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Abstract

In this paper we study the problem of testing of constrained samplers over high-1

dimensional distributions with (ε, η, δ) guarantees. Samplers are increasingly used2

in a wide range of safety-critical ML applications, and hence the testing problem3

has gained importance. For n-dimensional distributions, the existing state-of-the-art4

algorithm, Barbarik2, has a worst case query complexity of exponential in n and5

hence is not ideal for use in practice. Our primary contribution is an exponentially6

faster algorithm that has a query complexity linear in n and hence can easily scale7

to larger instances. We demonstrate our claim by implementing our algorithm and8

then comparing it against Barbarik2. Our experiments on the samplers wUnigen39

and wSTS, find that Pacoco requires 10× fewer samples for wUnigen3 and 450×10

fewer samples for wSTS as compared to Barbarik2.11

1 Introduction12

The constrained sampling problem is to draw samples from high-dimensional distributions over13

constrained spaces. A constrained sampler Q(ϕ, w) takes in a set of constraints ϕ : {0, 1}n → {0, 1}14

and a weight function w : {0, 1}n → R>0, and returns a sample σ ∈ ϕ−1(1) with probability propor-15

tional to w(σ). Constrained sampling is a core primitive of many statistical inference methods used16

in ML, such as Sequential Monte Carlo[29], Markov Chain Monte Carlo(MCMC)[3, 9], Simulated17

Annealing [4], and Variational Inference [24]. Sampling from real-world distributions is often compu-18

tationally intractable, and hence, in practice, samplers are heuristical and lack theoretical guarantees.19

For such samplers, it is an important problem to determine whether the sampled distribution is close20

to the desired distribution, and this problem is known as testing of samplers. The problem was21

formalised in [14, 27] as follows: Given access to a target distribution P , a sampler Q(ϕ, w), and22

three parameters (ε, η, δ), with probability at least 1− δ, return (1) Accept if d∞(P,Q(ϕ, w)) < ε,23

or (2) Reject if dTV (P,Q(ϕ, w)) > η. Here dTV is the total variation distance, d∞ the multiplicative24

distance, and ε, η, and δ are parameters for closeness, farness and confidence respectively.25

There is substantial interest in the testing problem due to the increasing use of ML systems in26

real-world applications where safety is essential, such as medicine [2], transportation [8, 25], and27

warfare [28]. For the ML systems that incorporate samplers, the typical testing approach has been28

to show the convergence of the sampler with the target distribution via empirical tests that rely on29

heuristics and do not provide any guarantees [19, 22, 31, 34]. In a recent work [27], a novel framework,30

called Barbarik2, was proposed that could test a given sampler while providing (ε, η, δ) guarantees,31

using Õ
(
tilt(P)2
η(η−3ε)3

)
queries, where tilt(P) := max

σ1,σ2∈{0,1}n
P(σ1)
P(σ2)

for P(σ2) > 0. Since the tilt(P)32

can be take arbitrary values, we observe that the query complexity can be prohibitively large1. On33

the other hand, the best known lower bound for the problem, derived from [30], is Ω̃

(√
n/ log(n)

η2

)
.34

1A simple modification reveals that in terms of n, η, ε, the bound is Õ
(

4n

η(η−3ε)3

)
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In this work, we take a step towards bridging this gap with our algorithm, Pacoco, that has a query35

complexity of Õ
( √

n logn
(η−11.6ε)η3 + n

η2

)
, representing an exponential improvement over the state of the36

art.37

To be of any real value, testing tools must be able to scale to larger instances. In the case of constrained38

samplers, the only existing testing tool, Barbarik2, is not scalable owing to its query complexity. The39

lack of scalability is illustrated by the following fact: product distributions are the simplest possible40

constrained distributions, and given a union of two n-dimensional product distributions, Barbarik241

requires more than 108 queries for n > 30. On the other hand, the query complexity of Pacoco scales42

linearly with n, the number of dimensions, thus making it more appropriate for practical use.43

We implement Pacoco and compare it against Barbarik2 to determine their relative performance.44

In our experiments, we consider two sets of problems, (1) constrained sampling benchmarks, (2)45

scalable benchmarks and two constrained samplers wSTS and wUnigen3. We found that to complete46

the test Pacoco required at least 450× fewer samples from wSTS and 10× fewer samples from47

wUnigen3 as compared to Barbarik2. Moreover, Pacoco terminates with a result on at least 3× more48

benchmarks than Barbarik2 in each experiment.49

Our contributions can be summarized as follows:50

1. For the problem of testing of samplers, we provide an exponential improvement in query51

complexity over the current state of the art test Barbarik2. Our test, Pacoco, makes a total52

of Õ
( √

n logn
(η−11.6ε)η3 + n

η2

)
queries, where Õ hides polylog factors of ε, η and δ.53

2. We present an extensive empirical evaluation of Pacoco and contrast it with Barbarik2. The54

results indicate that Pacoco requires far fewer samples and terminates on more benchmarks55

when compared to Barbarik2.56

We define the notation and discuss related work in Section 2. We then present the main contribution57

of the paper, the test Pacoco, and its proof of correctness in Section 3. We present our experimental58

findings in Section 4 and then we conclude the paper and discuss some open problems in Section 5.59

Due to space constraints, we defer some proofs and the full experimental results to the supplementary60

Section A and B respectively.61

2 Notation and preliminaries62

Probability distributions In this paper we deal with samplers that sample from discrete probability63

distributions over high-dimensional spaces. We consider the sample space to be the n-dimensional64

Boolean hypercube {0, 1}n. A constrained sampler Q takes in a set of constraints ϕ : {0, 1}n →65

{0, 1} and a weight function w : {0, 1}n → R>0, and samples from the distributionQ(ϕ, w) defined as66

Q(ϕ, w)(σ) =

{
w(σ)/w(ϕ) σ ∈ ϕ−1(1)

0 σ ∈ ϕ−1(0)
, where w(ϕ) =

∑
σ∈ϕ−1(1) w(σ). To improve readability,67

we use Q to refer to the distribution Q(ϕ, w). For an element i, D(i) denotes it’s probability in68

distribution D and i ∼ D represents that i is sampled from D. For any non-empty set S ⊆ {0, 1}n,69

