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A The Algorithm

In this section, we give the details of our proposed algorithm PoNoS.
Training machine learning models (e.g., neural networks) entails solving the following finite sum problem:

weR™

| M
min f(w) = i Zﬁ(w),

where w is the parameter vector and f; corresponds to a single instance of the M points in the training set.

ey

Given an initial step size 1 o and 6 € (0, 1), the Stochastic (Amijo) Line Search (SLS) [Vaswani et al., 2019] select the smallest

i, € N such that i, = nk7051k satisfies the following condition:

Fir(wr = Vi, (W) < fi (wi) — emell Vi, (wie) |12,
where ¢ € (0,1) and || - || is the Euclidean norm.
The newly proposed Stochastic Zhang & Hager line search adapted from|Zhang and Hager [2004] is
fir (0 — i Vfi (wi)) < Cr — enpe]| Vi, (wi) 1%,
=~ EQrCr_1 + fi, (wy)

Cj = max{é’k; i (wk)}, Cp = O y Qi1 =EQk + 1,

Where§ S [O, 1], Co=Qp=0and C_; = fio (’Ujo)
Given v > 1, the resetting/smoothing technique employed in|Vaswani et al.| [2019] is

Mk,0 = ﬂkfﬂ’b/Ma

where v > 1 and b is the mini-batch size.
Given the step size

cpl| Vifiy (wie) |2
we recall Stochastic Polyak Step (SPS) size from |Loizou et al.| [2021]]

M0 *= and ¢, € (0,1),

7m0:mm{mﬁmbiwmﬂwm} with 7™ > 0 and 7}y, o defined in (),

and its non-smoothed version (used in Algorithm|T)

Mi,0 = min {7, 0, 7™} with 7, o defined in (@).

To employ our new resetting technique, we redefine 7, as

e = nkyoéli’“él’“, with I, == max{ly_1 + ly_1 — 1,0}.

@)
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Algorithm 1: The POlyak NOnmonotone Stochastic (PoNoS) line search method

Input: D = {(z;,y:)}M,,wo € R",n™> > 0,c € (0,1), ¢, € (0,1),6 € (0,1),& € [0, 1], b mini-batch size, Qg = 0, k = 0
for epoch = 0,1,2, ..., max_epoch do
fori=0,1,2,...,% do
sample i, C {1,..., M} :|ix]| =0
o = @)
l,=0
if k=0 then
L O = fio(wO)
A kCr—1+fi, (wg
G = £Q £Qk+f1k( )
() = max {C’k; fin (wk)}

while f” (wk — Nk szk (wk)) > Ck — anH Vﬂk (wk)||2 do

Iy =l + 1_
Mk = Nk,00% 6"

W1 = Wi — M Vfy, (W)
lk+1 = max{lk + 1 — 1, 0}
Qr+1 =EQk +1
k=k+1




B Convergence Rates

Our results do not prove convergence only for PoNoS, but more in general for methods employing (3) as a line search and a bounded
initial step size, i.e.,

Mo € [7™™, 7™, with g™ > ™" > Q. )

The next lemma provides the possible range of 7, as a consequence of the line search technique. Thanks to the fact that we always
have Cj, > f;, (wi), Lemmarecovers the monotone range (see Lemma 1 in[Vaswani et al. [2019]]). We say that f is L-Lipschitz
smooth when f is continuously differentiable with Lipschitz continuous gradient, i.e.

| V(@) = VFW)ll < Lllw =yl Va,y €R",  with L > 0.
Lemma 1. Let f;, be L;, -Liptschitz smooth. The range of the step size ny, returned by (3) and with 1y, o defined in Q) is either

[, "] if e = 0,
. 10
nk € {[nmm’nmax} lflk > 07 ( )

where ™" := min {%, 77"””} and L4 = max; L.
Proof. Let us denote g, := Vf;, (wy). Applying Lemmabelow on f;,, with y = wy, — Mrgx and x = wy, we have

fir (Wi — mrgr) < fir. (i) + g& (wr — Mg — wi) +

2
ML,
= fiw) ~ (= 2% ) P

2
N L 2
B g

which can be rewritten as
. 772L’ik 2
Jio(We = megr) < pr(nr),  with pe(n) := fi, (wi) — |7 — — llgrll- (11)

Note that (TT) is valid for any 7. Let us rewrite (3)) as

fin (Wi — nrgr) < qe(mi),  with g (n) == Cr — cnl|ge .

Now, the backtracking procedure in (3) admits two possible output:

Case 1: I = 0. In this case, we have 1, = 1o and thus directly 7, € [™", 7
Case 2: [ > 0. In this case, we have 1, < ng,o With f;, (wp — %gr) > qr(“¥). Then, we have that g (%) < pp(¥) because
qrx (%) > pr(“) would lead to a contradiction. In fact

fin (wk 69k>>Qk<%)>pk(7?)Zfik (wk_f )

is false. Thus, it has to be g (") < pr.(*5 ), from which we get that

max }

2Lik
i) = gul? < G =l < i) — (2 - T2 )

and consequently

L, 25(1 — ¢)
—c < — - & >~ 7
€= (1 25 > M=

i

which leads to (T0). ]

One of the challenges of convergence theorems for nonmonotone line search methods is to prove that the sequence of the nonmonotone
terms {C}} converges to f(w*). In order to achieve this, in Lemma below we prove that C and Cj_; are lower-bounded by
fi,. (w*). Before that, we establish the following auxiliary result.

Lemma 2. From the definition of Qy, in (@), it follows

1
and §Q
k
€Or+1 =<¢ (13)



Proof. From the definition of Q1 we have

o0

1
1< 1= = It < = .
§Qk +1=: Q1= 1+Z§ . ¢ 1—¢
7=0 7=0
which implies (I2). Thus we have
§Qk :ﬁQk—l—l—l:l 1 <1 —LZE
£Qr +1 £Qr +1 Qr+1° =
which implies (T3) and concludes the proof. O
We say that f satisfies interpolations if given w* € argmin f(w), then w* € argmin f;(w) V1 < i < M.
weR? weR?
Lemma 3. Let Cy; be defined in (3). Assuming interpolation, the following bounds hold for all k € N,
Cr — fi,(w*) >0 Vk (14)
and
Cri—1— fi,(w") >0 Vk. (15)

Proof. We will prove both statements by induction, starting with (T4). For k& = 0, interpolation yields f;, (wo) > fi, (w*). Assuming

now that the statement is valid for k — 1 € Ny (i.e., Cx—1 — fr—1(w*) > 0), let us prove that it is valid also for k. If Cy > fir, (W),
we have

G fo ) = S ! Qi

——Cy 1+ ——fi (w i >
&+ 10 T ag ) T hu) = g T
where we used the induction hypothesis and the fact that f;, _, (w*) = f;, (w*), thanks to interpolation. If Cr < f; . (wg), from

interpolation we have
Cr — fip (0*) = fi, (wi) = fi,,(w*) = 0

The last two inequalities prove (T4). We can follow a similar path for (I3). For k& = 0, from the definition of C'_;, we have
C_q1 — fio(w*) = fi,(wo) — fi,(w*) > 0. Assume now that the statement is valid for k — 1 € Ny (i.e., Cr_a — fr—1(w™) > 0).
Then, if Cx—1 > fi,_, (wk—1), we have

flk 1( ) f’Lk( )7f“(w*):07

§Qk—1 1 .
-1 — f’Lk (U) ) ng T+ 10 mfik—l(wk) — flk (w )
§Qk—1 . o
= mflk—1(w ) ka_ T 1flk 1( ) fzk<w ) 0,

where we used again the induction hypothesis and the fact that f;, _, (w*) = f;, (w*), thanks to interpolation. If Cpq < fir_y (wi—1),
from interpolation we have

-1 fik (w*) = fik—l (wk) - fik—l (w*) >0,
which concludes the proof. O

The following Lemma shows the importance of the interpolation property. A similar result can be obtained by replacing the
L, -smoothness assumption with the line search condition (@) or (3) (see the proof of Theorem|T|below).

Lemma 4. We assume interpolation and that f;, are L;, -smooth. Then, we obtain

Ei | Vi, (wi) I < Linaa (f (wi) = f(w)),

where L., = max; L;.

