
Sketching Algorithms for Sparse Dictionary Learning:
PTAS and Turnstile Streaming

Gregory Dexter
Department of Computer Science

Purdue University
gdexter@purdue.edu

Petros Drineas
Department of Computer Science

Purdue University
pdrineas@purdue.edu

David P. Woodruff
Computer Science Department

Carnegie Mellon University
dwoodruf@cs.cmu.edu

Taisuke Yasuda
Computer Science Department

Carnegie Mellon University
taisukey@cs.cmu.edu

Abstract

Sketching algorithms have recently proven to be a powerful approach both for
designing low-space streaming algorithms as well as fast polynomial time approxi-
mation schemes (PTAS). In this work, we develop new techniques to extend the
applicability of sketching-based approaches to the sparse dictionary learning and
the Euclidean k-means clustering problems. In particular, we initiate the study of
the challenging setting where the dictionary/clustering assignment for each of the
n input points must be output, which has surprisingly received little attention in
prior work. On the fast algorithms front, we obtain a new approach for designing
PTAS’s for the k-means clustering problem, which generalizes to the first PTAS
for the sparse dictionary learning problem. On the streaming algorithms front, we
obtain new upper bounds and lower bounds for dictionary learning and k-means
clustering. In particular, given a design matrix A ∈ Rn×d in a turnstile stream, we
show an Õ(nr/ϵ2 + dk/ϵ) space upper bound for r-sparse dictionary learning of
size k, an Õ(n/ϵ2 + dk/ϵ) space upper bound for k-means clustering, as well as
an Õ(n) space upper bound for k-means clustering on random order row insertion
streams with a natural “bounded sensitivity” assumption. On the lower bounds
side, we obtain a general Ω̃(n/ϵ+ dk/ϵ) lower bound for k-means clustering, as
well as an Ω̃(n/ϵ2) lower bound for algorithms which can estimate the cost of a
single fixed set of candidate centers.

1 Introduction

A classic idea in machine learning and signal processing for efficiently handling large datasets is to
approximate them by simpler or more structured surrogate datasets. Many methods in this direction
have long been considered, including low rank approximation, which approximates a given dataset
by one that lies on a low-dimensional subspace, k-means clustering, which approximates a given
dataset by at most k distinct points, and sparse dictionary learning Olshausen and Field [1997], which
approximates a given dataset by linear combinations of elements of a small dictionary of size k with
r-sparse coefficient vectors (i.e., a vector with at most r nonzero entries). We focus on the latter two
problems in this work:
Definition 1.1 (r-sparse dictionary learning). Let {ai}ni=1 ⊆ Rd be a set of n vectors in d dimensions,
and let A ∈ Rn×d be the matrix with the ith row set to ai. Then for a matrix X ∈ Rn×k with

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

r-sparse rows and a dictionary D ∈ Rk×d, we define the dictionary learning cost to be

cost(X,D) := ∥XD−A∥2F
In the r-sparse dictionary learning problem, we seek to minimize cost(X,D) over all X ∈ X and
D ∈ Rk×d, where X denotes the set of all n× k matrices with r-sparse rows.

Definition 1.2 (Euclidean k-means clustering). Let {ai}ni=1 ⊆ Rd be a set of n vectors in d
dimensions, and let A ∈ Rn×d be the matrix with the ith row set to ai. Then, for a matrix X ∈ Rn×k

with standard basis vectors in its rows and a set of centers C ∈ Rk×d, we define the k-means
clustering cost to be

cost(X,C) := ∥XC−A∥2F .
In the k-means clustering problem, we seek to minimize cost(X,C) over all X ∈ X and C ∈ Rk×d,
where X denotes the set of all n× k matrices with standard basis vectors as rows.

While dictionary learning and clustering have found extraordinary success in various applications
in practice, they are known to be computationally difficult problems to solve [Mahajan et al., 2012,
Natarajan, 1995], and thus there has been intense focus on developing approximation algorithms and
heuristics for these problems, such as those based on greedy methods [Lloyd, 1982, Das and Kempe,
2011] or convex relaxations [Donoho and Elad, 2003, Fuchs, 2004, Cohen-Addad et al., 2022a].