DS is the distribution D conditioned on set S, and D(S) is the probability of S in D i.e., D(S) =70 ∑
i∈S D(i).71

The total variation (TV) distance of two probability distributions D1 and D2 is defined as:72

dTV (D1,D2) = 1
2

∑
i∈{0,1}n |D1(i) − D2(i)|. For S ⊆ {0, 1}n, we define dTV (S)(D1,D2) =73

1
2

∑
i∈S |D1(i)−D2(i)|. The multiplicative distance of D2 from D1 is defined as: d∞(D1,D2) =74

maxi∈{0,1}n |D2(i)/D1(i) − 1|. The two notions of distance obey the identity: 2dTV (D1,D2) ≤75

d∞(D1,D2).76

In the rest of the paper, E[v] represents the expectation of random variable v and [k] represents the77

set {1, 2 . . . , k}.78

Tools used in the analysis79

Proposition 1 (Hoeffding). For independent 0-1 random variables Xi, X =
∑k
i=1Xi, and t ≥ 0,80

Pr(X − EX > t) ≤ exp
(
−2t2k

)
and Pr(EX −X > t) ≤ exp

(
−2t2k

)
81
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Proposition 2 (Chebyshev). Given bounded r.v. X , we have Pr(|X − E[X]| < E[X]) > E[X]2

E[X2]82

Proposition 3. Given distributions D1 and D2 supported on {0, 1}n, and a set S ⊆ {0, 1}n,83 ∑
i∈S
D1(i)D2(i) >

(D1(S) +D2(S)− 2dTV (S)(D1,D2))2

4|S|

The proof can be found in the Appendix A.184

If we are given samples {s1, s2, . . . , sn} from a distributionD over [k], then the empirical distribution85

D̂ is defined to be D̂(i) = 1
n

k∑
j=1

1{sj=i}.86

Proposition 4 (See [11] for a simple proof). SupposeD is a distribution over [k], and D̂ is constructed87

using max
(
k
η2 ,

2 ln(2/δ)
η2

)
samples from D. Then dTV (D, D̂) ≤ η with probability at least 1− δ.88

Testing with the help of oracles89

In distribution testing, we are given samples from an unknown distribution P over a large support90

{0, 1}n, and the task is to test whether P satisfies some property of interest. One of the important91

properties we care about is whether P is close to another distributionQ, and this subfield of testing is92

known as closeness testing. It was shown by Valiant and Batu et al. that the ability to draw samples93

from P and Q is not powerful enough, as at least Ω(22n/3) samples are required to provide any sort94

of probabilistic guarantee for closeness testing. Since n is usually large, it was desirable to find tests95

that could solve the closeness testing problem using polynomially many samples in n.96

Motivated by the above requirement, Canonne et al. and Chakraborty et al. introduced the conditional97

sampling oracle (COND), that is a more powerful way to access distributions. A COND oracle for98

distribution D over {0, 1}n takes as input a set S ⊆ {0, 1}n with D(S) > 0, and returns a sample99

i ∈ S with probability D(i)/D(S). It has been shown that the use of the COND oracle, and its100

variants, drastically reduces the sample complexity of many tasks in distribution testing [1, 21, 12, 15,101

6, 26, 7, 17, 13, 30] (see [10] for an extensive survey). In this paper, we consider the pair-conditioning102

(PCOND) oracle, which is a special case of the COND oracle with the restriction that |S| = 2 i.e.,103

the size of the conditioning set has to be two. To engineer practical PCOND oracle access into104

constrained samplers, we use the chain formula construction introduced in [14].105

With the same goal of designing tests with polynomial sample complexity, a different kind of oracle,106

known as the DUAL oracle, was proposed by Canonne et al.. The DUAL oracle allows one to sample107

from a given distribution and also query the distribution for the probability of arbitrary elements of the108

support. Tractable DUAL oracle access is supported by a number of distribution representations, such109

as the fragments of probabilistic circuits (PC) that support the EVI query [18]. In our experimental110

evaluation, we use distributions from one such fragment: weighted d-DNNFs. Weighted d-DNNFs111

are a class of arithmetic circuits with properties that enable DUAL oracle access in time linear in the112

size of the circuit [16, 23].113

3 Pacoco: an algorithm for testing samplers114

We start by providing a brief overview of our testing algorithm before providing the full analysis.115

3.1 Algorithm outline116

The pseudocode of Pacoco is given in Algorithm 1. We adapt the definition of bucketing of distribu-117

tions from [30] for use in our analysis.118

Definition 1. For a given k ∈ N>0, the bucketing of {0, 1}n with respect to P is defined as follows:119

For 1 ≤ i ≤ k, let Si = {b : 2−i < P(b) ≤ 2−i+1} and let S0 = {0, 1}n \
⋃
i∈[k] Si. Given120

any distribution D over {0, 1}n, we define a distribution BD over [k] ∪ {0} as: for 0 ≤ i ≤ k,121

BD(i) = D(Si). We call BD the bucket distribution of D and Si the ith bucket.122
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Algorithm 1 Pacoco(P,Q, η, ε, δ)
1: k ← n+ dlog2(100/η)e
2: for i = 1 to k do
3: Si = {b : 2−i < P(b) ≤ 2−i+1}
4: S0 = {0, 1}n \

⋃
i∈[k] Si

5: BP is the distribution over [k] ∪ {0} where we sample i ∼ BP if we sample j ∼ P and j ∈ Si
6: BQ is the distribution over [k] ∪ {0} where we sample i ∼ BQ if we sample j ∼ Q and j ∈ Si
7: θ ← η/20

8: d̂← OutBucket(BP , BQ, k, θ, δ/2)

9: if d̂ > ε/2 + θ then
10: Return Reject

11: ε2 ← d̂+ θ
12: Return InBucket(P,Q, k, ε, ε2, η, δ/2)

Pacoco takes as input two distributions P and Q defined over the support {0, 1}n, along with the123

parameters for closeness(ε), farness(η), and confidence(δ). On Line 1, Pacoco computes the value of124

k using η and the number of dimensions n. Then, using DUAL access to P , and SAMP access to Q,125

Pacoco creates bucket distributions BP and BQ as in Defn. 1, in the following way: To sample from126

BP , Pacoco first draws a sample j ∼ P , then using the DUAL oracle, determines the value of P(j).127