Proof. Letw™ € argmin f(w) and w}, € argmin fi,, (w). From interpolation we have that w* € argmin f;, (w), which means that
weR™ weR™
Jir,(w*) = fi, (w} ). Thus, interpolation and L -smoothness of f;, brings to

IVEi (wi)l* < L, (fi (wi) = fir (w},)) = La, (fi, (wi) = fir (w)) -

Now, by applying the conditional expectation [E;, on the above inequality, we obtain

Ei, || Vi (wi) |2 < Linaz (f(wy) = f(w*)).



B.1 Rate of Convergence for Strongly Convex Functions

In this subsection, we prove a linear rate of convergence in the case of a strongly convex function f.

Theorem 1. Let Cy, and ny, be defined in (), with ny, o defined in (9). We assume interpolation, f;, convex, f u-strongly convex and

. . 1 1
Jiw Ly, -Lipschitz smooth. If ¢ > 5 and § < W we have

(2 1)
E [|lwgt1 — w*||* + a(Cx — f(w*))] < d* ([lwo — w*||* + a (f(wo) — f(w"))),

where d := max { (1 — n™"p),b} € (0,1), b:= (1 + %) €€(0,1), a:=n""(2— 1) > 0withn™" as defined in Lemma

Proof. From (3)) and interpolation we obtain

[wir —w*[|* = [lwg —nx Vi, (wr) — w*]?
= lfwn = w2 = 20 (Vi (i), wic = w) + 0 | i, ()
< Jhwn = w2 = 20 (Vi (we), we = ')+ 2 (G = fiy (wes1)) (10

< e — w2 = 20 (Vi (we), wi = w*) 4+ 2 (Ci = fi (w")).

Let us distinguish 2 cases: either 1) f;, (wg) > C), and then C), = fi, (wg), or 2) f;, (wg) < Cy, and then C), = Cj. Let us first
analyze case 1). With ¢ > 1 and a = ™" (2 — 1), from (T6) we have

s = w2 + a(Ch = fi (W) < llwne = w* 2 = 20 () wie = w*) + (a+ ) (G = i ("))
=l = 1?20 () e = 0 7 (Fo (1) = i ()
+a(fi, (i) = fir (w"))
S [—2<Vf@-k (), — )+ (fo () = fo (w*»}
+a (o (w) = fir (w"))
T A R B e L O R )]

< lw — w*|[? + 29™ [—(Vf;, (wr), w — w*) + (fi (wr) — fi, (w*))]
< lwg — w*|[? + 29™ [—(Vf;, (wr), wi — w*) + (fi (wr) = fi, (w*))]
+ab(Cr-1 — fi, (w")),

where the second inequality follows from ¢ > % and from the fact that the term between square brackets is negative, since f;, is a
convex function. The third inequality follows from the definition of a and the last inequality follows from (T3)). In the following we are
going to show that the same bound can also be achieved in case 2).

Let us now analyze case 2). From (T6), (T2) and (T3), and again from ¢ > 1, convexity of f;, and the definition of a, we have

wss = w2 + a(Cr = fi (w")) < llwn = w2 = 2 (fi (wi) we = w) + (a+ 2) (G = i (w))

= ffwn = w2 = 20 (Vi (), wie = w) + (a+ ) a@v% (Fin () = fir ("))
e\  EQk .
+ (a + ?) m (Ok—l — fzk(w ))

< fwk = w2 = 20 (i (wi), wi = w) + 2™ (fi, (wi) = i (w))

+(a+2) € (Chmr = fur(w?)

< flwn = w2+ 20 [~ (wi) wic = w*) + (F (w0) = Fi (w"))]
+ (a+ ) & (Crmr = fir(w)

< Jlwn = w2+ 20 [~ (wn) wic = w*) + (F (w0) = fi (w"))]

+a (1 + nmaX> §(Cro1 — fi,(w™)),

ac




where the fourth inequality follows from (T0). By defining b = (1 + %) & we can conclude that the same bound holds in both cases

1) and 2). Let us now show that b < 1. Under the assumption that ¢ > % and £ < ﬁ we have

AT TerY)

B e o™ N ™
b(1+ — )§ <1+nmi“(2—i)c>§<1+77mm(2c_1>>£<1'

Now, by taking expectation w.r.t. ¢;, on the common bound achieved in both cases 1) and 2), using
E,, [Vfi, (wi)] = Vf(wy), and applying strong convexity of f we obtain

Ei, [wrt1 — w*|?] + (B [Ch] — f(w*)) < [Jwg, — w*[|* 4+ 29™" [—(Vf (wr), wx — w*) + f(wi) — f(w")]
+ ab(Crx—1 — f(w"))
< lwp — w*||* - QTImmgHwk —w*||* + ab (Cr—1 — f(w*))
= (1= n""w)|Jwy — w*||? + ab(Cp—1 = f(w"))
< d ([lwx —w*|* + a(Cr1 = f(w"))),

where d := max {(1 — pming), b} and in the first inequality we used the fact that Cj,_; does not depend on 4. Taking the total
expectation gives

E [[[wit1 — w*||* + a(Cx — f(w*))] < dE [([wk —w*||* + a(Cr-1 = f(w?)))].
At this point we can use the above inequality recursively, resulting in
E [[[ws1 —w*|? + a(Cy — f(w"))] < d*E [[lwo — w*|* +a(Coy — f(w?))]
= d* (wo — w*|* +a(f(wo) — f(w"))),

where in the last equality we have used that C_y = f;, (wp). O

B.2 Rate of Convergence for Convex Functions

In this subsection, we prove a O(%) rate of convergence in the case of a convex function.

Theorem 2. Let Cy, and ny, be defined in (3), with ny. o defined in (9). We assume interpolation, f convex and f;, L;, -Lipschitz smooth.
Given a constant a1 such that 0 < a; < (2 — %) ifc> % and £ < % we have

d
Bl ()~ )] < P (ol = P 4+ (Flan) = ).
where Wy, = %Z?:o w; and dy == Wcl)_l > 0.

Proof. From (3] and interpolation we obtain

s = w | = [fwe = me Vi ) = w” |
= lfwn = w1 = 205 (Vi (i), wic = w) + 0 | Vi, ()
< flwn = w0 |? = 20 (Vf (wi), wi = w) + 72 (i = fi (i) 4

< Jlwn = w*” = 20 (Vi (), wi = w*) + 2 (G = i ("))

Let us distinguish 2 cases: either 1) f;, (wy) > C), and then C), = fi (wg), or 2) f;, (wg) < Cy, and then C), = Cj. Let us first
analyze case 1). From (I7) we have

s = w |2+ mear (Co = Fiy (w)) < [l = w2 = 20Ty, (i), we = w7) + (mear + 2 ) (Co = fiy (w))
= 0P |20 .o 0+ (a4 L) () = fu )]
< = w7l o | -2 ). = 0} + (a4 2 ) = fu )]

+ Nra1b1 (Cr—1 — fi, (W")),



where the second inequality follows from (T3) and b, := (1 + ﬁ) & > 0. The above bound will now be proven also for case 2).
From (T7) we have

wness = w2+ mar (C = fiy () < e = w2 = 20 (Vi (wi) e = w*) + (mear + ) (G = fi, (w))

1 *
£ 1 Uan ) = fiu ()

=l = w2 = 20, (wi) wi = w) + (mear + )

+ (mar+ ) S (O = i)

< e = 4 =20 v =07 + (004 2 ) () = i ()|
+ Nkas <1 + allc) §(Ch—1 — fir (W),

where the second inequality follows from (12 and (13). By defining b; := (1 + ﬁ) & we can conclude that the same bound can

be achieved in both cases 1) and 2). Let us now show that b; < 1. From the definition of a7, we have % < 2 — a1, thus, under the

assumption § < % it holds that
2 — 2
b1:(1+>§<< ‘“>§=§<1.
al a1

From b; < 1, rearranging and dividing the bound found for both cases 1) and 2) by 27, we have the following

1

(T = ) < 5 o= P = s = ]+ (G + 52 ) (o) = fufw)

+ 5 (Crma = fi (")) = (G = i, (@)

Now, by taking expectation w.r.t. i, we obtain

ai 1

()~ 07) < B |5 (o= | = o = w2)] + (5 + 52 ) () = fw0)

+ 5 (Crma = F(") = (B4 [Ch] = fw))).
By convexity of f we have (f(wy) — f(w*)) < (Vf(wg), w, — w*), thus,

ay 1

) = 1) < By [ (o = 1P = s = w72)] + (5 4+ 52 ) () - 5w7)
+ 5 (Gt = () = (B [Ch] = F(w")).
Moreover, noticing that 1 — (“71 + %) > 0 by the definition of a;, we obtain
Fwe) — f(u") < B, [jjk (e = w* 12 = ek — w*ﬂ}
+diay ((Cr—1 — f(w")) = (Ey, [Cr] — f(w™))),

where d; := % 17(%1:%) = 6(2721)71. Taking the total expectation and summing from & to 0

k
d
E | flwy) - f(w)]| <E an (llwj = w1 = w1 = w*[|?)

