
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

Training Hyperparamters. RF-DETR extends LW-DETR (Chen et al., 2024a) for Neural Archi-
tecture Search. We highlight key differences in our training procedure below. First, we pseudo-label
Objects365 (Shao et al., 2019) with SAM2 (Ravi et al., 2024) to allow us to pre-train the segmenta-
tion and detection heads on the same data. We use a learning rate of 1e-4 (LW-DETR uses 4e-4), and
a batch size of 128 (LW-DETR uses the same). Similar to DINOv3 (Siméoni et al., 2025), we use
an EMA scheduler since this is necessary for EMA’s proper function. However, unlike DINOv3, we
omit learning-rate warm-up. We clip all gradients greater than 0.1 and apply a per-layer multiplica-
tive decay of 0.8 to preserve information (especially the earlier layers) in the DINOv2 backbone. We
place our window attention blocks between layers {0, 1, 3, 4, 6, 7, 9, 10}, while LW-DETR places
their window attention blocks between layers {0, 1, 3, 6, 7, 9}. Although we have the same number
of windows, contiguous windowed blocks don’t require an additional reshape operation, making our
implementation slightly more efficient. Further, we train with more multi-scale resolutions (0.5 to
1.5 scale) than LW-DETR (0.7 to 1.4 scale) to ensure that the augmentation is symmetric around
the default scale. Notably, we add resolution as a “tunable knob” in our NAS search space, while
LW-DETR uses it as a form of data augmentation.

Latency Evaluation. We ensure fair evaluation between models by measuring detection accuracy
and latency using the same artifact. To further standardize inference, we employ CUDA graphs in
TensorRT, which pre-queue all kernels rather than requiring the CPU to launch them serially during
execution. This optimization can accelerate some networks depending on the number and type of
kernels used by the model. We observe that RT-DETR, LW-DETR, and RF-DETR benefit from
this optimization. Further, CUDA graphs place LW-DETR on the same latency-accuracy curve as
D-FINE, since CUDA graphs speed up LW-DETR but do not benefit D-FINE.

B ABLATION ON QUERY TOKENS AND DECODER LAYERS

Figure 4: Impact of Decoder Layers vs. Query Tokens. We evaluate the impact of inference-time
query dropping for trading-off accuracy and latency in RF-DETR (nano). Interestingly, we find that
dropping the 100 lowest confidence queries does not significantly reduce performance, but modestly
improves latency for all decoder layers.

We train RF-DETR (nano) with 300 object queries, following standard practice for real-time DETR-
based object detectors. However, many datasets contain fewer than 300 objects per image. There-

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

fore, processing all 300 queries can be computationally wasteful. LW-DETR (tiny) demonstrates
that training with fewer queries can improve the latency-accuracy tradeoff. Rather than deciding
on the optimal number of queries apriori, we find that we can drop queries at test time without re-

training by discarding the lowest-confidence queries ordered by the confidence of the corresponding
token at the output of the encoder. As shown in Figure 4, this yields meaningful latency-accuracy
tradeoffs. In addition, prior work (Zhao et al., 2024) demonstrates that decoder layers can be pruned
at test time, since each layer is supervised independently during training. We find that it is possible
to remove all decoder layers, relying solely on the initial query proposals from the two-stage DETR
pipeline. In this case, there is no cross-attention to the encoder states or self-attention between
queries, leading to a substantial runtime reduction. The resulting model resembles a single-stage
YOLO-style architecture without NMS. As shown in Figure 4, eliminating the final decoder layer
reduces latency by 10% with only a 2 mAP drop in performance.

C BENCHMARKING FLOPS

We benchmark FLOPs for RF-DETR GroundingDINO, and YOLO-E with PyTorch’s
FlopCounterMode. We find that FlopCounterMode closely reproduces FLOPs counts ob-
tained with custom benchmarking tools for YOLOv11, D-FINE, and LW-DETR. In practice, we also
find that it provides more reliable results than CalFLOPs (Ye, 2023). Notably, LW-DETR’s FLOPs
count is roughly twice that of the originally reported result (cf. Table 7). We posit that this discrep-
ancy can be attributed to LW-DETR reporting FLOPs in FP16. We rely on the officially reported
FLOPs counts from YOLOv11, YOLOv8, LW-DETR, and D-FINE.

Table 7: FLOPs Benchmarking Comparison. We compare FLOPs reported with custom bench-
marking tools, CalFLOPs, and PyTorch’s FlopCounterMode. Notably, we find that FlopCounter-
Model closely matches the results reported with custom benchmarking code, suggesting that it is
more reliable than prior generic benchmarking tools.

Model Size Reported CalFLOPs FlopCounterMode
D-FINE S 25.2 M 25.2 M 25.5 M
LW-DETR S 16.6 M 22.9 M 31.8 M
YOLO11 S 21.5 M 23.9 M 21.6 M

D MODEL PREDICTIONS FROM RF-DETR AND RF-DETR-SEG

RF-DETR (nano) LW-DETR (tiny) RF-DETR-Seg (nano) YOLOv11 (nano)

Figure 5: Visualizing Model Predictions. On the left, we compare detections from RF-DETR
(nano) and LW-DETR (tiny). On the right, we compare instance segmentation masks from RF-
DETR-Seg (nano) and YOLOv11 (nano)

15

https://github.com/pytorch/pytorch/blob/baee623691a38433d10843d5bb9bc0ef6a0feeef/torch/utils/flop_counter.py#L596

	Introduction
	Related Works
	RF-DETR: Weight-Sharing NAS With Foundation Models
	Experiments
	Conclusion
	Implementation Details
	Ablation on Query Tokens and Decoder Layers
	Benchmarking FLOPs
	Model Predictions from RF-DETR and RF-DETR-Seg

