10

0

10

20

30

40

50

60
Base model 1

Base model 2

Permuted model 2

Fused model

7.7

9.1

9.7

11

12

14

16

20

> 20

Figure 10: The test error surface of (Left) RNN trained on AGNEWS dataset, (Right) LSTM trained
on AGNEWS dataset.

0 5 10 15 20 25

0

5

10

15

20
Base model 1

Base model 2

Permuted model 2

Fused model

2.4

6.6

8.7

12

17

25

37

55

> 55

−10 0 10 20 30 40 50 60

0

10

20

30

40

50 Base model 1

Base model 2

Permuted model 2

Fused model

1.3

2

2.4

3.1

4.2

6.2

9.5

15

> 15

Figure 11: The test error surface of (Left) RNN trained on DBpedia dataset, (Right) LSTM trained
on DBpedia dataset.

−5 0 5 10 15 20 25 30 35

0

5

10

15

20

25

Base model 1

Base model 2

Permuted model 2

Fused model

12

14

14

15

17

18

21

25

> 25

0 20 40 60 80

−10

0

10

20

30

40

50

60

70
Base model 1

Base model 2

Permuted model 2

Fused model

9.7

11

12

13

14

16

18

22

> 22

Figure 12: The test error surface of (Left) RNN trained on SST-2 dataset, (Right) LSTM trained on
SST-2 dataset.

25

	Introduction
	Notation
	Optimal transport and Wasserstein barycenters

	Wasserstein barycenter based fusion
	Nested definition of fully connected NN
	 Cost functions for comparing layers and nodes
	Fusion algorithm

	Gromov-Wasserstein barycenter-based fusion
	Experiments
	WB fusion under heterogeneous data distributions
	WB fusion under homogeneous data distributions and connections to LMC
	GWB fusion for recurrent neural networks

	Conclusion
	Related works
	Other model fusion algorithms
	 Computation of Wasserstein barycenters

	Computational optimal transport
	Entropic Optimal Transport
	Gromov-Wasserstein distance and Gromov-Wasserstein barycenters
	Entropic Gromov-Wasserstein distance

	Details on WB fusion using TLp formalism
	TLp space
	Nested definition of fully connected NNs using TLp formalism
	WB fusion algorithm
	Extension to convolutional neural networks
	Extension to ResNets
	Theoretical Analysis of WB Fusion

	Comparison between WB framework and OT framework
	Details on GWB fusion
	GWB fusion algorithm
	Extension to LSTM

	Experiment Details
	Model training
	Hyperparameter selection

	Additional experiments and results
	Fusion of multiple model counts
	Further visualizations under different network architectures and datasets