3=0 j=0 "

k
+dia B |y (Cjor = f(w")) = (Cj = f(w"))

Jj=0

Recalling that wy, = % Z?:o wyj, it follows from Jensen’s inequality that

k k
BLF) @ < B |32 s~ fw)| = 1B D7) - fw)
j=0 Jj=



Now, putting together the last two inequalities and defining A; := ||w; — w*||? and T'; := C; — f(w*), we have
k

1 1
E[f(wr) — f(w")] < %dlE Z m (A —Ajp1) | + dla1 ZFJ 1—
j=0 "
1d 1
< o E[80 = Ap] + pdian B[Py — Ty
1d d 1
< - ko mlon + kd1a1F 1= ?1 (77““" |lwo — w*||* + a1 (f(wo) — f(w*))) ,

where the second inequality follows from the fact that 77, > n™" and from simplification of the telescopic sum and the last inequality
follows from A, 'y > 0 (because of (I4) in case of T'y). O

B.3 Rate of Convergence for Functions Satisfying the PL. Condition

In this subsection, we prove a linear convergence rate in the case of f satisfying a PL condition. We say that a function f : R" — R
satisfies the PL condition if there exists y > 0 such that, Vw € R™ : || Vf(w)||* > 2u(f(w) — f(w*)). From f;, being L;, -Lipschitz
smooth Viy, it follows that f is also Lipschitz smooth. Let us call L the Lipschitz smoothness constant of f and let us note that
L < ﬁ ij\il Lz < Lmaza

Theorem 3. Let Cy, and ny, be defined in (3), with ny, o deﬁned in @). We assume interpolation, the PL condition on f and that f;, are

L;, -Lipschitz smooth. Given 0 < ag := % + 271"““ and assuming (1 °) < e < 20c(1—c) Limwr ¢ < ]
and £ < —225— we have

T —Apc(1=0)" g
a2¢+ Loz
E [f (wis1) = F(w") + azi™(Cr — f(w"))] < d (1 + azn™™) (f (wo) — f(w"))
where dy:=min {v, by} € (0,1), vi=n"e(Lreg U0 1)) €(0,1), by (1+ m) £€(0,1).

Proof. From the smoothness of f we obtain

Fws1) < Fe) + () e = we) + 5 s —

= £+ (9 (), 5, () + 25 5, )
We then rearrange, sum az(Cy — fi, (w*)) on both sides and use (3), to obtain
POkt Z IO (01— o)) < ~ (5 an), i () + 2251 W )P
+ az2(Cr — fi, (w")) (18)
{5 (), Vi (w)) + (57 ) (G fi, ()

Let us now distinguish 2 cases: either 1) f;, (wy) > C). and then C}, = fi (wg), or 2) fi, (wi) < C), and then C}, = C}. Let us first
analyze case 1). Assuming as, by > 0, from (I8) we have

Pt 2 JO) 4y fyw?) <~ an). T () + (5

—(Vf (wg), Vfy (wr)) + (% + az) (fi, (wi) — fi, (w"))
+ agbs (Cr—1 — fi, (W™))

where the last inequality follows from (I3)). The above bound will be now proven also for case 2). From (I8)) we have

Flwry) = f(we) as(Cy — fi (W) < —(Vf (wy), Vi, (wr,)) + (% +az) (ék — fis (UJ*))

+ a2) (fik (wk) - flk (w*))

Mk
= (9 (w), Vi (w) + (5 +2) gy (i) = fo ()
L §Qk
e a2) g5 A (Cumt = fi(w)
(9 (), Vi () + (5 + ) (i () = fi (0)

2c

(725 4 )€ (Co — fiu ("))




where the second inequality follows from (12) and (13) and L < L,,4,. By defining by := (1 + ’"”> £ we can conclude that the
same bound can be achieved in both cases 1) and 2). Now, by taking expectation w.r.t. 75, on the common bound achieved in both cases

1) and 2), and applying PL condition, we have
g | T2 I 6 - pw)| < =(00), W) +
+ azby (Cr—1 — f(w"))

< (5 + a2 —20) () — ()
+azby (Cr—1 — f(w™)),

where in the first inequality we used the fact that Cj,_; does not depend on i;, and E;, f;, (w*) = f(w*) = E,, f(w*). Thus,

E, [f W) = F) 4 ey f(w*»] <E, [f(“”c)‘f“”)} T as — 20) (f(we) - Fw"))

Nk Nk
+ azby (Cr—1 — f(w™))

< (o 50+ 02 = 20) (Fwn) = f(w))

+ agby (Cr—1 — f(w"))
Using ni, < 0™, L < L4, and taking the total expectation we obtain

B [Flwksa) = F(0") + aan™(Co = F(w))] < 4™ (i + 5% a2 = 2) B fws) = f(w")

(o + a2) (F(x) — ()

(=
2c

(19)
-+ agnma"bg E [Ok—l — f(w*)]
Defining v := 7™ (-1 o '"”’ + as — 2u), let us now show that 0 < v < 1. From the assumption 7™" > %, we have
n™" = min {725,5;;) ; ﬁmm} = LL(} <) and then
4 Lmax Lmaac a Lmaac : Lmagc —4,UC(1 — C)
— max _ 2 — max _ 2 — max .
v (25(1—@+ e MO ) =M\ G —g T H ) = 2%e(l—c) ™
Let as := % + 277%, under the assumption n™* < #ﬁ;&lc), we have
4pc(l —¢) — Lopas 1 4pc(l —¢) — Lopas Loz —4nc(l —
o el =) RN . pel—o)
46¢(1 —¢) 2pmax 46¢(1 —¢) 46¢(1 —¢)
and thus ao > 0. Let us now use substitute ay in the definition of v, to obtain
Lpnar —4pc(l —c) ax [ Lmaz —4pc(l —c) 1
— max — max - 20
v ( el )77 45¢(1 — o) T3 0)

Again from n™* < #ﬁ;g_c) and (20), we obtain v < 1 + 1 = 1. Moreover, L,,q; —4pc(1 — ¢) > 0 because it is a quadratic

polynomial in ¢, whose A < 0 since of 4 < Lyqq. Thus, together with n™* > 0 and 46¢(1 — ¢) > 0, from (20) we achieve v > 0.