Then, if j lies in the ith bucket i.e., 2−i < P(j) ≤ 2−i+1, the algorithm takes sample i as the sample128

from BP . Similarly, to draw a sample from BQ, Pacoco draws a sample j ∼ Q and then, using the129

DUAL oracle to find P(j), finds i such that j lies in the ith bucket, and then uses i as the sample.130

Pacoco then calls two subroutines, OutBucket (Section 3.3) and InBucket (Section 3.2). The131

OutBucket subroutine returns an θ-multiplicative estimate of the TV distance between BP and132

BQ, the two bucket distributions of P andQ, with an error of at most δ/2. If it is found on Line9 that133

the estimate d̂ is greater than ε/2 + θ, we know that dTV (P,Q) > ε/2 and also that d∞(P,Q) > ε,134

and hence the algorithm returns Reject. Otherwise, the algorithm calls the InBucket subroutine.135

Now suppose that dTV (P,Q) ≥ η. Then, for ε2 (Line 11), it is either the case that dTV (BP , BQ) >136

ε2 or else dTV (BP , BQ) ≤ ε2. In the former case, the algorithm returns Reject on Line 10, and in137

the latter case the InBucket subroutine returns Reject. In both cases, the failure probability is at most138

δ/2. Thus Pacoco returns Reject on given η-far input distributions with probability at least 1− δ.139

We will now prove the following theorem:140

Theorem 1. Pacoco(P,Q, η, ε, δ) takes in distributions P and Q defined over {0, 1}n, and pa-141

rameters η ∈ (0, 1], ε ∈ [0, η/11.6) and δ ∈ (0, 1/2]. With probability at least 1 − δ, Pacoco142

returns143

• Accept if d∞(P,Q) ≤ ε144

• Reject if dTV (P,Q) > η145

Pacoco has query complexity Õ
( √

n log(n)
η3(η−11.6ε) + n

η2

)
, where Õ hides polylog factors of ε, η and δ.146

3.2 The InBucket subroutine147

In this section, we present the InBucket subroutine, whose behavior is stated in the following lemma.148

Lemma 1. InBucket(P,Q, k, ε, ε2, η, δ) takes as input two distributions P,Q, an integer k and149

parameters ε, ε2, η, δ. If d∞(P,Q) ≤ ε, InBucket returns Accept. If dTV (P,Q) ≥ η and150

dTV (BP , BQ) < ε2, then InBucket returns Reject. InBucket errs with probability at most δ .151

InBucket makes extensive use of the PCOND oracle access to Q via the Bias subroutine, which we152

describe in the following subsection.153

The Bias subroutine The Bias subroutine takes in distribution Q, two elements p, q and a positive154

integer r. Then, using the PCOND oracle, Bias draws r samples from the conditional distribution155

Q{p,q} and returns the number of times it sees p in the r samples. It can be seen that the returned156
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Algorithm 2 InBucket(P,Q, k, ε, ε2, η, δ)
1: ε1 ← (0.99η − 3.25ε2 − 2ε/(1− ε))/1.05 + 2ε/(1− ε)
2: m← d

√
k/(0.99η − 3.25ε2 − ε1)e

3: α← (ε1 + 2ε/(1− ε))/2
4: t←

⌈
ln(4/δ)

ln(10/(10−ε1+α))

⌉
5: for t iterations do
6: ΓP ←m samples from P
7: ∀i∈[k]ΓiP ← ΓP ∩ Si . Si is defined in Defn. 1
8: ΓQ ←m samples from Q
9: ∀i∈[k]ΓiQ ← ΓQ ∩ Si

10: for all j ∈ [k] s.t. |ΓjP |, |Γ
j
Q| > 0 do

11: p← ΓjP . p is an arbitrary sample from the set ΓjP
12: q ← ΓjQ . q is an arbitrary sample from the set ΓjQ
13: h← P(p)

P(p)+P(q)(1+ 2ε
1−ε )

14: `← P(p)
P(p)+P(q)(1+α)

15: r ←
⌈
2 ln(4mt/δ)

(h−`)2

⌉
16: ĉ← Bias(Q, p, q, r)
17: if ĉ ≤ (h+ `)/2 then
18: Return Reject

19: Return Accept

Algorithm 3 Bias(Q, p, q, r)
1: if p and q are identical then
2: Return 0.5
3: ΓQ{p,q} ← r samples from Q{p,q}
4: Return # of times p appears in ΓQ{p,q}

value is an empirical estimate of Q(p)
Q(p)+Q(q) . Let the estimate be ĉpq . We use the Hoeffding bound in157

Prop. 1, and the value of r from Line 15 of Alg. (2) to show that:158

Pr

[
Q(p)

Q(p) +Q(q)
− ĉpq ≥

h− `
2

]
≤ δ

4mt
Pr

[
ĉpq −

Q(p)

Q(p) +Q(q)
≥ h− `

2

]
≤ δ

4mt

Here t represents the number of iterations of the outer loop (Line 4), and m is the number of samples159

drawn from BP and BQ. Together, there are at most mt pairs of samples that are passed to the160

Bias oracle. Since in each invocation of Bias, the probability of error is δ/4mt, using the union161

bound we find that the probability that all mt Bias calls return correctly is at least 1− δ/4 and thus162

with probability at least 1− δ/4, the empirical estimate ĉpq is closer than (h− `)/4 to Q(p)
Q(p)+Q(q) .163

Henceforth we assume:164 ∣∣∣∣ĉpq − Q(p)

Q(p) +Q(q)

∣∣∣∣ ≤ h− `
2

(1)

3.2.1 The Accept case165

In this section we will provide an analysis of the case when d∞(P,Q) < ε. We will now state a166

proposition required for the remaining proofs, the proof of which we relegate to Appendix A.4.167

Proposition 5. Let P,Q be distributions and let p ∼ P and q ∼ Q. Then,168

1. If d∞(P,Q) < ε then169

Q(p)

Q(p) +Q(q)
≥ P(p)

P(p) + (1 + 2ε
1−ε )P(q)
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2. If dTV (P,Q) > ε1, then for 0 ≤ α < ε1, with probability at least (dTV (P,Q)− α)/2,170

Q(p)

Q(p) +Q(q)
<

P(p)

P(p) + (1 + α)P(q)

