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Appendix A. Limitations and Discussions1

A limitation of the present study that is worth acknowledging lies in the computational cost2

associated with LLMs. While our approach significantly enhances sample efficiency, it is3

important to recognize that querying massive LLMs may introduce an additional overhead4

in terms of time and computation. To mitigate this, a strategy could involve distilling the5

LLM into more compact actor networks, similar to Parisotto and Salakhutdinov (2021). In6

addition, strategies such as quantization, limiting the number of output tokens, or staged7

speculative decoding Spector and Re (2023) can be employed to accelerate their inference.8

It is important to note, however, that these computational constraints do not significantly9

impact the action generation task due to the minimal number of tokens it generates.10

As pointed out in some recent papers Nair et al. (2018), exploring the task following11

sub-optimal demonstrations often results in poor performance or a suboptimal policy Du12

et al. (2023). Conversely, distilling a generative model through an exploration bonus has13

been shown to enable learning better-than-expert performance, even from a noisy expert Yu14

et al. (2020). Thus, iLLM relies on curiosity-driven exploration to enable better-than-llm15

performance. Morevoer, this design also offers modularity, allowing the integration of any16

language tasks such as summarization or planning to guide the agent’s exploration.17

In the action generation task, we select actions based on the highest log probability18

rather than generating actions directly. A significant challenge with direct action generation19

is the variability in the format of the generated actions, necessitating an additional step20

to map these actions to the environment’s action space. By selecting the action with the21

highest log probability, we bypass this step. Besides, the selected environments did not22

require complex action descriptions, alleviating the need to generate actions represented by23

sentences. We leave to future work to explore this direction further.24

Another avenue for improvement is to leverage self-reflection on text observations and25

translated state-action pairs. Self-reflection mechanisms Park et al. (2023) that enable the26

agent to assess the quality and informativeness of textual observations could refine the27

summarization process. By employing self-assessment, the agent may learn to prioritize28

and extract key information, ultimately leading to more concise and informative textual29

representations.30

We also aim to explore alternative formulations of intrinsic rewards. In our current31

implementation, these rewards are based on the similarity between the LLM’s predictions32

and the outputs from the action/history compression heads. In future work with richer33

environments, we anticipate using more sophisticated methods for estimating the similarity34

© 2024 .



Algorithm 1 iLLM(hop) Algorithm

Require: Interaction budget N , Horizon T , Policy π, Large language model LLM , Action
generation head f

a
, History compression head f

hc
, Environment env

1: for i ← 1 to N do
2: o1 ← env.reset()
3: for t ← 1 to T do
4: xt ← E

⊤
softmax(βEP(ot ⋅ at−1)) {Translated representation}

5: Zh ← LLM(ct−1, xt) {History representation}
6: Z

′

p ← get action prompt() {Action generation prompt}
7: Z

′′

p ← get history prompt() {History compression prompt}
8: āt ← maxai∈{1,...,K} LLM(ai∣Zh, Z

′

p) {Get next action from the LLM}
9: s̃t ←σ(LLM(Zh, Z

′′

p)) {Get mean-pooled representation of generated summary}
10: Call policy π(CNN(ot) ⋅Zh) {Sample policy and get outputs of the two heads f

a
,

f
hc}

11: Compute intrinsic rewards r
a
t and r

hc
t based on head outputs, and āt and s̃t, re-

spectively {Intrinsic Rewards}
12: Store r

∗
t = rt + bt = rt + r

a
t + r

hc
t along with standard experience in optimization

batch Bi {Store agent’s experience}
13: end for
14: Update(π) using Bi {Update the policy}
15: end for=0

between the agent’s trajectory and those predictions, such as using a CLIP-based objective35

Yuan et al. (2023).36

A promising research direction that emerges from our work is the refinement of the37

mapping process between state-action pairs and the LLM’s internal representation. While38

iLLM successfully harnesses Hopfield networks to align them, there is room for further39

optimization. Advancements in multimodal techniques for semantically rich text encoding40

and decoding may play an important role in enhancing the agent’s capacity to interpret and41

respond to translated token inputs Wang et al. (2023). We also plan to incorporate modern42