Regarding b2, we have b > 0 because as > 0. Moreover, by assuming & < ﬁ it also follows that
bQ — ( Lmaz)€a20+LmaIE<1.
asC asC

28c(1—c)
Lpaz —4MC(1—C)

1 (_1 N ¢ Linaz )
Lmaz Lmaz _4,LLC(1 - C)
1 ¢ Limaz — Limaz +4pc(l — c)
B ( Limaz —4pc(l = c) )
1 —4pc® + (4 + Limaz )¢ — Limag
( 4pc? — dpic + Lypas ) '
In particular, we can solve the inequality for ¢ and find that the numerator is positive for & ‘ez < ¢ < 1 and that the denominator is

always positive since p < Ly, (as above).
To conclude, we can use (I9) recursively from & to 0 and obtain

E [f(wri1) = f(w") + azn™(Cr — f(w*))] < d5 E [f(wo) — f(w") + azn™ (C-1 — f(w"))]

= dj (1 + azn™) (f (wo) — f(w*))
where dy := min {v, b2} < 1 and in the last equality we have used that C_; = f;, (wo). O

At this point, we need to ensure that %L;C) < qmin < pmax < or equivalently

0<

Lmaw

L’H’LGJ;




B.4 Common Lemmas

Lemma 5. Let f be L-Lipschitz smooth. Then
£(9) < £@)+ V@)~ 2) + 2y — 2. an
Proof. From the mean value theorem and differentiability of f we have
F0 =16+ [ W0 -0+ 1)) a
= 7@+ [ WO 04 ) - 0) — @) - 2) e+ @ 2)

< flx) +/0 IVF (1=t +ty) = Vi (@)l |y — @l dt + Vi ()" (y — @)

< fu@+ [ Lty =)y =l dt+ @) (v =)
21

= @)+ Ly =l S|+ V@) )

= @)+ V@) () + 2y~

where the second inequality follows from the Lipschitz continuity of Vf. O

Lemma 6. Let f be L-Lipschitz smooth and strongly convex. Then
N 1
f@) = 1) < g IVF@)I” (22)

Proof. From the strong convexity of f we have
!
F) 2 r(w,y) = f(@) + Vi (@) (y = 2) + 5 ly — .

We now minimize both sides of the above inequality w.r.t. 3. In particular, we differentiate r(z, y) w.r.t. y and obtain

or(x,y N 1
OTE) G @)+ uly — ) = 065y = 2 — V()
Y H
which means that ) ) )
r(z,y") = f(@) = = |V (@) >+ = | V(@) = f@) = oI Vf (@))%
(z,9") = f( MII )l 2u| ()] ) 2ull (@)l
Thus, since min,, f(y) > min, 7(x,y), we can conclude that
. 1
@) 2 fle) = 5 IV @)l (23)
O
Lemma 7. Let f be L-Lipschitz smooth. Then
1 *

o7 I VF @17 < f(2) = f(2). 249

Proof. We can repeat the same argument of Lemma [6]in the following inequality (obtained applying Lemma3))
L
Fy) < f@) + V@) (y = 2) + Sy = =],
and get that
1
*) < o 2

1) < f(@) - s I @I,

which concludes the proof. O
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B.5 The Polyak Step Size is Bounded

In this subsection, we show that the Polyak step size (7)) is bounded. In particular, this step is capped at n™* > 0, so it is bounded
from above by 7™**. By definition of (7), interpolation and Lemma(7]applied on f;, we get

fow) = fi, sz || Vi (wi)l® .1
el Vi, (wi) [P~ el Vs (wi) [P~ 2¢p Linas

Nk,0 =

C Experimental Details

The PyTorch [Paszke et al.,[2019] code to reproduce our results can be found at https://github.com/leonardogalli91/PoNoS.
Also, PoNoS is there available as a torch.optim.0Opimizer. Experiments are conducted on a machine with an NVIDIA A100 PCle
GPU with 40 GB of memory.

Problems (dataset, model):

. MNIST, MLP (1 hidden-layer multi-layer perceptron of width 1000) [LeCun et al.| 1998, |Luo et al., 2019];

. CIFARI10, ResNet-34 [Krizhevsky and Hinton, 2009, He et al.l 2016]];

. CIFARI10, DenseNet-121 [Krizhevsky and Hinton, [2009} |Huang et al., [2017];

. CIFAR100, ResNet-34 [Krizhevsky and Hinton, [2009, He et al.} [2016];

. CIFAR100, DenseNet-121 [Krizhevsky and Hinton, |2009, [Huang et al., |2017];

. Fashion MNIST, EFFicientnet-B1 [Xiao et al., 2017, [Tan and Lel 2019];

. SVHN, WideResNet [Netzer et al., 2011} |[Zagoruyko and Komodakis, [2016];

. mushrooms, RBF-kernel model [Chang and Lin, |2011];

. rcvl, RBF-kernel model [[Chang and Lin, 2011]);

. ijenn, RBF-kernel model [[Chang and Lin, 2011];

. w8a, RBF-kernel model [[Chang and Lin}, 2011]];

. PTB, Transformer Encoder [Marcus et al.,|1993| |Vaswani et al.,[2017]];

13. Wikitext2, Transformer-XL [Dai et al., 2019, |[Merity et al., [2017]].

O 00 9 N Lt A W N~

—_ = =
N = O

All the datasets can be freely obtained respectively through the pytorch package (image classification), or from the LIBSVM
repository [Chang and Lin, 2011]] (binary classification), or from the websites http://www.fit.vutbr.cz/~imikolov/rnnlm/
simple-examples.tgz/(PTB) and https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-vl.zip
(Wikitext2). In Table[I] we report a few information concerning the problems above and the hyper-parameters employed by the
algorithms on that problem. In order by column, we report the number of parameters of the model n, the number of instances of the
train set M, the batch size employed by the algorithms b, the number of iterations (# mini-batches) in each epoch %, the number of
instances in the test set, the max amount of epochs and in brackets the corresponding max number of iterations. The combinations of
dataset/model have been replaced by the corresponding number in the above listing.

The numerical results report various measures:

* train loss: the full-batch loss on the training set;

* test accuracy: accuracy on the test set;

* average step size: average of all the mini-batch step sizes within the epoch;

* initial step size: average of all the mini-batch initial step sizes within the epoch;
* gradient norm: average of all the mini-batch gradient norms within the epoch;

* # backtracks: the total number of backtracking steps required within the epoch;
* runtime: wall clock time of each epoch.

Many of the plots in this paper have been created by averaging 5 runs that differ from each other only on the random seed randomizing
the algorithms. The shaded error bars in the plots correspond to the standard deviation from the mean of the 5 runs.

If not specified differently, the following is the setting of hyper-parameters used for Algorithm ]
0=05, &=1, ™ =10, ¢=0.5, ¢ =0.1

The performance of PoNoS is not sensitive to hyper-parameters. In fact, the same values work across experiments and there is no need
to fine-tune them. Most of PoNoS’s hyperparameters are set to standard values, while others are either inherited by recent papers or
fixed by the theory:


https://github.com/leonardogalli91/PoNoS
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip

problem data n M b % test size | max epochs (corr. iter.)

1 535818 | 60000 | 128 | 469 | 10000 200 (93800)
2 21282122 | 50000 | 128 | 391 | 10000 200 (78200)
3 6956298 | 50000 | 128 | 391 | 10000 200 (78200)
4 21328292 | 50000 | 128 | 391 | 10000 200 (78200)
5 7048548 | 50000 | 128 | 391 | 10000 200 (78200)
6 6525418 | 60000 | 128 | 469 | 10000 200 (93800)
7 369498 | 73257 | 128 | 573 | 26032 200 (114600)
8 112 6499 | 100 | 65 1625 35 (2275)

9 22 39992 | 100 | 400 | 9998 35 (14000)

10 47236 16194 | 100 | 162 | 4048 35 (5670)

11 300 39799 | 100 | 398 9950 35 (13930)

12 13828478 | 59712 | 64 | 933 / 100 (93300)
13 30725904 | 7296 | 64 | 114 / 100 (11400)

Table 1: Information on the problems and on some of the hyper-parameters of the algorithms. In order by column: number of

parameters of the model n, number of instances of the train set M, batch size b, number of iterations (# mini-batches) in each epoch

%, number of instances in the test set, max amount of epochs (corresponding max amount of iterations).
problem
method 1 2 3 4 5 6 7 8 9 10 | 11 12 13
SGD 0.1 0.1 0.1 0.1 0.1 0.1 01 ]01]01]01]01 0.5 0.25
Adam 1071031031010 3[102]103]01]01][01]01]2510°*]25-107%

Table 2: Learning rates for SGD and Adam obtained through a grid-search procedure.

* 0 = 0.5, classical cut of the step [Nocedal and Wrightl, [2006]. SLS employs an unusual value of 0.9 and this choice is
connected to the use of their resetting technique (). We checked the results of SLS with 6 = 0.5 and they indeed turned out
to not be as good as with § = 0.9.

* ¢ =1, the fully nonmonotone version of Zhang and Hager| [2004].

e ™™ =10, very classical value [Vaswani et al.| 2019} [Loizou et al.,|2021]]. We conducted an ablation study in Section@
which shows that larger values of n™** do not have a remarkable impact on the results. These results show that PoNoS is
more robust than SLS and SPS to these changes.