In this work, we study algorithms for sparse dictionary learning and k-means clustering in two
distinct settings via a unified set of techniques based on sketching. Sketching [Woodruff, 2014b],
broadly speaking, refers to techniques for compressing large matrices by linear maps, and includes
methods such as oblivious sketching and nonuniform sampling. Classically, sketching has been
applied to design low-memory algorithms in the streaming setting, when the input is presented to
the algorithm as a sequence of updates. More recently, sketching has been shown to be invaluable
for designing fast algorithms as well. In particular, there has been a line of work which shows how
sketching techniques can be applied to obtain polynomial time approximation schemes (PTAS) for a
variety of NP-hard problems ranging from clustering [Feldman et al., 2007] to weighted low rank
approximation [Razenshteyn et al., 2016] to tensor decompositions [Song et al., 2019]. We study
such sketching-based algorithms for sparse dictionary learning and Euclidean k-means clustering,
both in the offline setting where we obtain the first PTAS for sparse dictionary learning, as well as in
the turnstile streaming and other streaming models. In particular, in the streaming setting, we initiate
the study of solving these problems in the setting where the algorithm must output the assignment of
the points to the dictionary/clustering, which has received surprisingly little attention in prior work.

1.1 Our contributions

1.1.1 PTAS for dictionary learning and clustering

We start with a discussion of our results on designing fast PTAS’s. Our main contribution that we
highlight from this section is the first PTAS for sparse dictionary learning, which also gives a new
and simple approach towards designing a PTAS for k-means clustering.

A typical approach for designing PTAS’s for shape fitting problems such as dictionary learning and
clustering is to first find a smaller instance whose solution approximates the original instance, and
then to solve the smaller instance using any algorithm, where even an inefficient algorithm will be
tractable due to the smaller size of the instance. A representative work which takes such an approach
for the k-means clustering problem is that of Feldman et al. [2007], which uses coresets to implement
the first step of finding a smaller instance. Here, coresets for k-means clustering are a weighted
subset of the original data points such that the cost of any candidate set of centers approximates the
cost when applied to the original dataset. Furthermore, the size of this coreset can be taken to be
poly(k/ϵ), and thus solving for an optimal set of centers on this subset of points can be done in time
independent of the number of points n. Due to this natural approach, there has been a long line of
work on obtaining smaller coresets for k-means clustering [Feldman and Langberg, 2011, Braverman
et al., 2016, Bachem et al., 2018, Cohen-Addad et al., 2021, 2022b,c].

On the other hand, for the sparse dictionary learning problem, similar results are strikingly lacking.
The only previous work we are aware of is a coreset construction for the sparse dictionary learning
problem due to Feldman et al. [2013]. However, the construction of the coreset in this work requires
an algorithm for computing an approximately optimal dictionary, which prevents its use in designing

2

fast PTAS’s to solve the dictionary learning problem in the first place. To address this problem, we
first show that a completely different coreset technique due to Tukan et al. [2022] for the projective
clustering problem can in fact be applied to the sparse dictionary learning problem. Notably, this
technique uses John ellipsoids to construct coresets rather than using a nearly optimal solution to
the dictionary learning problem, and thus avoids computing approximately optimal dictionaries.
In turn, this allows us to obtain the first PTAS for the dictionary learning problem. Our argument
additionally combines this coreset construction with a sparsity-counting technique together with
polynomial system solvers Renegar [1992a,b] to efficiently solve a smaller version of the original
problem. Our techniques also yield a new PTAS for k-means clustering, which is arguably simpler
than prior approaches such as the algorithm of Feldman et al. [2007]. We give a full discussion of our
results and techniques for our PTAS for sparse dictionary learning in Section 2.

1.1.2 Dictionary learning and clustering on streams

As our next contribution, we study algorithms for dictionary learning and clustering in turnstile
streams and other related models of streaming. In the turnstile streaming model, the input undergoes
arbitrary entrywise insertions and deletions:

Definition 1.3 (Turnstile stream). We say that an input matrix A ∈ Rn×d is presented in a turnstile
stream if A is initialized to 0 and receives entrywise updates Ai,j ← Ai,j +∆ for ∆ ∈ R.

We initiate a systematic study of the dictionary learning and clustering problems in the setting
where the assignment of the points to their sparse set of dictionary elements or clusters must be
output together with the dictionary/cluster centers. Indeed, even for the popular Euclidean k-means
clustering problem, almost all prior work that we are aware of only focus on outputting either only
the cluster partitions, or the centers, but do not study the problem of recovering both. We address this
problem by providing a dimensionality reduction technique that applies to k-means, sparse dictionary
learning, and more generally to any problem of the form minX∈X ,D∈Rk×d ∥XD−A∥2F .