Hopfield networks to further mitigate the alignment gap Fürst et al. (2022).43

Finally, action generation and history compression tasks are less helpful in domains44

where human common sense is irrelevant or cannot be expressed in language (e.g., fine-45

grained manipulation), or action information is not naturally encoded as a language string.46

An avenue for future work is prompt engineering in order to craft more suitable language47

tasks.48

Appendix B. Implementation Details49

As stated previously, PPO was used as our policy learning method. We choose AdamW50

Loshchilov and Hutter (2019) as optimizer for all environments with default values for51

weight decay, and clip the norm of the gradients to 0.5. In all experiments, we utilized the52

4-bit quantized version of Transfo-XL 280M Dai et al. (2019). Default values were kept for53
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all parameters, except temperature, which was set to 0 to ensure deterministic responses.54

This language model was employed to compute the embeddings of state-action descriptions55

Zh. Similarly, we embedded the action generation and summarization prompts Zp with the56

same embedding model. To accelerate the LLM inference, we utilized Lamorel lam (2023)57

and caching for the action generation and history compression tasks. Furthermore, querying58

of the LLM for the two language tasks took place in-batch, following the completion of each59

rollout. Note that due to image-based tasks, we could not report the results of Pangu and60

PAE in some experiments.61

In iLLM(obs), the policy takes as input the current observation encoded through a CNN.62

In iLLM(hop), the current observation is encoded with a CNN and concatenated with Zh63

to form the input for the policy. As mentioned above, the Hopfield module is specifically64

designed to handle multimodal inputs, such as visual observations, textual descriptions, and65

numerical data. By translating these diverse inputs into a unified token embedding space,66

the Hopfield module allows the LLM to process and integrate information from multiple67

modalities effectively.68

f
a
and f

hc
are parametrized by two fully connected layers with hidden dimensions69

1024. To maintain a consistent scale of the intrinsic rewards, it is useful to normalize70

them. This can be achieved by dividing the intrinsic rewards by a running estimate of the71

standard deviations of the sum of discounted intrinsic rewards. We set λ = 0.8 and β = 0.572

to weight the intrinsic rewards. The simplified pseudo-code demonstrating the training73

procedure of iLLM(hop) is depicted in Alg 1, where, for the sake of clarity, we purposely74

show iLLM querying the LLM after each interaction with the environment. Note that action75

generation and history compression queries (lines 8-9) can be performed in-batch following76

the competition of each rollout to reduce the computational cost.77

A graphical illustration of iLLM is provided in Figure 1 of the main manuscript. First,78

the LLM first retrieves a representation of the recent (action,observation) pairs, which is79

aligned with its internal representation (input: (ot ⋅ at−1), output: Zh). If using text-based80

observations (iLLM(obs)), only the second stage is needed. In this stage, a question prompt81

Zp along with the aligned representation Zh are passed through the LLM in order to obtain82

either the next action or a summary of the observation (input: [Zp, Zh], output: an action83

āt or a summary of action-observation pairs). Finally, an intrinsic reward is derived from84

these next action and summary predictions.85

B.1. State-Action History Representation86

We now describe the representations of state-action history Zh that were used in iLLM(obs)87

and iLLM(hop).88

In iLLM(obs), the agent’s recent history consists of the last three state-action pairs. The89

description of the agent’s history, Zh, inputted into the LLM was formatted as follows:90

91

1 Observation 0: {obs 0}92

2 Action 0: {act 0}93

3 Observation 1: {obs 1}94

4 Action 1: {act 1}95

5 Observation 2: {obs 2}96

6 Action 2: {act 2}97
98



where obs and act are the (text-based) descriptions of the observations at time t and ac-99

tions performed by the agent.100

101

If using the Hopfield module (iLLM(hop)), Zh represents the hidden states from the102

last hidden layer of the LLM, corresponding to the state-action token. In detail, the input103

to the Hopfield module consists of flattened grayscaled observations concatenated with the104

previous action taken (one-hot encoded). The output of the Hopfield module xt is then105

passed through the LLM to obtain the state-action token Zh.106

B.2. Action Generation and History Compression Tasks107

This section provides details about the action generation and history compression prompts.108