From our assumption (1), we know that for all invocations of Bias, with probability at least 1− δ/4,171 ∣∣∣ĉpq − Q(p)
Q(p)+Q(q)

∣∣∣ ≤ (h− `)/2. Using Prop. 5, and using the value of h given on Line 13, we can172

see that Q(p)
Q(p)+Q(q) > h. From this we can observe that for all invocations of Bias, ĉpq > (h+ `)/2173

and the test does not return Reject in any iteration, hence eventually returning Accept. Thus, in the174

case that d∞(P,Q) < ε, the InBucket subroutine returns Accept with probability at least 1− δ/4.175

3.2.2 The Reject case176

In this section we analyse the case when dTV (P,Q) ≥ η and dTV (BP , BQ) ≤ ε2 and we will show177

that the algorithm returns Reject with probability at least 1− δ. For the purpose of the proof we will178

define a set of bad buckets Bad ⊆ [k]. Note that bucket {0} is not in Bad.179

Definition 2. Bad = {i ∈ [k] : dTV (PSi
,QSi

) > ε1 ∧BP(i)/BQ(i) ∈ [5−1, 2]}180

Suppose we have an indicator variable Xr,s constructed as follows: draw m samples from P and Q,181

and if the rth sample from P and the sth sample from Q both belong to some bucket b ∈ Bad, then182

Xr,s = 1 else Xr,s = 0. Then,183

E[Xr,s] =
∑
b∈Bad

BP(b)BQ(b) >
(BP(Bad) +BQ(Bad)− 2dTV (Bad)(BP , BQ))2

4K

The inequality is by the application of Prop. 3.184

We analyse the expression for the expectation in the following lemma, the proof of which we relegate185

to Appendix A.2186

Lemma 2.

BQ(Bad) +BP(Bad)− 2dTV (Bad)(BQ, BP) > 2

(
0.99η − 13

4
ε2 − ε1

)

Using Lemma 2 we immediately derive the fact that E[Xr,s] >
(
0.99η − 13

4 ε2 − ε1
)2
/K. Let187

X =
∑
r,s∈[m]Xr,s. Given m samples from P and Q, Pr(X ≥ 1) is the probability that there is at188

least one bucket in Bad that is sampled at least once each in both sets of samples.189

Lemma 3. Pr(X ≥ 1) > 1/5190

The proof can be found in Appendix A.3.191

Henceforth we will condition on the the event that X ≥ 1. In such a case, we know that for some192

k ∈ Bad, there is a sample p ∼ PSk
and a sample q ∼ QSk

. Then for such a pair of samples (p, q),193

and some α, Prop. 5 tells us that with probability at least (dTV (P,Q)− α)/2 we have194

Q(p)

Q(p) +Q(q)
<

P(p)

P(p) + (1 + α)P(q)

Using the assumption made in (1), we immediately have that ĉpq ≤ Q(p)
Q(p)+Q(q) + h−`

2 . But from195

Prop. 5 we have that Q(p)
Q(p)+Q(q) < ` and hence ĉpq < (h+ `)/2. Since dTV (P,Q) ≥ ε1, we see that196

if X ≥ 1, then with probability at least (ε1 − α)/2, the iteration returns Reject.197

Then, using Lemma 3 we see that in every iteration, with probability at least (ε1 − α)/10, InBucket198

returns Reject. There are t iterations, where t (line 4) is chosen such that the overall probability of199

the test returning Reject is at least 1− δ/2.200
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3.3 The OutBucket subroutine201

The OutBucket subroutine takes as input two distributions D1,D2 over k + 1 elements and two202

parameters θ and δ. Then with probability at least 1− δ, InBucket returns a θ-multiplicative estimate203

for dTV (D1,D2).204

The OutBucket starts by drawing max
(

4(k+1)
θ2 , 8 ln(4/δ)

θ2

)
samples from the two distributions D1205

and D2, and constructs the empirical distributions D̂1 and D̂2. Then from Prop. 4, we know that with206

probability at least 1− δ, both dTV (D1, D̂1) ≤ θ/2 and dTV (D2, D̂2) ≤ θ/2.207

From the triangle inequality we have that,208

dTV (D̂1, D̂2) ≤ dTV (D1, D̂1) + dTV (D2, D̂2) + dTV (D1,D2) < θ + dTV (D1,D2)

and also that,209

dTV (D1,D2) ≤ dTV (D1, D̂1) + dTV (D2, D̂2) + dTV (D̂1, D̂2) < θ + dTV (D̂1, D̂2)

Thus with probability at least 1− δ, the returned estimate dTV (D̂1, D̂2) satisfies |dTV (D̂1, D̂2)−210

dTV (D1,D2)| < θ.211

Query and runtime complexity The number of queries made by OutBucket to P and Q is212

given by Õ
(
n
η2

)
, where Õ hides polylog factors of ε, η and δ. The number of queries required213

by InBucket is given by mtr. Bounding the terms individually, we see that m = Õ
( √

n
η−11.6ε

)
,214

t = Õ
(

1
η

)
and r = Õ

(
logn
η2

)
. Thus mtr = Õ

( √
n logn

(η−11.6ε)η3

)
and hence the total query complexity215

is Õ
( √

n logn
(η−11.6ε)η3 + n

η2

)
.216

4 Evaluation217

To evaluate the performance of Pacoco and test the quality of publicly available samplers, we im-218

plemented Pacoco in Python. Our evaluation took inspiration from the experiments presented in219

previous work [14, 27], and we used the same framework to evaluate our proposed algorithm. The220

role of target distribution P was played by the exact constrained sampler WAPS2 [23]. For the role221

of sampler Q(ϕ, w), we used the state-of-the-art samplers wSTS and wUnigen3. wUnigen3 [32] is a222

hashing-based sampler that provides (ε, δ) guarantees on the quality of the samples. wSTS [20] is a223

sampler designed for sampling over challenging domains such as energy barriers and highly asym-224

metric spaces. wSTS generates samples much faster than wUnigen3, albeit without any guarantees225

on the quality of the samples.226

For the closeness(ε), farness(η), and confidence(δ) parameters, we choose the values 0.05, 0.9 and 0.2.227

This setting implies that for a given distribution P , and for a given sampler Q(ϕ, w), Pacoco returns228