A typical approach for designing low-space streaming algorithms for clustering is to apply the standard
Johnson–Lindenstraus lemma [Johnson and Lindenstrauss, 1984, Boutsidis et al., 2010, Cohen et al.,
2015, Becchetti et al., 2019, Makarychev et al., 2019]. This result states that if G ∈ Rd×s is an
appropriately scaled dense sub-Gaussian matrix for s = O(ϵ−2 log(k/ϵ)), then for any partition of A
into k clusters, the k-means clustering cost of AG approximates the k-means clustering cost of A up
to a (1± ϵ) factor. Furthermore, AG can be efficiently maintained in the turnstile streaming model
(Definition 1.3) using just ns = Õ(ϵ−2n) space, due to the linearity of the sketch G. Note however
that, naïvely, we cannot retrieve the corresponding centers of a clustering found by this method, since
we have only stored the s-dimensional sketches of the n points, and additional information must be
stored in order to retrieve d-dimensional cluster centers which achieve a (1 + ϵ) approximation. In
fact, we note in Theorem 4.1 that there is in fact a Ω̃(dk/ϵ) space lower bound if we wish to output
centers C ∈ Rk×d which achieve a (1 + ϵ) approximation, so the sketch AG is provably insufficient
for outputting both a nearly optimal assignment X and centers C when n = õ(ϵdk). We give a full
discussion of our approaches for sketching and streaming algorithms for k means clustering and
dictionary learning and how we overcome this problem in Sections 2 and 3.

On the other hand, a study of lower bounds for the k-means clustering problem in the streaming
setting when the assignment of points must be output is notably lacking in prior work as well. The
main challenge in this setting is in obtaining the right dependence on n and ϵ. Indeed, an Ω(n) lower
bound is immediate, since the size of the output is at least Ω(n) when we need to output assignments
of the n points to its appropriate cluster (in fact, we show in Theorems 4.3 and 4.4 that an Ω(n) lower
bound follows even for outputting a constant factor approximation of the cost or centers). On the
other hand, the previous upper bound using the Johnson–Lindenstrauss lemma to compute a nearly
optimal assignment to clusters requires Õ(ϵ−2n) bits of space. Note that there are many lower bounds
that show that roughly ϵ−2 dimensions are required to apply the Johnson–Lindenstrauss lemma in
various settings Nelson and Nguyên [2014], Kane et al. [2010], Larsen and Nelson [2016, 2017],
Makarychev et al. [2019]. However, it is not clear whether or not this implies that ϵ−2 bits must be
stored for all n points in order to cluster them to a (1 + ϵ)-approximately optimal clustering solution.
Indeed, it may be possible that ϵ−2 bits are required only for much fewer than n points, while the
vast majority of the n input points requires only Õ(n) bits of space to assign to an approximately
optimal center.

3

We present two lower bounds to partially address the question of impossibility results for assigning
points to clusters in turnstile streams. Our main lower bound result is the following, which establishes
an Ω̃(ϵ−1n) lower bound to output a (1 + ϵ)-nearly optimal clustering. While this does not match the
upper bound given by the Johnson–Lindenstrauss lemma, it shows that we cannot hope for a Õ(n)
upper bound in the turnstile streaming model in general.

Theorem 1.1 (Informal restatement of Theorem C.1). Let k = d = Õ(1/ϵ). Suppose a turnstile
streaming algorithm outputs centers {ĉj}kj=1 ⊆ Rd as well as assignments of n points to the k
centers, which achieves a (1 + ϵ)-approximately optimal solution to the k-means clustering problem.
Then, the algorithm must use at least Ω̃(n/ϵ) bits of space over any constant number of passes.

As a second lower bound result, we also show that the Johnson-Lindenstrauss lemma is nearly tight
if we require our algorithm to give a nearly optimal assignment of the input points to a fixed set of
candidate centers. That is, we show in Theorem 4.2 that there is a fixed set of centers such that, if a
turnstile streaming algorithm can assign each of the n input points to a cluster such that the cost is at
most (1 + ϵ) times the cost of the optimal assignment, then at least Ω(ϵ−2n) bits must be stored. A
more detailed discussion of our lower bounds is given in Section 4.

Finally, we show that under some natural settings, one can obtain upper bounds that circumvent the
lower bounds presented above. Indeed, we show that if we work in the random order row arrival
streaming model, in which the input stream corresponds to the rows of A that arrive in a uniformly
random order, then we can obtain upper bounds that depend on the maximum sensitivity of the input
stream, and in particular, we obtain an upper bound using only Õ(n) bits of space if the maximum
sensitivity is sufficiently small (Theorem 4.5). Here, a bounded sensitivity assumption states that
there are no points that can take up a significant fraction of the objective function, and can also be
interpreted as a way to formalize a “well-clustered” instance.

