Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

Training Hyperparamters. RF-DETR extends LW-DETR (Chen et al., 2024a) for Neural Archi-
tecture Search. We highlight key differences in our training procedure below. First, we pseudo-label
Objects365 (Shao et al., 2019) with SAM?2 (Ravi et al., 2024) to allow us to pre-train the segmenta-
tion and detection heads on the same data. We use a learning rate of 1e-4 (LW-DETR uses 4e-4), and
a batch size of 128 (LW-DETR uses the same). Similar to DINOv3 (Siméoni et al., 2025), we use
an EMA scheduler since this is necessary for EMA’s proper function. However, unlike DINOv3, we
omit learning-rate warm-up. We clip all gradients greater than 0.1 and apply a per-layer multiplica-
tive decay of 0.8 to preserve information (especially the earlier layers) in the DINOv2 backbone. We
place our window attention blocks between layers {0, 1, 3, 4, 6, 7, 9, 10}, while LW-DETR places
their window attention blocks between layers {0, 1, 3, 6, 7, 9}. Although we have the same number
of windows, contiguous windowed blocks don’t require an additional reshape operation, making our
implementation slightly more efficient. Further, we train with more multi-scale resolutions (0.5 to
1.5 scale) than LW-DETR (0.7 to 1.4 scale) to ensure that the augmentation is symmetric around
the default scale. Notably, we add resolution as a “tunable knob” in our NAS search space, while
LW-DETR uses it as a form of data augmentation.

Latency Evaluation. We ensure fair evaluation between models by measuring detection accuracy
and latency using the same artifact. To further standardize inference, we employ CUDA graphs in
TensorRT, which pre-queue all kernels rather than requiring the CPU to launch them serially during
execution. This optimization can accelerate some networks depending on the number and type of
kernels used by the model. We observe that RT-DETR, LW-DETR, and RF-DETR benefit from
this optimization. Further, CUDA graphs place LW-DETR on the same latency-accuracy curve as
D-FINE, since CUDA graphs speed up LW-DETR but do not benefit D-FINE.

B ABLATION ON QUERY TOKENS AND DECODER LAYERS

Latency and Accuracy While Varying Decoder Layers and Queries

N
|
__ 48 et ¥ o
L |
(o)}
S 47 [
LN
9 [J
< 46 Decoder layers
E 45 —— 0 decoder layers
>
o 1 decoder layers
é 44 e Queries —— 2 decoder layers
& 43 [® 50 queries —— 3 decoder layers
B 100 queries —— 4 decoder layers
42 A 200 queries —— 5 decoder layers
€ 300 queries 6 decoder layers
41
2.0 2.2 2.4 2.6 2.8

Latency (ms)

Figure 4: Impact of Decoder Layers vs. Query Tokens. We evaluate the impact of inference-time
query dropping for trading-off accuracy and latency in RF-DETR (nano). Interestingly, we find that
dropping the 100 lowest confidence queries does not significantly reduce performance, but modestly
improves latency for all decoder layers.

We train RF-DETR (nano) with 300 object queries, following standard practice for real-time DETR-
based object detectors. However, many datasets contain fewer than 300 objects per image. There-

14

Under review as a conference paper at ICLR 2026

fore, processing all 300 queries can be computationally wasteful. LW-DETR (tiny) demonstrates
that training with fewer queries can improve the latency-accuracy tradeoff. Rather than deciding
on the optimal number of queries apriori, we find that we can drop queries at test time without re-
training by discarding the lowest-confidence queries ordered by the confidence of the corresponding
token at the output of the encoder. As shown in Figure 4} this yields meaningful latency-accuracy
tradeoffs. In addition, prior work demonstrates that decoder layers can be pruned
at test time, since each layer is supervised independently during training. We find that it is possible
to remove all decoder layers, relying solely on the initial query proposals from the two-stage DETR
pipeline. In this case, there is no cross-attention to the encoder states or self-attention between
queries, leading to a substantial runtime reduction. The resulting model resembles a single-stage
YOLO-style architecture without NMS. As shown in Figure [] eliminating the final decoder layer
reduces latency by 10% with only a 2 mAP drop in performance.

C BENCHMARKING FLOPS

We benchmark FLOPs for RF-DETR GroundingDINO, and YOLO-E with PyTorch’s
FlopCounterMode. We find that FlopCounterMode closely reproduces FLOPs counts ob-
tained with custom benchmarking tools for YOLOv11, D-FINE, and LW-DETR. In practice, we also
find that it provides more reliable results than CalFLOPs 2023). Notably, LW-DETR’s FLOPs
count is roughly twice that of the originally reported result (cf. Table[7). We posit that this discrep-
ancy can be attributed to LW-DETR reporting FLOPs in FP16. We rely on the officially reported
FLOPs counts from YOLOv11, YOLOvS8, LW-DETR, and D-FINE.

Table 7: FLOPs Benchmarking Comparison. We compare FLOPs reported with custom bench-
marking tools, CalFLOPs, and PyTorch’s FlopCounterMode. Notably, we find that FlopCounter-
Model closely matches the results reported with custom benchmarking code, suggesting that it is
more reliable than prior generic benchmarking tools.

Model Size Reported CalFLOPs FlopCounterMode
D-FINE S 252 M 252 M 255M
LW-DETR S 16.6 M 229M 31.8M
YOLOI1 S 21.5M 23.9M 21.6 M

D MOoODEL PREDICTIONS FROM RF-DETR AND RF-DETR-SEG

RF-DETR (nano) LW-DETR (tiny) RF-DETR-Seg (nano) YOLOVI11 (nano)

Figure 5: Visualizing Model Predictions. On the left, we compare detections from RF-DETR
(nano) and LW-DETR (tiny). On the right, we compare instance segmentation masks from RF-
DETR-Seg (nano) and YOLOV11 (nano)

15

https://github.com/pytorch/pytorch/blob/baee623691a38433d10843d5bb9bc0ef6a0feeef/torch/utils/flop_counter.py#L596

	Introduction
	Related Works
	RF-DETR: Weight-Sharing NAS With Foundation Models
	Experiments
	Conclusion
	Implementation Details
	Ablation on Query Tokens and Decoder Layers
	Benchmarking FLOPs
	Model Predictions from RF-DETR and RF-DETR-Seg