(1) Accept if d∞(P,Q(ϕ, w)) < 0.05, and (2) Reject if dTV (P,Q(ϕ, w)) > 0.9, with probability229

at least 0.8. Our empirical evaluation sought to answer the question: How does the performance of230

Pacoco compare with the state-of-the-art tester Barbarik2?231

Our experiments were conducted on a high-performance compute cluster with Intel Xeon(R) E5-232

2690v3@2.60GHz CPU cores. We use a single core with 4GB memory with a timeout of 16 hours233

for each benchmark. We set a sample limit of 108 samples for our experiments due to our limited234

computational resources.235

4.1 Setting A - scalable benchmarks236

Dataset Our dataset consists of the union of two n-dimensional product distributions, for n ∈237

{4, 7, 10, . . . , 118}. We have 39 problems in the dataset. We represent the union of two product238

distributions as the constraint: ϕ(σ) =
∧2k
i=1(σ3k+1 ∨ σi) ∧

∧3k
i=2k+1(¬σ3k+1 ∨ σi), and the weight239

function: w(σ) =
∏3k
i=2k+1 3σi , where σi is the value of σ at position i.240

2https://github.com/meelgroup/WAPS
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Results We observe that in the case of wSTS, Barbarik2 can handle only 12 instances within the241

sample limit of 108. On the other hand, Pacoco can handle all 39 instances using at the most 106242

samples. In the case of wUnigen3, Barbarik2 solves 5 instances, and Pacoco can handle 17 instances.243

Figure 1 shows a cactus plot comparing the sample requirement of Pacoco and Barbarik2. The244

x-axis represents the number of benchmarks and y-axis represents the number of samples, a point245

(x, y) implies that the relevant tester took less than y number of samples to distinguish between246

dTV (P,Q(ϕ, w)) > η and d∞(P,Q(ϕ, w)) < ε, for x many benchmarks. We display the set of247

benchmarks for which at least one of the two tools terminated within the sample limit of 108. We want248

to highlight that the y-axis is in log-scale, thus showing the sample efficiency of Pacoco compared249

to Barbarik2. For every benchmark, we compute the ratio of the number of samples required by250

Barbarik2 to test a sampler and the number of samples required by Pacoco. The geometric mean of251

these ratios indicates the mean speedup. We find that the Pacoco’s speedup on wSTS is 451× and on252

wUnigen3 is 10×.253

0 5 10 15 20 25 30 35 38

104

105

106

107

108

#
of

sa
m

pl
es

(l
og

sc
al

e)

wSTS

Barbarik2

Pacoco

0 2 4 6 8 10 12 14 16

# of instances

105

106

107

108

#
of

sa
m

pl
es

(l
og

sc
al

e)

wUnigen

Barbarik2

Pacoco

Figure 1: Cactus plot: Pacoco vs. Barbarik2. We set the sample limit to be 108, and our dataset
consists of 39 benchmarks. The plot shows all the instances where at least one of the two tools
terminated within the time limit of 16 hours and sample limit of 108.

4.2 Setting B - real-life benchmarks254

Dataset We experiment on 87 constraints drawn from a collection of publicly available benchmarks255

arising from sampling and counting tasks3. We use distributions from the log-linear family. In a log-256

linear distribution, the probability of an element σ ∈ ϕ−1(1) is given as: Pr[σ] ∝ exp (
∑n
i=1 σiθi),257

where θi ∈ Rn>0. We found that wUnigen3 was not able to sample from most of the benchmarks in258

the dataset within the given time limit, and hence we present the results only for wSTS.259

Results We find that Pacoco terminated with a result on all 87 instances from the set of real-life260

benchmarks, while Barbarik2 could only terminate on 16. We present the results of our experiments261

3https://zenodo.org/record/3793090
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in Table 1. The first column indicates the benchmark’s name, and the second column has the number262

of dimensions of the space the distribution is defined on. The third and fifth columns indicate the263

number of samples required by Barbarik2 and Pacoco. The fourth and sixth columns report the output264

of Barbarik2 and Pacoco.265

Table 1: Runtime performance of Pacoco. We experiment with 87 benchmarks, and out of the 87
benchmarks we display 15 in the table and we display the full data in Appendix B. In the table ‘A’
represents Accept, ‘R’ represents Reject and ‘TO’ represents that the tester either asked for more
than 108 samples or did not terminate in the given time limit of 16 hours.

Barbarik2 Pacoco

Benchmark Dimensions Result # of samples Result # of samples

SetTest.sk_9_21 21 R 2817 R 58000
Pollard.sk_1_10 10 R 7606 R 36000
s444_3_2 24 R 848148 R 64000
s526a_3_2 24 R 848148 R 64000
s510_15_7 25 R 12708989 R 66000
s27_new_7_4 7 A 23997012 R 30000
s298_15_7 17 R 38126967 R 50000
s420_3_2 34 TO - R 83000
s382_3_2 24 TO - R 64000
s641_3_2 54 TO - R 123000
111.sk_2_36 36 TO - R 87000
7.sk_4_50 50 TO - R 115000
56.sk_6_38 38 TO - R 91000
s820a_15_7 23 TO - R 62000
ProjectService3.sk_12_55 55 TO - R 125000

5 Conclusion266

In this paper, we studied the problem of testing constrained samplers over high-dimensional distribu-267

tions with (ε, η, δ) guarantees. For n-dimensional distributions, the existing state-of-the-art testing268

algorithm, Barbarik2, has a worst-case query complexity that is exponential in n and hence is not269

ideal for use in practice. We provided an exponentially faster algorithm, Pacoco, that has a query270

complexity linear in n and hence can easily scale to larger instances. We implemented Pacoco and271

tested the samplers wSTS and wUnigen3 to determine their sample complexity in practice. The results272

demonstrate that Pacoco is significantly more sample efficient than Barbarik2, requiring 450× fewer273

samples when it tested wSTS and 10× fewer samples when it tested wUnigen3. Since there is a
√
n274

gap between the upper bound provided by our work and the lower bound shown in [30], the problem275

of designing a more sample efficient algorithm or finding a stronger lower bound, remains open.276

Limitations For a given farness parameter η, Pacoco requires the value of the closeness parameter277