* ¢ = 0.5, suggested by the theory. Both our theory and that of Vaswani et al.|[2019] suggest employing 0.5 for ¢, rather than
the classical 0.1 or lower [Nocedal and Wrightl [2006]. The numerical results in Section [E.T] support this choice. In particular,
they show in Figure [VII|that ¢ = 0.1 might bring PoNoS and its monotone counterpart to diverge.

* ¢, = 0.1, half of the inherited value [Loizou et al.,|2021]]. In|Loizou et al.|[2021]], the value 0.2 was suggested for SPS,
however in our case, the initial step size is not the final step since the backtracking procedure might reduce this value to its
half (or less). For this reason, we decided to employ a step that is initially double that of SPS. The results show that PoNoSIO.1
is consistently better than PoNoSI0.2 (see Section . Thus, we also checked whether SPSI0.1 would be consistently better
than the original SPS, but this is not the case.

All the other optimizers were used with their default hyper-parameters and without any weight decay. The implementation of SGD and
Adam is provided by pytorch [Paszke et al., 2019]] and their learning rates were selected through a separate grid search on each of the
problems. These values are collected in Table [2) where again the names are replaced by the above numbers. For the classification
problems (1-11) the grid search was {10~1,1072,10~2,10~*}, while for training the language models we employed the larger grid
{5,2.5,1} x {1071,1072,1073,107}.

D Plots Completing the Figures in the Main Paper

D.1 Comparison between PoNoS and the state-of-the-art

See Figure|[l| for the complete results relative to Figure 1 of the main paper. From Figure[l] we can additionally observe that on some
problems (e.g., cifar100 | resnet34 and cifar100|densenet121) the step size yielded by the Polyak formula (6)) is very big and
grows very fast. The algorithm SPS controls this step by reducing it to (). This step does not depend on the Polyak rule and it does
not employ the local information provided by f;, (wy) and Vf;, (wy,). Instead, it grows exponentially controlled by (@). On the other
hand, the step size of PoNoS is always a scaled version of ().
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Figure I: Comparison between the proposed method (PoNoS) and the-state-of-the-art. Each row focus on a dataset/model
combination. First column: train loss. Second column: test accuracy. Third column: average step size of the epoch.
Fourth column: average gradient norm of the epoch.

D.2 A New Resetting Technique

See Figure [T for the complete results relative to Figure 2 of the main paper. From Figure [, we can additionally observe that the step
size yielded by PoNoS is generally small in the initial phase, it grows in the intermediate phase and reaches n™** towards the end.
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This behavior can be also noticed in the amount of backtracks of PoNoS_resetO in the rightmost column of Figure [l The number of
backtracks is conspicuous at the beginning, rare in the intermediate phase and (almost) zero in the local phase. On the other hand, the
resetting technique introduced in PoNoS maintains the amount of backtracks to be limited by 1 per iteration (on average), while still
yielding the same step size. When PoNoS_reset0 starts to reduce the amount of backtracks, also PoNoS does the same.

The step size behavior described above and the corresponding amount of backtracks are in accordance with the intuition and the
theory. Intuitively, a small step size allows the algorithm to proceed more cautiously in the global phase. A larger step size allows the
algorithm to converge faster once it gets closer to the local phase. In fact, for achieving local Q-superlinear convergence, the theory
predicts that the line search should always accept a new step size in the local phase [Nocedal and Wright, 2006].

D.3 Time Comparison

See Figure [I1I| for the complete results relative to Figure 3 of the main paper. All the time measures are obtained by using the
time.time () command from the time python package. The cumulative time in the z-axis of the first and second columns of Figure
has been computed as an average of 5 different runs. More precisely, the time of each epoch have been computed separately for the
5 runs and then averaged, so that the same average time has been assigned to each of the 5 runs. At this point, these averaged per-epoch
times have been cumulated along the epochs. The shaded error bars in the plots correspond to the standard deviation from the mean of
the loss/accuracy and not to the runtime. The runtime standard deviation is instead reported in the third column of Figure [I1]

D.4 Experiments on Convex Losses

See Figure [[V]for the complete results relative to the convex experiments of Figure 4 of the main paper. Only the training sets available
in the LIBSVM library were used for these datasets. The 80% split of the data was used as a training set and 20% split as the test
set. For the RBF kernel bandwidth, we employed the parameters suggested in [Vaswani et al.| [2019]], that is {0.5,0.25,0.05, 20}
respectively for mushrooms, rcvl, ijenn and w8a. We did not use any bias parameter in these experiments. Furthermore, given the
convexity of these problems, ™ is not needed and it has been set to co.

In Figure the three measures are reported by iterations and not by epochs. To avoid large fluctuations in the plots, train loss and
step size have been smoothed using an exponential moving average (8 = 0.9). On the other hand, the test accuracy is only computed
at the beginning of each epoch and the same value is reported till the next epoch. In Figure we can make additional observations
which are not visible in Figure 4 of the main paper:

* PoNoS achieves the lowest loss value on rcvl and ijcnn. Regarding the test accuracy, PoNoS achieves always the highest
score, apart from rcv1 on which it loses 0.5 points w.r.t. SLS and SPS.

* SLS and SPS behave very similarly on all the datasets. They achieve the best accuracy on all the problems, but they are both
very slow on mushrooms, rcvl and ijcnn in terms of loss. This behavior is due to (@), as it is clear from the third column of
Figure The step size yielded by (@) is often too small and it slowly grows exponentially through the whole optimization
process. This choice is suboptimal if compared with the step size yielded by PoNoS.

D.5 Experiments on Transformers

See Figure [V]for the complete results relative to experiments on transformers of Figure 4 of the main paper. In these experiments, we
followed the setup by Kunstner et al.|[2023]]. The word-level language modeling has been addressed with sequences of 35 or 128
tokens respectively for PTB and Wikitext2. In case of PTB, we employed a simple transformer model whose architecture consists
of an 200-dimensional embedding layer, 2 transformer layers (2-head self attention, layer normalization, linear(200 x 200)-ReLU-
linear(200 x 200), layer normalization) followed by a linear layer. The data processing and the implementation of the Transformer-XL
follow Dai et al.|[2019].. In the case of Wikitext2, the hyperparameters are set as in the ENWIKS8 base experiment of Dai et al.| [2019],
except with the modifications of [Zhang et al.|[2020], using 6 layers and a target length of 128.

Since Adam is commonly known to achieve better performances than SGD on these networks [Kunstner et al., 2023|], we develop a
preconditioned version of PoNoS, SLS and SPS respectively called PoNoS_prec, SLS_prec, and SPS_prec. These algorithms differ
from the originals in three aspects. First, they all employ a direction which is Adam without momentum (5, = 0). More precisely, the
mini-batch gradient Vf;, (wy,) in Step [13|of Algorithmis replaced with dj, as computed below

g = Vfi, (wg)

vk = B2 U1+ (1= B2) - g7
ik = o/ (1 - B5)

di, = —gr/(Vik + €),

where all the operations on vectors are to be considered component-wise, 32 € (0,1) and € > 0 is a small constant. We use the default
values from Adam for 35 and ¢, that is 82 = 0.9 and € = 10~8. The second difference concerns the line search, as PoNoS_prec and
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Figure II: Comparison between different initial step sizes and resetting techniques. Each row focus on a dataset/model
combination. First column: train loss. Second column: test accuracy. Third column: average step size of the epoch.
Fourth column: cumulative number of backtracks in the epoch.