As described above, Zp refers to the text embeddings obtained from tokenized text prompts.109

That is, we employed the base Transfo-XL 280M tokenizer to tokenize the prompts and110

leveraged the word embeddings of the Transfo-XL model to extract the corresponding em-111

beddings.112

113

The action generation prompt format was set as:114

115

1 You are an expert player playing {task}116

2 Valid actions: {possible actions separated by commas}117

3 You see: {agent history}118

4 Suggest the best action the player can take. Do not recommend119

actions that are not possible or not desirable , such as ‘‘Eat door’’120

. Prioritize actions which involve the object you are facing or121

which the agent has not achieved before. What do you do?122
123

where {agent history} was replaced by Zh.124

125

The history compression (i.e., summarization) prompt format had the following structure:126

127

1 You are an expert player playing {task}128

2 Recent player ’s history :: {agent history}129

3 Summarize the main points of the player ’s history into a short130

text:131
132

where {agent history} was replaced by Zh. We restricted the number of tokens produced133

to L = 64 in the history compression task.134

Appendix C. Environments135

C.1. BabyAI-Text136

BabyAI-Text is a text-based environment that encapsulates BabyAI, providing a textual137

description of each observation Chevalier-Boisvert et al. (2018a). We evaluate iLLM on a138

set of nine tasks in the BabyAI-Text environment Chevalier-Boisvert et al. (2018a). The139

agent must navigate in procedurally generated rooms that include distractors — useless140

objects for completing the task.141

We selected the following tasks:142
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• Key corridor, a task that requires to pick up an object which is behind a locked door.143

The key is hidden in another room, and the agent has to explore the environment to144

find it.145

• Obstructed maze, a navigation task where a blue ball is hidden in one of the 4146

corners of a maze. Doors are locked, doors are obstructed by a ball and keys are147

hidden in boxes.148

• Go to, a navigation task that requires reasoning abilities in order to reach the goal149

object.150

• Pick up, a navigation task that combines navigation tasks and picking up the object.151

• Put object A next to object B (put next), a sequence of 3 tasks, including152

reaching object A then reaching object B and finally dropping object A next to object153

B.154

• Open door, a task that requires inferring that a key is useful for unlocking a door,155

finding another key, and finally using the toggle action with the key in the door.156

A textual description consists of a list of template descriptions with the following struc-157

ture:158

159

1 "You see a <object> <location>" if the object is a key , a ball , a160

box , or a wall.161

2 "You see a(n) open/closed door <location>" , if the agent sees a162

door.163

3 "You carry a <object>", if the agent carries an object.164
165

where the <object> is composed of an adjective (among six possible colors: blue, red,166

green, grey, purple, and yellow) and a noun (among four possible: door, key, ball, box).167

The <location> is given as the number of steps right, left, and or forward from the agent168

to the object.169

C.2. MiniHack170

The MiniHack environment based on NetHack (Kuttler et al., 2020) features a larger action171

space compared to BabyAI, with up to 75 distinct actions. Observations are composed172

of a 21 × 79 matrix containing glyph identifiers and a 21-dimensional vector capturing173

agent statistics such as location and health. Additionally, real natural language messages174

received during gameplay are included in a 256-dimensional vector termed as a “message”,175

representing the on-screen display at the screen’s top. Each glyph corresponds to a unique176

entity, denoted by integers ranging from 0 to 5991. Our study focused on five MiniHack177

tasks, encompassing navigation challenges like River-Monster and Multiroom-N4-Monster,178

along with skill acquisition tasks such as LavaCross-Ring, LavaCross-Potion, and LavaCross-179