ε to lie in the interval [0, η/11.6). In the case of Barbarik2, the previous state-of-the-art test, the278

permissible values of ε for a given η lie in the interval [0, η/3). Thus, Pacoco supports testing with279

only a subset of parameter values that Barbarik2 supports.280
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A Missing proofs and algorithm393

A.1 Proof of Lemma 3394

Proof. The Hellinger distance of distributions P,Q restricted to a set S ⊆ {0, 1}n, is defined as395

dH(S)(P,Q) = 1√
2

√∑
i∈S(

√
Q(i)−

√
P(i))2,396

dH(S)(P,Q) =
1√
2

√∑
i∈S

(
√
Q(i)−

√
P(i))2

d2H(S)(P,Q) =
1

2

∑
i∈S

(
√
Q(i)−

√
P(i))2

=
1

2

∑
i∈S

(
Q(i) + P(i)− 2

√
P(i)Q(i)

)
=
P(S) +Q(S)

2
−
∑
i∈S

√
P(i)Q(i)

Then using the fact that d2H(S)(P,Q) ≤ dTV (S)(P,Q) we see that,
∑
i∈S
√
P(i)Q(i) ≥397

P(S)+Q(S)
2 − dTV (S)(P,Q). Then we use the Cauchy-Schwarz inequality:398 ∑

i∈S
P(i)Q(i) ≥

(P(S) +Q(S)− 2dTV (S)(P,Q))2

4|S|

399

A.2 Proof of Lemma 2400

Lemma 2.

BQ(Bad) +BP(Bad)− 2dTV (Bad)(BQ, BP) > 2

(
0.99η − 13

4
ε2 − ε1

)
Proof. Let PQ be a distribution constructed from P and Q, where we first sample j ∼ BQ and then401

sample i ∼ PSj , thus PQ(i) =
∑

j∈[k]∪{0}
BQ(j)PSj (i). We know that if i ∈ Sj , then i 6∈ Sj′ for402

j′ 6= j. This allows us to simplify and write PQ(i) = BQ(j)PSj
(i). Then,403

dTV (BP , BQ) =
1

2

∑
j∈[k]∪{0}

|BP(j)−BQ(j)|

=
1

2

∑
j∈[k]∪{0}

∑
i∈Sj

PSj (i)|BP(j)−BQ(j)|

=
1

2

∑
j∈[k]∪{0}

∑
i∈Sj

|P(i)− PQ(i)|

=
1

2

∑
i∈{0,1}n

|P(i)− PQ(j)| = dTV (P,PQ)

Since dTV (BP , BQ) < ε2, we have dTV (P,PQ) < ε2.404
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From the definition of TV, we have405

dTV (Q,PQ) =
1

2

∑
i∈{0,1}n

|Q(i)− PQ(i)|

=
1

2

∑
j∈[k]∪{0}

∑
i∈Sj

|Q(i)− PQ(i)|

=
1

2

∑
j∈[k]∪{0}

∑
i∈Sj

|BQ(j)QSj
(i)−BQ(j)PSj

(i)|

=
1

2

∑
j∈[k]∪{0}

BQ(j)
∑
i∈Sj

|QSj (i)− PSj (i)|

=
∑

j∈([k]∪{0})

BQ(j)dTV (PSj ,QSj )

=
∑

j∈([k]∪{0})\Bad

BQ(j)dTV (PSj ,QSj ) +
∑
j∈Bad

BQ(j)dTV (PSj ,QSj )

We will need the following sets: R1 = {j : BP(j) > 2BQ(j)}, R2 = {j : BQ(j) > 5BP(j)}.406

From the triangle inequality we have dTV (P,Q) ≤ dTV (P, PQ) + dTV (PQ,Q). We also know407

that dTV (P, PQ) < ε2 and dTV (P,Q) > η. Thus we have:408

η − ε2 < dTV (Q,PQ)

η − ε2 <
∑

j∈([k]∪{0})\Bad

BQ(j)dTV (PSj ,QSj ) +
∑
j∈Bad

BQ(j)dTV (PSj ,QSj )

η − ε2 <
∑

j∈{0}∪R1∪R2

BQ(j)dTV (PSj ,QSj ) +
∑

j∈[k]\{R1∪R2∪Bad}

BQ(j)dTV (PSj ,QSj )

+
∑
j∈Bad

BQ(j)dTV (PSj ,QSj )

By definition, if j ∈ [k]\{Bad∪R1∪R2}, then j has the property that dTV (PSj
,QSj

) ≤ ε1. Then,409

η − ε2 <
∑

j∈{0}∪R1∪R2

BQ(j) +
∑

j∈[k]\{R1∪R2∪Bad}

BQ(j)ε1 +
∑
j∈Bad

BQ(j)

η − ε2 − ε1 < BQ({0} ∪R1 ∪R2) +BQ(Bad)

η − ε2 − ε1 −BQ({0} ∪R1 ∪R2) < BQ(Bad) (2)

If i ∈ R1, then BP(i) > 2BQ(i), and thus BP(i)−BQ(i) > BQ(i). And thus,410

BQ(R1) <
∑
i∈R1

(BP(i)−BQ(i)) (3)

And if i ∈ R2, then BQ(i) > 5BP(i), and thus BQ(i)−BP(i) > 4BP(i), giving411

BP(R2) <
1

4

∑
i∈R2

(BQ(i)−BP(i))

BP(R2) +
∑
i∈R2

(BQ(i)−BP(i)) <
5

4

∑
i∈R2

(BQ(i)−BP(i))

BQ(R2) <
5

4

∑
i∈R2

(BQ(i)−BP(i)) (4)

Since |S0| ≤ 2n and all elements i ∈ S0 satisfy P(i) ≤ 2−k , we have BP(0) ≤ 2n−k, where we412

substitute k = n+ log2(100/η) to get413

BP(0) ≤ η

100
(5)
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Then,414

BQ({0} ∪R1 ∪R2) = BQ({0}) +BQ(R1) +BQ(R2)

Using (3),( 4)) and (5) ≤ η

100
+
∑
i∈{0}

(BQ(i)−BP(i)) +
∑
i∈R1

(BP(i)−BQ(i)) +
5

4

∑
i∈R2

(BQ(i)−BP(i))

(6)

Here we partition the set Bad ∪ {0} into two sets Bad+ and Bad−, where Bad+ = {i ∈ Bad ∪415