SLS_prec exploit a condition that reflects the use of the above preconditioned direction, i.e.,

fir (Wi + ndi) < Ry + ¢ mi{di, Vi, (wi)) = R — ¢~ Mg S M
) < o i+,

Jj=0
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where (-); is referring to the j-th component of the vector in brackets, and Ry, is either Cy, in case of PoNoS_prec or f;, (wy) in case
of SLS_prec. The third difference concerns the Polyak step size, which is also computed taking into account the above directional
derivative (dy, Vf;, (wg)). In particular, PONoS_prec and SPS_prec replace (3 with the following

N — fu(wk) — ’**
M0 = e N (W)

As in[Kunstner et al.| [2023]] we focus on the training procedure, however, in the second column of Figure [V] we report the perplexity
of the language model on the test. With respect to Figure 4 of the main paper, in Figure|V|we also show the gradient norm and the
step size yielded by the different methods. From these plots, it is possible to notice that the range in which the step size varies is
reduced if compared with that of Figure[[] This behavior depends on the dynamics of the loss and of the norm of the gradient, which
are also reduced if compared with those of Figure[[} The reduced ranges of loss and gradient norm might be an issue for Polyak-based
algorithms since they rely on these measures. Furthermore, the good results of SLS_prec on wiki2 | encoder suggest that other initial
step sizes might also be suited for training transformers. We leave such exploration to future works.

E Additional Plots

E.1 Study on the Choice of c: Theory (0.5) vs Practice (0.1)

In these experiments, we consider the constant ¢ in (3)) and (Z). As described in Section 4 of the main paper, this value is required
to be larger than % in both Theorems 1 and 2 (and also in the corresponding monotone versions from [Vaswani et al.|[2019]). This
value is often considered too large in practice and the default choice is 0.1 (also for SLS [Vaswani et al.,|2019]]) or smaller [Nocedal
and Wright, [2006]. The constant c controls the weight of the sufficient decrease in the line search conditions and a smaller value of ¢
corresponds to a looser line search. In this subsection, we numerically try both ¢ = 0.5 and ¢ = 0.1. In Figure [VI|and [VII we compare

* monotonel0.1: the monotone stochastic Armijo line search () with ¢ = 0.1.
* monotonel(.5: the monotone stochastic Armijo line search () with ¢ = 0.5.
 zhang|0.1: the nonmonotone Zhang and Hager line search (3)) with ¢ = 0.1.
* zhangl0.5: the nonmonotone Zhang and Hager line search (3)) with ¢ = 0.5. This setting corresponds to PoNoS.

For all the above algorithms the initial step size is (). From Figure [VI|we can observe that:

* zhangl|0.5 (PoNoS) achieves the best performances both in terms of train loss and test accuracy. It is the only algorithm able
to reduce the train loss below the threshold of 10~ on the problems cifar10|resnet34 and cifar100|resnet34. Apart
from the case of svhn | wrn(where it loses less than 0.5 points w.r.t. zhangl0.1), it always achieves the best test accuracy.

* monotonel0.1 and zhanglO.1 are generally competitive in terms of training loss, but they achieve very poor generalization
skills on cifar100|resnet34 and cifar100|densenet121. In particular, their step size on these two problems is growing
very rapidly. Already in the first epoch, the average step size is greater than 5, thanks to the fact that both algorithms are
reducing the gradient norm rapidly below 1.

* The step size yielded by zhangl0.5 starts substantially lower than those of monotonel0.1 and zhangl0.1. Afterwards, the step
size increases, then stabilizes, sometimes slightly decreases and finally increases again. This behavior is accomplished thanks
to the combination between a larger ¢ and a nonmonotone line search. Also the gradient norm is affected by this choice, since
it does not decrease as suddenly as for monotonelO.1 and zhangl0.1.

» monotonel0.5 never achieves the best test accuracy nor the best training loss. This line search is too strict and yields step sizes
that are very small in comparison to those yielded by zhangl0.5.

In conclusion, PoNoS (zhangl0.5) employs a large constant ¢ (0.5), but it combines that with a nonmonotone line search to achieve the
best middle way between strictness and tolerance.

In Figure we propose the same comparison as in Figure but in the case of the convex experiments of Figure From Figure
VII| we can observe that zhangl0.1 and monotonel0.1 do not obtain good performances. On both rcv1 and ijcnn, these algorithms do
not converge, suggesting that a large constant c is sometimes required to achieve convergence.

E.2 Study on the Line Search Choice: Various Nonmonotone Adaptations

In this subsection, we propose a comparison between various line search conditions. For the first time in this paper, we adapt different
nonmonotone techniques to SGD. A straightforward adaptation of the nonmonotone line search from |Grippo et al.| [[1980] is

fir, (W = mi Vfy (wg)) < ocmax  fi (wi—j5) — el Vifs, (wi) || (25)

<j<W-1

The nonmonotone term in (23)) can be computed in two ways. Either by keeping in memory W (usually 10 or 20) previous vector
weights {wi_w, ..., ws} and computing the current mini-batch function f;, on all of them. Or by computing all the following W
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mini-batch functions {f;, (), ..., fi, . (-)} on wy. Both options are very expensive in the case of large neural networks and they
should be avoided. The condition is the same proposed in|Hafshejani et al.[[2023]].

To reduce the cost of computing (23]), we here propose two other stochastic adaptations of the nonmonotone line search from [Grippo
et al.|[1986[]. We name cross-batch Grippo the following line search condition

fin (Wi = eV fiy (i) < fir o (w7) — eni ||V i, (wie) |12, (26)

where 7 is a short notation for 7(k, iy, ), which is the (say, largest) iteration index such that

Jin_s Foig) (Wi(k,in)) = 0<j12%(71 fir_; (wr.—;). The computation of (26)) does not introduce overhead since it directly uses the function

values computed in the previous iterations. However, the fact that (26) computes the maximum over different mini-batch functions
{fir_w )y, fi. ()} complicates the convergence analysis. We conjecture that under the interpolation assumption alone, it is not
possible to achieve convergence if (26) replaces (3), not even in the strongly convex case.

We call single-batch Grippo the following line search condition

Sir (W = i Vfi (wi)) < i, (W) — el Vi, (wi) I 7)
where (k, i) is the (say, largest) iteration index such that f;, (wy(x,i,)) = [ max fir, (wy M ). This line search is similar to
<GESW—

since it focuses on f;, . However, it also reduces the cost of computing the nonmonotone term. In fact, given a certain set of indexes iy,
it exploits the function values computed in the previous epochs, without re-computing f;, . This requires saving a matrix of M x W
floating-point numbers. On the other hand, to use this computational trick, the nonmonotone term can only be computed starting
from the second epoch. Moreover, is not computationally as cheap as (26) or (3). In particular, at every mini-batch iteration (26)
requires the extraction of the b x W values corresponding to the indexes in i; from the above-mentioned matrix and to compute the
maximum over these values.

In Figure [VIII] we compare

* monotone: the monotone stochastic Armijo line search (2).
* cross_batch_grippo: the cross-batch nonmonotone Grippo’s line search with W = %
* single_batch_grippo: the single-batch nonmonotone Grippo’s line search (27) with W = 10.

* zhang: the nonmonotone [Zhang and Hager|[2004] line search adapted to the stochastic case (3). This setting corresponds to
PoNoS.

For all the above algorithms the initial step size is (6). From Figure we can observe that:

 zhang (PoNoS) achieves the best performances both in terms of train loss and test accuracy. Also in this case, it is the only algo-
rithm able to reduce the train loss below the threshold of 10~ on the problems cifar10|resnet34, cifar10|densenet121
and fashion|effbl. Moreover, it always achieves the highest test accuracy. In fashion|effblit is not as fast as
cross_batch_grippo and single_batch_grippo.

* single_batch_grippo achieves similar performances as zhang. However, it does not always reach the same test accuracy (e.g.,
it loses ~1 point on cifar100|resnet34). On fashion|effblitis the fastest algorithm in terms of train loss. On the other
hand, it almost never reduces the amount of backtracks below 100 per epoch.

* The step sizes yielded by both Grippo’s adaptations are often growing faster than those of zhang, especially in the initial
phase of the optimization procedure. On the other extreme, the monotone line search is too strict and yields step sizes that are
very small in comparison to those of zhang. In fact, monotone is achieving very poor results both in terms of train loss and
test accuracy.

 cross_batch_grippo is never as fast as single_batch_grippo in terms of train loss and it loses ~5 points of accu-
racy on cifar100|resnet34 and cifar100|densenet121 w.r.t. zhang. In accordance with the conjecture above,
cross_batch_grippo does not converge on mnist |mlp.