Full. The navigation tasks in MiniHack test the agent’s ability to navigate diverse obstacles,180

from maneuvering boulders to crossing rivers, while skill acquisition tasks exploit NetHack’s181

vast array of objects, monsters, and dungeon features, exploring their interactions and182

complexities.183



Model N=4 N=8 N=16

RND 0.59± 0.16 0.51± 0.22 0.09± 0.10
NGU 0.51± 0.20 0.42± 0.25 0.11± 0.13
ELLM 0.78± 0.03 0.66± 0.01 0.64± 0.05
APT 0.57± 0.19 0.48± 0.17 0.44± 0.20
ChibiT 0.56± 0.23 0.51± 0.15 0.48± 0.17

iLLM(obs) 0.96± 0.01 0.94± 0.00 0.91 ± 0.02
iLLM(hop) 0.96± 0.00 0.92± 0.01 0.94 ± 0.01

Table 1: Success rate for the agents on the Go To task for different number of distractors
(N ∈ {4, 8, 16}). The success rate is provided over 10 seeds with standard deviation after
100M training steps.

C.3. Crafter184

Crafter is an open-ended environment in which exploration is required to discover long-185

term survival strategies Hafner (2021). It is a 2D variant inspired by Minecraft, featuring186

a procedurally generated and partially observable world world. Crafter enables collecting187

and creating a set of artifacts organized along an achievement tree, which lists all possible188

achievements and their respective prerequisites. Despite lacking a single main task, tracking189

the agent’s advancements along the achievement tree provides insights into its progress190

within Crafter.191

Appendix D. Ablation Results192

D.1. Impact of the Number of Distractors193

This section aims to assess how much distractors impact the proposed method. These194

evaluations were performed in an environment with one room on the Go To task (BabyAI-195

Text). We report in Table 1 the average success rate for 4, 8, and 16 distractors. RND196

and NGU significantly degrade as the number of distractors increases, with a success rate197

decreasing by ≈65% from 4 to 16 distractors. We also observe a slight performance loss198

in iLLM agents when the number of distractors is larger than 8. A potential rationale199

behind this phenomenon is that the LLM effectively directs the iLLM agent’s attention200

to the relevant aspects of the environment, rapidly discarding distractors and noise in the201

observations. On the other hand, model-based curiosity is more impacted by distractors as202

it favors a full exploration of the state space, resulting in the exploration of a larger number203

of irrelevant behaviors. Overall, the present algorithm appears to be reasonably robust to204

distractors.205

D.2. Language Model Tasks206

As described in section 3, iLLM relies on action generation and history compression tasks.207

In this experiment, we evaluate the performance of the proposed method with two other208
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Table 2: Final mean performance (± std) of iLLM(hop) trained with different language
tasks, including action generation (♣), history compression (♥), goal generation (♠), and
plan generation (♦). For the sake of generality, we report results where the recent history
Zh consists of translated state-action pairs, iLLM(hop). Averages over 10 runs.

BabyAI Atari MiniHack

Method GoToObj PutNextLocal MR PrivateEye LavaCross-Full River-Monster

iLLM + ♣ 0.85±0.01 0.43±0.09 2,118±329 3,981±420 0.91±0.01 0.35±0.09
iLLM + ♥ 0.90±0.01 0.41±0.10 2,456±198 3,565±454 0.98±0.03 0.35±0.07
iLLM + ♠ 0.85±0.02 0.42±0.08 2,024±176 3,429±500 0.96±0.02 0.32±0.10
iLLM + ♦ 0.71±0.07 0.12±0.13 1,365±202 2,560±321 0.86±0.09 0.26±0.06

iLLM + ♣ + ♥ 0.92±0.01 0.49±0.12 2,632±277 4,422±376 0.98±0.03 0.38±0.12
iLLM + ♠ + ♦ 0.83±0.05 0.42±0.06 2,139±251 2,945±400 0.89±0.07 0.30±0.08
iLLM + ♣ + ♦ 0.84±0.03 0.45±0.11 2,299±244 3,647±178 0.91±0.01 0.31±0.05
iLLM + ♣ + ♠ 0.93±0.02 0.46±0.05 2,432±199 4,295±420 0.95±0.01 0.34±0.06
iLLM + ♥ + ♠ 0.93±0.01 0.48±0.09 2,312±271 3,999±392 0.98±0.02 0.36±0.08
iLLM + ♥ + ♦ 0.86±0.07 0.39±0.08 2,202±302 2,876±287 0.96±0.01 0.31±0.06