{0}|BP(i) ≥ BQ(i)} and similarly Bad− = {i ∈ Bad ∪ {0}|BP(i) < BQ(i)}.416

BQ(Bad) +BP(Bad)− 2dTV (Bad)(BQ, BP)

≥ 2(BQ(Bad)− 2dTV (Bad)(BP , BQ))

(From 2) > 2

(
η − ε2 − ε1 −BQ({0} ∪R1 ∪R2)−

∑
i∈Bad

|BP(i)−BQ(i)|

)

(From 6) > 2

.99η − ε2 − ε1 −
∑

i∈R1∪Bad+
(BP(i)−BQ(i))− 5

4

∑
i∈R2∪Bad−

(BQ(i)−BP(i))


And using the fact that dTV (BP , BQ) =

∑
i:BP(i)≤BQ(i)(BQ(i) − BP(i)) =417 ∑

i:BP(i)>BQ(i)(BP(i) − BQ(i)) = ε2, and the fact that ∀i∈R1
BP(i) > BQ(i) and418

∀i∈R2
BQ(i) > BP(i) we have,419

BQ(Bad) +BP(Bad)− 2dTV (Bad)(BQ, BP) > 2

(
0.99η − 13

4
ε2 − ε1

)
420

A.3 Proof of Lemma 3421

Recall that for all r, s ∈ [m], E[Xr,s] =
∑
b∈BadBP(b)BQ(b). Then since X =

∑
r,s∈[m]Xr,s,422

E[X] =
∑
r,s∈[m] E[Xr,s] = m2E[Xr,s]. Then for i, j, k, l ∈ [m],423

• if i = k, j = l then E[Xi,jXk,l] =
∑
b∈BadBP(b)BQ(b) = E[Xr,s]424

• if i = k, j 6= l then E[Xi,jXk,l] =
∑
b∈BadBP(b)B2

Q(b)425

• if i 6= k, j = l then E[Xi,jXk,l] =
∑
b∈BadB

2
P(b)BQ(b)426

• if i 6= k, j 6= l then E[Xi,jXk,l] =
(∑

b∈BadBP(b)BQ(b)
)2

= E[Xr,s]
2427

E[X2] = E

 ∑
i,j,k,l∈[m]

Xi,jXk,l



= E

 ∑
a6=c,b 6=d
i,j,k,l∈[m]

Xi,jXk,l

+ E

 ∑
a=c,b 6=d
i,j,k,l∈[m]

Xi,jXk,l

+ E

 ∑
a 6=c,b=d
i,j,k,l∈[m]

Xi,jXk,l

+ E

 ∑
a=c,b=d

i,j,k,l∈[m]

Xi,jXk,l


= m2(m− 1)2E[Xr,s]

2 +m2(m− 1)

( ∑
b∈Bad

(BP(b) +BQ(b))BP(i)BQ(i)

)
+m2E[Xr,s]

≤ m4E[Xr,s]
2 +m3

( ∑
b∈Bad

(BP(b) +BQ(b))BP(b)BQ(b)

)
+m2E[Xr,s]
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Then,428

E[X]2

E[X2]
>

m4E[Xr,s]
2

m4E[Xr,s]2 +m3
(∑

b∈Bad(BP(b) +BQ(i))BP(i)BQ(b)
)

+m2E[Xr,s]

=
1

1 +m−1
(∑

b∈Bad(BP(b)+BQ(b))BP(b)BQ(b)

(
∑

b∈Bad BP(b)BQ(b))
2

)
+m−2E[Xr,s]−1

We will now focus on finding the maximum for ratio of summations:429

∑
b∈Bad(BP(b) +BQ(b))BP(b)BQ(b)(∑

b∈BadBP(b)BQ(b)
)2 =

∑
b∈Bad

(√
BP(b)
BQ(b) +

√
BQ(b)
BP(b)

)
(BP(b)BQ(b))3/2(∑

b∈BadBP(b)BQ(b)
)2

(If b ∈ Bad then BP(b)/BQ(b) ∈ [5−1, 2]) ≤
(
√

1/5 +
√

5)
∑

b∈Bad
(BP(b)BQ(b))3/2(∑

b∈BadBP(b)BQ(b)
)2

(Using the monotonicity of `p norms) <
3(∑

b∈BadBP(b)BQ(b)
)1/2 = 3E[Xr,s]

−1/2

Thus,430

E[X]2

E[X2]
>

1

1 + 3m−1E[Xr,s]−1/2 +m−2E[Xr,s]−1

>
1

5
(Since m2E[Xr,s] ≥ 1)

The Chebyshev bound from 2 tells us that Pr[|X − E[X]| < E[X]] > E[X]2/E[X2] > 1
5 . Thus,431

Pr[X > 0] >
1

5

Pr[X ≥ 1] >
1

5
(Since X takes only integer values)

A.4 Proof of Proposition 5432

Proposition 5. Let P,Q be distributions and let p ∼ P and q ∼ Q. Then,433

1. If d∞(P,Q) < ε then434

Q(p)

Q(p) +Q(q)
≥ P(p)

P(p) + (1 + 2ε
1−ε )P(q)

2. If dTV (P,Q) > ε1, then for 0 ≤ α < ε1, with probability at least (dTV (P,Q)− α)/2,435

Q(p)

Q(p) +Q(q)
<

P(p)

P(p) + (1 + α)P(q)

Proof. If d∞(P,Q) < ε then436

Q(p)

Q(p) +Q(q)
≥ P(p)(1− ε)
P(p)(1− ε) + (1 + ε)P(q)

=
P(p)

P(p) + (1 + 2ε
1−ε )P(q)

and hence we show the first part of the claim.437

16



For the second part of the proof we introduce the some sets. Let H0 = {h|1 ≤ Q(h)
P(h) < 1 + α}438

and H1 = {h|1 + α ≤ Q(h)
P(h)} and H = h0 ∪H1. Similarly define, L0 = {`|1 − α < Q(`)