In conclusion, zhang (PoNoS) is the best-performing line search technique among those compared in Figure [VIII] In terms of step size,
zhang provides the right middle way between the very permissive Grippo’s conditions and the very strict monotone one. Moreover,
even if zhang and single_batch_grippo behave similarly, the second is computationally more expensive and it is never able to reduce
the backtracks to (almost) always zero.

E.3 Zoom in on the Amount of Backtracks

In this subsection, we zoom in on the amount of backtracks employed by PoNoS and PoNoS_reset0. Instead of showing the cumulative
number of backtracks in each epoch (as in the fourth column of Figure [[I), Figure [[X]reports the amount of backtracks in each iteration.
To help visualizing the whole optimization procedure, we average the number of backtracks over 10 consecutive iterations. Respectively
on the leftmost and rightmost column of Figure [[X] we report the first 20000 iterations and 100 iterations (out of 78200-114600). From
these columns we can observe:
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* PoNoS_resetO employs a stable amount of backtracks across iterations.
* PoNoS reduces the number of backtracks to 1 on average already after the first iteration. Afterwards, this value is first stable
for the first 1000-10000 iterations (5-25 epochs) and it then reaches a median of O after a transition phase.

In the second column of Figure we report the average difference between two consecutive amount of backtracks in the first 20000
iterations. In particular, this value is higher in the initial phase, while (almost) always 0 in a later stage. Focusing on PoNoS_resetO this
difference is almost always below 1. Regarding the newly proposed resetting technique (8), we can conclude that the value I;,_; is a
good estimate for /.

E.4 Study on the Choice of n™**
In this subsection, we report an ablation study on 7™ for PoNoS, SLS and SPS. In Figure [X] we compare

» SPSI10: SPS with n™* = 10. This setting corresponds to SPS.

SPSI100:SPS with n™* = 100.

SLSI10: SLS with ™ = 10. This setting corresponds to SLS.

SLSI100: SLS with n™** = 100.

* PoNoSI10: PoNoS_resetO with n™** = 10. This setting corresponds to PoONoS_reset0.
* PoNoSI100: PoNoS_reset0 with n™* = 100.

We report PoNoS_reset0 (without (8)) instead of PoNoS because we want to observe the difference in the amount of backtracks. To
directly observe the effect of changing 7™, we report the average initial step size within each epoch in the third column of Figure [X]
From Figure [X] we can observe:

* The value of n™™ = 100 is never reached by the step sizes of the three algorithms. The step size of PoNoSI100, SLSI100 and
SPSI100 can be considered unbounded.

* The three algorithms are robust to the choice of n™*. In fact, the train loss and test accuracy of PoNoSI100, SLSI100 and
SPSI100 are similar to those of PoNoSI10, SLSI10 and SPSI10.

e In terms of train loss, there are some small differences on cifar100|resnet34, cifar100|densenet121 and
fashion|effbl. On these problems, PoNoSI100, SLSI100 and SPSI100 are sometimes slower during the intermediate phase
of the optimization. However, the three unbounded algorithms are able to catch up towards the end.

* In terms of test accuracy, both SLSI100 and SPSI100 lose more than 2 points on cifar100|densenet121 w.r.t. SLSI10 and
SPSI10, while PoNoSI100 and SLSI100 lose more than 2 points on cifar100|densenet121.

* PoNoSI100 performs overall better than SLSI100 and SPSI100.

* The amount backtracks of PONoSI100 is sometimes remarkably larger than for PoNoSI10. However, the use of (8) would
reduce this number to (almost) always zero.

E.5 Study on the Choice of c,,: Doubling the Legacy Value

In this subsection, we report an ablation study on ¢, in (5) for PoNoS and SPS. PoNoS utilize the Polyak step size as an initial guess
for the line search method and not as a direct learning rate for SGD as in SPS [Loizou et al.,[2021]]. We suggest doubling the value
employed in [Loizou et al|[2021]] by employing ¢, = 0.1 in (3] instead of the default value of ¢, = 0.2. Given the fact that § = 0.5,
the line search will half the step size when needed, achieving only in this case the same effect of reducing ¢, back to ¢, = 0.2. In
Figure [XI| we compare

» SPSI0.1: SPS with ¢, = 0.1.

» SPSI0.2: SPS with ¢, = 0.2. This setting corresponds to SPS.

* PoNoSI0.1: SLS with ¢, = 0.1. This setting corresponds to PoNoS.

* PoNoSI0.2: SLS with ¢, = 0.2.
From Figure X1 we can observe that the differences between ¢, = 0.1 and ¢, = 0.2 are not remarkable. However, PONoSI0.1 always
achieves slightly better performance than PoNoSI0.2 both in terms of train loss and test accuracy. On the other hand, the test accuracy
of SPSI0.1 is not always as high as that achieved by SPSI0.2. To conclude, we can observe from the third column of Figure [XI] that the
step size of PoNoSI0.1 is not always larger than that of PoNoSI0.2. In fact, this does not happen in the initial phase of the optimization,

but in the intermediate phase and only on some problems. Given the improved performance of PoNoSI0.1 over PoNoSI0.2, one could
argue that the line search finds the regions in which a larger step is beneficial.
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E.6 Profiling PoNoS

In this subsection, we profile a single mini-batch iteration of PoNoS. More precisely, in Figure XTI we re%(f)rt the time (s) employed by
the different operations required to perform an iteration of PoNoS. Averaging along the epoch (over - values), in Figure we
compare

 1st_fwd: average time employed to perform the first forward pass;
* 2nd_fwd: average time employed to perform the second forward pass;

* extra_fwd: average time employed to perform all the extra forward passes beyond the second. Notice that the total amount of
extra forward passes could be more or less than L Despite the actual amount of extra forward passes, we still divide the sum

by & 3
¢ backward: average time employed to perform the backward pass;

* batch_load: average time employed to load a mini-batch of instances into the GPU memory;
From Figure XTIl we can observe the following.

¢ 1st_fwd and 2nd_fwd employ roughly the same time. 2nd_fwd is always slightly faster than 1st_fwd, however, the difference
is not substantial.

* A backward pass employs roughly twice the time of a forward pass.

* The time employed to load the mini-batch in the GPU memory is negligible on some networks (cifar10|densenet121,
cifar100|densenet12land fashion|effbl). On the other networks, this time is between one-half and 4 times that of a
forward pass.

* As previously shown in Figure PoNoS transitions from a phase in which it employs 1 backtrack to 0 (on median). In
Figure [XTI| this same behavior can be also observed in the time employed by all the forward passes beyond the second.

To conclude, the time employed by a single forward pass may reach up to one-third of the computation required for SGD (i.e.,
batch_load + 1st_fwd + backward) Followmg these calculations and referring to the two phases of Figure [[Tl|and Figure XTI} one
iteration of PoNoS only costs 3 that of SGD in the first phase and in the second.

References

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and
Technology, 2:27:1-27:27, 2011. Cited on[IT]

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov. Transformer-x1: Attentive language
models beyond a fixed-length context. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 2978-2988, 2019. Cited on|[I1][T4]

Luigi Grippo, Francesco Lampariello, and Stefano Lucidi. A nonmonotone line search technique for Newton’s method. SIAM Journal
on Numerical Analysis, 23(4):707-716, 1986. Cited on[L16] [T7]

Sajad Fathi Hafshejani, Daya Gaur, Shahadat Hossain, and Robert Benkoczi. Fast armijo line search for stochastic gradient descent.
Research Square preprint https://doi.org/10.21203/rs.3.rs-2285238/v1, 2023. Cited on[I7]

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770-778, 2016. Cited on[I]]

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4700—-4708, 2017. Cited on|T1]

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. In Tech. rep. University of Toronto,
2009. Cited on[TT]

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the main factor behind the gap between
sgd and adam on transformers, but sign descent might be. In The Eleventh International Conference on Learning Representations,
2023. Cited on

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278-2324, 1998. Cited on|[T1]

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak step-size for sgd: An adaptive
learning rate for fast convergence. In International Conference on Artificial Intelligence and Statistics, pages 1306—-1314. PMLR,

2021. Cited on[2}[12} [I§]

19



L. Luo, Y. Xiong, Y. Liu, and X. Sun. Adaptive gradient methods with dynamic bound of learning rate. In International Conference on
Learning Representations, 2019. Cited on

Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus of english: The Penn Treebank.
Computational Linguistics 19.2, pages 313-330, 1993. Cited on [TT]

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. In International Conference
on Learning Representations, 2017. Cited on|[I]]

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in natural images with
unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2011. Cited on|[T1]

Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business Media, 2006. Cited on

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. In Advances in neural
information processing systems, pages 8026-8037, 2019. Cited on[I1}[12]

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on
machine learning, pages 6105-6114. PMLR, 2019. Cited on[IT]

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin.
Attention is all you need. Advances in neural information processing systems, 30, 2017. Cited on

Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon Lacoste-Julien. Painless stochastic gradient:
Interpolation, line-search, and convergence rates. In Advances in Neural Information Processing Systems, pages 3732-3745, 2019.