iLLM + ♣ + ♥ + ♠ 0.93±0.03 0.51±0.08 2,553±298 4,500±356 0.97±0.02 0.39±0.10
iLLM + ♣ + ♥ + ♦ 0.89±0.02 0.47±0.08 2,421±230 4,053±312 0.98±0.03 0.36±0.09
iLLM + ♠ + ♥ + ♦ 0.88±0.04 0.45±0.12 2,376±255 3,971±253 0.96±0.01 0.34±0.09
iLLM + ♣ + ♠ + ♦ 0.90±0.03 0.50±0.06 2,112±303 4,421±443 0.94±0.02 0.34±0.07

iLLM + ♣ + ♠ + ♥ + ♦ 0.93±0.02 0.50±0.05 2,510±300 4,499±398 0.96±0.02 0.37±0.05

language tasks, including goal generation and plan generation. For goal generation, we209

queried the LLM with the following instruction:210

211

1 You are an expert player playing {task}212

2 Recent player ’s history: {agent history}213

3 Suggest the next goal to reach based on the things you see and214

previous actions. A goal should either be a single valid word or215

a phrase. Only make suggestions that are reasonable given the216

current scene (e.g. only ‘‘Open door ’’ if a door is visible).217

Prioritize goals that involve the object you are facing or that218

the agent has not achieved before.219
220

and for plan generation:221

222

1 You are an expert player playing {task}223

2 Recent player ’s history: {agent history}224

3 Suggest the best sequence of actions the player can take. An225

action should either be a single valid word or a phrase. Only226

make suggestions that are reasonable given the current scene227

(e.g., only ‘‘Open door ’’ if a door is visible). Prioritize228

actions which involve the object you are facing or which the229

agent has not achieved before. What do you do (include 2-7230

actions)?231
232

The associated heads were trained in the same fashion as the history compression head.233

As shown in Table 2, agents leveraging action generation and history compression tasks234

demonstrate reasonable scores on all tasks. Notably, goal generation achieves high perfor-235

mance on BabyAI-text, but the average return decreases on more complex games such as236



Method MR PrivateEye Gravitar Pitfall Seaquest

PPO 11±4 0.0±0.0 120±14 -7±2 1,245±199
iLLM(hop) 2,632±277 4,422±376 4,044±559 125±24 18,851±2,930
iLLM(hop)(no reward) 1,452±201 2,871±265 2,450±287 3±5 15,888±3,012

Table 3: Performance of iLLM that solely distills an LLM via the action generation and
history compression heads on Atari tasks. Under this setting, iLLM(hop)(no reward) does
not receive any intrinsic rewards. All methods are tested with 10 random seeds. Averages
over 10 runs for 100 million training steps.

Atari. Besides, we find that the model performance saturates when the number of language237

tasks goes larger. Namely, leveraging more language tasks cannot monotonically promote238

performance when the number is larger than 2. Therefore, we empirically set the number239

of tasks to 2 by default. In addition, it is evident that history compression is the reward240

that accelerates the most exploration. In contrast, both action generation and goal gener-241

ation result in slightly lower improvements. Finally, plan generation proved to be the least242

effective reward, which may be attributed to the difficulty of generating meaningful plans243

with a small language model like Transfo-XL.244

D.3. State Visitation245

To test the good exploration coverage of our approach, we trained iLLM(hop) on a procedurally-246

generated environment: MiniGrid-MultiRoom-N6-v0 Chevalier-Boisvert et al. (2018b). Uti-247

lizing MiniGrid-MultiRoom-N6-v0, which involves sequential visits to multiple rooms, fa-248

cilitates a clearer measurement of the exploration progress. Fig. 1 demonstrates that in249

order to remain curious, the agent is pushed to explore distant regions of the state space,250

which entails that its coverage increases over time. Experimental results highlight that251

in procedurally-generated tasks, iLLM provides enough exploration incentive for learning252

useful behaviors. That is, in order to remain curious, agents are pushed to explore diverse253

behaviors, enabling the discovery of new rooms and interactions with the objects. Unlike254