P(`) < 1},439

L1 = {`|Q(`)
P(`) ≤ 1− α} and L = L0 ∪ L1.440

Now consider that we have a pair of samples, p ∼ P and q ∼ Q. We know that either P(L) ≥ 1/2441

or P(H) > 1/2.442

P(L) ≥ 1/2: We see that Pr[p ∈ L] ≥ 1/2. Then from the definition of h0, Q(h0)−P(h0) < α443

and recall thatQ(H)−P(H) = dTV (P,Q). Thus we have thatQ(H1)−P(H1) > dTV (P,Q)−α444

and hence Pr[q ∈ H1] > dTV (P,Q)−α. We can now confirm that q ∈ H1 ∧ p ∈ L with probability445

at least (dTV (P,Q)− α)/2. Then,446

Q(p)

Q(p) +Q(q)
<

P(p)

P(p) +Q(q)
(From P(p) > Q(p))

<
P(p)

P(p) + (1 + α)P(q)
(Since q ∈ H1)

P(H) > 1/2: We see that Pr[q ∈ H] ≥ 1/2. Then we have that P(L0)−Q(L0) < α and also that447

P(L) −Q(L) = dTV (P,Q), we have that P(L1) −Q(L1) < dTV (P,Q) − α. Then, we deduce448

that probability at least (dTV (P,Q)− α)/2, q ∈ H ∧ p ∈ L1. Then,449

Q(p)

Q(p) +Q(q)
<

Q(p)

Q(p) + P(q)
(From P(q) < Q(q))

<
P(p)(1− α)

P(p)(1− α) + P(q)
(Since p ∈ L1)

<
P(p)

P(p) + (1 + α)P(q)

450

A.5 The outbucket subroutine451

Algorithm 4 OutBucket(BP , BQ, k, θ, δ)

1: Sample max
(

4(k+1)
θ2 , 8 ln(4/δ)

θ2

)
times from BP and BQ and construct empirical distributions

B̂P and B̂Q.
2: Return dTV (B̂P , B̂Q)
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B Data missing from the main paper452

Barbarik2 Pacoco

Benchmark Dimensions Result # of samples Result # of samples

SetTest.sk_9_21 21 R 2817 R 58000
s27_7_4 7 R 4789 R 30000

polynomial.sk_7_25 25 R 4789 R 66000
s27_15_7 7 R 4789 R 30000

Pollard.sk_1_10 10 R 7606 R 36000
s298_3_2 17 R 57431 R 50000
s27_3_2 7 R 62220 R 30000

s27_new_15_7 7 R 128264 R 30000
s444_3_2 24 R 848148 R 64000
s526a_3_2 24 R 848148 R 64000

s27_new_3_2 7 R 905579 R 30000
s298_7_4 17 R 12708989 R 50000

s510_15_7 25 R 12708989 R 66000
s1488_15_7 14 R 12708989 R 44000

s27_new_7_4 7 A 23997012 R 30000
s298_15_7 17 R 38126967 R 50000
s526_3_2 24 TO - R 64000
s420_3_2 34 TO - R 83000

s420_new1_3_2 34 TO - R 83000
s382_3_2 24 TO - R 64000
s641_3_2 54 TO - R 123000

111.sk_2_36 36 TO - R 87000
s526_7_4 24 TO - R 64000
s510_3_2 25 TO - R 66000
7.sk_4_50 50 TO - R 115000
56.sk_6_38 38 TO - R 91000
s820a_15_7 23 TO - R 62000

ProjectService3.sk_12_55 55 TO - R 125000
s420_7_4 34 TO - R 83000
s832a_7_4 23 TO - R 62000

s420_new1_7_4 34 TO - R 83000
s420_15_7 34 TO - R 83000

s420_new_7_4 34 TO - R 83000
s713_3_2 54 TO - R 123000

s526a_15_7 24 TO - R 64000
s1196a_7_4 32 TO - R 80000
81.sk_5_51 51 TO - R 117000

s420_new_3_2 34 TO - R 83000
s349_15_7 24 TO - R 64000
s344_15_7 24 TO - R 64000
s713_7_4 54 TO - R 123000

77.sk_3_44 44 TO - R 103000
s420_new_15_7 34 TO - R 83000

s832a_3_2 23 TO - R 62000
UserServiceImpl.sk_8_32 32 TO - R 80000

19.sk_3_48 48 TO - R 111000
s953a_7_4 45 TO - R 105000
s349_7_4 24 TO - R 64000

s444_15_7 24 TO - R 64000
LoginService2.sk_23_36 36 TO - R 87000

29.sk_3_45 45 TO - R 105000
s1238a_3_2 32 TO - R 80000
s1488_3_2 14 TO - R 44000
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s344_7_4 24 TO - R 64000
s1196a_3_2 32 TO - R 80000
s444_7_4 24 TO - R 64000

51.sk_4_38 38 TO - R 91000
57.sk_4_64 64 TO - R 143000
53.sk_4_32 32 TO - R 80000
s832a_15_7 23 TO - R 62000
s953a_3_2 45 TO - R 105000
63.sk_3_64 64 TO - R 143000
s526_15_7 24 TO - R 64000

110.sk_3_88 88 TO - R 190000
s349_3_2 24 TO - R 64000
s820a_3_2 23 TO - R 62000

s1196a_15_7 32 TO - R 80000
10.sk_1_46 46 TO - R 107000
s1238a_7_4 32 TO - R 80000

s420_new1_15_7 34 TO - R 83000
s344_3_2 24 TO - R 64000

s953a_15_7 45 TO - R 105000
s526a_7_4 24 TO - R 64000
80.sk_2_48 48 TO - R 111000
32.sk_4_38 38 TO - R 91000
s820a_7_4 23 TO - R 62000
s382_15_7 24 TO - R 64000
17.sk_3_45 45 TO - R 105000
s382_7_4 24 TO - R 64000
s641_7_4 54 TO - R 123000

s1238a_15_7 32 TO - R 80000
s838_7_4 66 TO - R 147000

27.sk_3_32 32 TO - R 80000
55.sk_3_46 46 TO - R 107000

109.sk_4_36 36 TO - R 87000
70.sk_3_40 40 TO - R 95000
s838_3_2 66 TO - R 147000

Table 2: Performance of Pacoco. We experiment with 87 benchmarks, and out of the 87 benchmarks.
In the table ‘TO’ represents that either the tester timed out or asked for more than 108 samples. The
value of the parameter for closeness is ε = 0.05, for farness is η = 0.9 and for confidence is δ = 0.2.
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