Cited on 2} B} [12] [14] [T6]

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms.
arXiv preprint arXiv:1708.07747, 2017. Cited on|[IT]

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision Conference 2016. British Machine
Vision Association, 2016. Cited on L]

Hongchao Zhang and William W Hager. A nonmonotone line search technique and its application to unconstrained optimization.
SIAM Journal on Optimization, 14(4):1043-1056, 2004. Cited on[2] [12]

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv Kumar, and Suvrit Sra. Why are
adaptive methods good for attention models? Advances in Neural Information Processing Systems, 33:15383-15393, 2020. Cited

on[14]

20



mnist | mip o mnist | mlp mnist | mip

100 —— Adam
s 0.985
_ 10 —— SGD 0.980 ——F ¥ '1 | B
g —— SIS oy
=102 ©0.975
@ ~—=— PoNoS 5
- 0970
2 10 ® —— Adam )
@ i oses —— SPS —
O
= “ 0.960 —— SGD .
1075 \,\\\ 0.055 —— SLS —
) —s— PoNoS —
-6 | ;s
10 100 200 300 0 500 600 o o 100 200 30 400 500 600 25 50 75 100 125 150 175 2
cumulative runtime (s) cumulative runtime (s) epoch
cifarl0 | resnet34 cifar10 | resnet34 cifarl0 | resnet34
T
1001 N\ ‘ —— Adam | . A
—— SPS \
10t —+— SGD |
5 ! >.0.921 v
> X
—— SL 9 —
20 WL‘L« A s |8 C) AN A M
- \ WWA-AAA —— PoNoS | 5 o
é 10 E 090 £
= € —— Adam »|
< W it €
£ N % — s | 5 [N AR N - aps
510 WA 8 o088 s 14 i
=] A} va - —— SGD —— SGD
10 —— sis 1 —— sis |
o. —s— PoNosS | —s— PoNoS *|
-6
0 500 1000 1500 2000 2500 3000 3500 o 500 1000 1500 2000 2500 3000 3500 25 50 75 100 125 150 175 2
cumulative runtime (s) cumulative runtime (s) epoch
cifarl0 | densenet121 cifarl0 | densenet121 cifarl0 | densenet121
T
100 —— Adam 0.94 N
—e— SPS
10 —— SGD
S sis §0.92 &
PR WAaA " PONOS |5 o
F—. 0090 £
- 10 ® —— Adam b
E 107% g 0.88 SPS E
= = —— SGD
107 —— SLS
0.86 —s— PoNoS
" |
10 2000 40 6000 0 10000 [ 2000 4600 6000 8000 10000 25 50 75 100 125 150 175 2
cumulative runtime (s) cumulative runtime (s) epoch
o cifarl00 | resnet34 078 cifarl00 | resnet34 cifarl00 | resnet34
1 T T .
—— Adam 24
100 —— SPS 076 2
_ —— SGD .
810t —— SLS gon v 5
= ! —— PoNos | 5., w1
8102 o £
- © —e— Adam 216 —e— Adam
< 4 0.70 S .
B0 M - 8 —— SPS 2 — SPS
5 W T 068 —— SGD 1 —— SGD
10 —— SLS 1 —— SLS
0.66 —— PoNoS M A WA A A I A MM = PONOS |
10
500 1000 1500 2000 _ 2500 3000 3500 4000 0 500 1000 1500 _ 2000 2500 3000 3500 4000 25 50 75 100 125 150 175 2
cumulative runtime (s) cumulative runtime (s) epoch
102 cifarl00 | densenet121 078 cifarl00 | densenet121 cifarl00 | densenet121
—e— Adam 70
10t —— SPS 0.76
65
~ —— SGD .
_g\ sLs 3 0.74 60
a 107! —e— PoNoS é 072 Ess
A o
B I\ 8 sps | s
= =] — 0.68 —— SGD w©
107 —— SLS
10 0.66 —=— PoNoS 35
2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 25 50 75 100 125 150 175 200
cumulative runtime (s) cumulative runtime (s) epoch
fashion | efficientnet-b1 fashion | efficientnet-b1 fashion | efficientnet-bl
T
100 Y| —— Adam | o M
65
—— SPS P g \
10 | t —e— SGD | _o. N \
g M 11 A —— SIS z S5 A Al -
2102 ] I | €401 ¥ v RVt r = b as
@ Nl WM/ A, —— PoNos | 5o :
=] o | =
2w s —— Adam | Eas —— Adam *|
c 2090 1 E = S ©
T o " 8 ! | e SPS 2 —— SPS |
= M “ogo] | ——sed | —— SGD |
105 —— sLs v —— SLS
\"\. 0. " ~—e— PoNoS | ~—=— PoNoS |
-6
10 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000 25 50 75 100 125 150 175 200
cumulative runtime (s) cumulative runtime (s) epoch
| svhn | wrn svhn | wrn svhn | wrn
100 . .
N —— Adam 0.97
10 —— SPS | 24
_10 | i ——sGD |
=) >0 .
8 " s 18 o
Wiy M —— PoNo! =1 & o
. NN Wl So. £
< A AL, Al Al © —— Adam | &
S0 A - g, ——sps | 2
5o I MR n —— SGD
107 | —— sLS
o. ' l —s— PoNoS |
'
500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000 25 50 75 100 125 150 175 200
cumulative runtime (s) cumulative runtime (s) epoch
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Figure IV: Comparison between the proposed method (PoNoS) and the state-of-the-art on convex kernel models for
binary classification. Each row focus on a different dataset. First column: exponentially averaged train loss. Second
column: test accuracy. Third column: exponentially averaged step size.
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Figure V: Comparison between the proposed method (PoNoS) and the state-of-the-art on the training of transformers for
language modeling tasks. Each row focus on a dataset/model combination. First column: train loss. Second column:
train perplexity. Third column: average step size. Fourth column: average gradient norm.
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Figure VI: Comparison between the use of the constant ¢ = 0.1 and ¢ = 0.5 on both monotone and nonmonotone
algorithms. Each row focus on a dataset/model combination. First column: train loss. Second column: test accuracy.
Third column: average step size of the epoch. Fourth column: average gradient norm of the epoch.
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Figure VII: Comparison between the use of the constant ¢ = 0.1 and ¢ = 0.5 on both monotone and nonmonotone
algorithms on convex binary classification problems. Each row focus on a different dataset. First column: exponentially
averaged train loss. Second column: test accuracy. Third column: exponentially averaged step size.
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Figure VIII: Comparison between different monotone and nonmonotone line search conditions. Each row focus on a
dataset/model combination. First column: train loss. Second column: test accuracy. Third column: average step size of
the epoch. Fourth column: cumulative number of backtracks in the epoch.
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Figure X: Comparison between the use of the constant n™** = 10 and n™** = 100 on SPS, SLS and PoNoS. Each row
focus on a dataset/model combination. First column: train loss. Second column: test accuracy. Third column: average
initial step size of the epoch. Fourth column: cumulative number of backtracks in the epoch.
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Figure XI: Comparison between the use of the constant ¢, = 0.1 ang ¢, = 0.2 on PoNoS and SPS. Each row focus on a
dataset/model combination. First column: train loss. Second column: test accuracy. Third column: average step size of
the epoch.
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Figure XII: Profiling of a single iteration of PoNoS. We report the time of the 1st and second forward passes, the time of all the extra
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forward passes beyond the second, the time of the backward pass and the time to load the mini-batch in the GPU.
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