RND and NGU, which spend time to exploring local behaviors that have a low interest,255

iLLM(hop) rapidly drives the agent towards the goal being pursued (red cell).256

D.4. Diverse Exploration257

In this set of experiments, we aim to evaluate the contribution of distilling an LLM to258

the efficacy of our proposed method. One of our assumptions is that appending f
a
and259

f
hc

to the policy and training them to match the pretrained LLM’s outputs enables iLLM260

to leverage world knowledge through their respective gradients. In order to validate this261

hypothesis, we report the results of PPO, iLLM(hop), and iLLM(hop)(no reward) in the five262

Atari games. The latter method was trained without access to the intrinsic rewards. Thus,263

LLM’s prior knowledge is only distilled through gradients of f
a
and f

hc
— the agent does264

not receive an explicit incentive to explore. As indicated in Table 3, in the five tasks, we265

find that distilling an LLM, as done by iLLM(hop)(no reward), leads to higher performance266

compared to plain PPO. This highlights that even in the absence of any intrinsic rewards, the267
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(a) RND (b) NGU

(c) ELLM (d) iLLM(hop)

Figure 1: State visitation heatmaps over 10 runs for RND, NGU, ELLM, and iLLM(hop)
on a random environment from the MiniGrid-MultiRoom-N6-v0 task. The initial agent’s
location is denoted with an orange cell, while the target is denoted with a red cell. We
trained the models for 40m frames.



Method MR PrivateEye Gravitar Pitfall Seaquest

iLLM(hop) 2,632±277 4,422±376 4,044±559 125±24 18,851±2,930
iLLM(hop) (ϱ = 0.50) 1,989±134 3,522±398 3,232±356 65±29 15,437±2,273
iLLM(hop) (ϱ = 1.0) 2,012±209 3,408±401 3,018±410 59±31 13,419±2,414

Table 4: LLM stability study. We report the average reward in randomized-versions of
Atari games. All methods are tested with 10 random seeds. Averages over 10 runs for 100
million training steps.

two prediction heads attached to the policy provide sufficient domain-specific priors to speed268

up the training process. We also see here that iLLM(hop) is more competitive, suggesting269

that including intrinsic rewards is better suited for exploration than agents without access270

to intrinsic rewards.271

D.5. LLM Stability272

One potential drawback of leveraging LLMs is their stability when facing various input273

conditions. As mentioned above, in our experiments, we set the temperature to 0 in order to274

enhance stability. In addition, we observed that limiting the number of tokens produced to275

L = 64 in the history compression task makes predictions more stable. It is also important to276

note that the LLM in our approach is used to encourage exploration through a small reward277

incentive, rather than serving as an oracle providing plans or next actions. This makes iLLM278

inherently more stable than approaches that rely on the LLM for direct decision-making.279

To further validate the stability of iLLM, we study the effect of adding perturbations280

to the observations. Namely, with a probability ϱ ∈ {0.50, 1.0}, a noise pattern (32×32) is281

displayed on the lower right of the observation - TV screen. The noise is sampled from [0,255]282

independently for each pixel. As reported in Table 4, the performance iLLM deteriorates283

due to the stochasticity. Nevertheless, our approach is reasonably robust to randomized284

observations. As iLLM does not directly relies on the LLM’s output but is driven by a285

proxy reward obtained from the LLM, iLLM remains stable under various input conditions.286

Overall, LLM stability does not appear to be a concern for iLLM under our experimental287

design choices, but we leave it to future work to explore this direction further.288

D.6. Impact of the Dimension of the Action Space289

This experiment aims to assess the sensitivity of the present reward to the size of the action290

space by implementing three action space settings on the Go to task:291

• Original: the action space consists of the only 3 useful actions: turn left, turn right,292

go forward.293

• Augmented: the action space consists of the 6 actions that can be performed in the294

environment. The agent can select one action among 3 useful and 3 useless actions295

that are pick up, drop and, toggle.296

• Irrelevant: the action space consists of 9 actions (3 useful and 6 useless with pick up,297

drop, toggle, sleep, do nothing and think). The last three actions have been selected298
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Model Original Augmented Irrelevant

RND 0.51± 0.22 0.42± 0.17 0.27± 0.08
NGU 0.42± 0.25 0.37± 0.21 0.25± 0.09
ELLM 0.66± 0.01 0.60± 0.05 0.55± 0.03
APT 0.48± 0.17 0.46± 0.18 0.42± 0.09
ChibiT 0.56± 0.23 0.51± 0.25 0.45± 0.12

iLLM(obs) 0.94± 0.00 0.88± 0.08 0.81± 0.04
iLLM(hop) 0.92± 0.01 0.89± 0.11 0.83± 0.09

Table 5: Effect of using different action space sizes on iLLM performance in the Go to task.
We report results for three settings: original (3 useful actions), augmented (6 actions), and
irrelevant (9 actions). Results are averaged over 10 trials.

such that they are irrelevant for solving the Go To task and therefore should not299

impact an agent that has knowledge about the world.300

In Table 5, we present the evaluation conducted in an environment comprising 1 room and301

8 distractors. The result of this experiment is that using augmented or irrelevant actions302

does not significantly degrade the performance of the proposed approach, while the average303

reward of other agents decreases with the exception of APT. Upon looking at the videos,304

we observed that other agents tend to frequently select useless and irrelevant actions. On305

the other hand, from the onset of the training, our agents are rewarded for trying useful306

actions first, which allows us to achieve higher sample efficiency.307

D.7. Use of LLM308

At each time step the LLM is first employed to retrieve a representation of the (action,309

observation) pair, which is aligned with its internal representation (input: (ot ⋅at−1), output:310

Zh). Then, a prompt Zp along with the aligned representation Zh are passed through the311

LLM in order to obtain either the next action or a summary of the observation (input:312

Zp, Zh, output: an action āt or a summary of the action-observation pair).313

To illustrate the use of the LLM in our framework, Figure 2 provides an example specific314

to the action generation task. Although we focus on action generation here for brevity, it315

is important to note that task 1 (alignment) is performed only once per time step. The316

same aligned representation, Zh, is then utilized for both the action generation and history317

compression tasks. For simplicity, we assume that Zh is retrieved solely from the most318

recent state-action pair.319

D.8. Choice of Foundation Model320

We now seek to evaluate the performance of our methodology using various foundation321

models on Atari games. Specifically, we compare the results obtained by employing Transfo-322

XL 280M, GPT2 137M, GPT2 870M, Llama2-7b, and Llama-3 8b. The results, presented323

in Table 6, demonstrate that the performance of iLLM is generally robust across different324

foundation models. While LLama3 exhibits a significantly higher average return (t-test325



Figure 2: Example of LLM usage in iLLM for the action generation task. iLLM first aligns
a (action, observation) pair with the internal representation of the LLM. Then, a prompt
along with the aligned representation are passed through the LLM in order to obtain the
next action.

Method MR PrivateEye Gravitar Pitfall Seaquest

iLLM (hop ⋅ Transfo-XL) 2,632±277 4,422±376 4,044±559 125±24 18,851±2,930
iLLM (hop ⋅ GPT2 137) 2,299±256 4,134±350 3,756±498 98±31 16,648±2,615
iLLM (hop ⋅ GPT2 870) 2,524±312 4,288±321 3,877±522 110±22 17,461±2,646
iLLM (hop ⋅ Llama2) 2,953±269 4,954±341 4,644±488 176±31 20,129±2,424
iLLM (hop ⋅ Llama3) 3,220±312 5,098±430 4,831±502 277±55 23,980±2,731

Table 6: Performance of iLLM with different types of foundation LLMs on Atari tasks. All
methods are tested with 10 random seeds. Averages over 10 runs for 100 million steps.
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p < 0.05), Transfo-XL achieves similar performance but with a much lower inference time.326

Namely, Transfo-XL model has only 280M parameters compared to the 8B parameters of327

LLama3.328
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