2 Fixed parameter PTAS for sparse dictionary learning

2.1 PTAS for r-sparse dictionary learning

In this section, we provide an algorithm which solves the r-sparse dictionary learning problem
(Definition 1.1) in time polynomial in the input matrix size (n) and dimension (d) up to ϵ-relative
error, for fixed k and ϵ. Additionally, we show that a similar approach can be used to provide an
algorithm for k-means (Definition 1.2) that matches the current best dependency on n, d, ϵ and k up
to lower terms. First, we introduce a dimensionality reduction method that applies to both problems.

2.2 Dimensionality reduction

Our first step is to reduce the dimensionality of the given problem. Since the only difference between
k-means and sparse dictionary learning is the constraint on the left factor, X, we can use the same
sketching approach to reduce both problems. Consider the following general definition:

General problem: Let X ⊂ Rn×k and A ∈ Rn×d. Let k ≪ n, d. Define the optimal solution as:

(X∗,D∗) = argmin
X∈X ,D∈Rk×d

∥XD−A∥2F (1)

The following theorem states that one may efficiently reduce the dimensionality of A in sparse
dictionary learning or k-means. We briefly sketch the ideas behind the reduction. Intuitively, the
regression guarantee of Theorem 3.1 in Clarkson and Woodruff [2009] states that if S is a rank k ≪ d
ℓ2-embedding matrix, then D̃ = argminD∈Rk×d ∥S(X∗D −A)∥2F will be a good approximation
to the optimal solution of the original problem. While we do not know X∗, this guarantee implies
that there is an approximately optimal dictionary, D̃, in the row space of SA. We can then restrict
the optimization problem to consider only dictionaries in this lower dimensional space. Therefore,
we only need to consider the error residual in this lower dimensional space, so we may reduce the
dimension of the problem by applying an affine-embedding matrix T and then applying SVD to find
the dominant singular subspace of SAT. Finally, we project the rows of A to this dominant subspace.
We can then solve the lower dimensional problem and map the solution to the original space.

4

Theorem 2.1. There is an algorithm which solves the problem in (1) up to ϵ ∈ (0, 1) relative error
with constant probability in O(nnz(A) + (n+ d) poly(k/ϵ)) time plus the time needed to solve:

min
X∈X ,D∈Rk×s

∥XD−A′∥2F ,

to within ϵ-relative error for s = O(k log(k)/ϵ) and some A′ ∈ Rn×s with constant probability.

In the rest of this section, we assume that d = poly(k/ϵ) for clearer exposition, since the above
theorem implies we can reduce to this case efficiently.

2.3 Algorithm for sparse dictionary learning

The first component of our algorithm for sparse dictionary learning is a coreset construction that
reduces the size of the problem from n to a size that is logarithmic in n. We achieve this by first
leveraging an existing coreset construction for projective clustering by Tukan et al. [2022]. In the
(ℓ,m)-projective clustering problem, the goal is to find a set of ℓ m-dimensional subspaces that
minimizes the sum of the squared Euclidean distances of the input vectors {ai}ni=1 to the closest
subspace. Observe that, in the r-sparse dictionary problem, the minimum cost of a dictionary is the
sum of the squared Euclidean distances of the input vectors to the

(
k
r

)
subspaces spanned by any

subset of r vectors of the k vectors in the dictionary. Hence, a coreset which preserves the projective
clustering cost when ℓ =

(
k
r

)
will also preserve the cost of a dictionary in sparse dictionary learning.

After applying the coreset, we have reduced the size of the sparse dictionary problem to be at most
logarithmic in n. This allows us to guess the sparsity pattern of the optimal left factor X∗, since at
most r entries in each row of X∗ may be nonzero. For each guess of the sparsity pattern of X∗, we
can find an approximately optimal solution under this constraint by recognizing this as a polynomial
optimization problem. We apply the decision algorithm of Renegar [1992a] using binary search to
determine each entry of D and the nonzero entries of X as done in Razenshteyn et al. [2016]. At
some point we guess the sparsity pattern of X∗, and hence attain an ϵ-relative error solution to the
sparse dictionary problem. The next theorem formally states the assumptions and guarantees of our
algorithm, which is formalized in Algorithm 1 in the appendix.
Theorem 2.2. For an input for the r-sparse dictionary learning problem (Definition 1.1) with error
tolerance ϵ ∈ (0, 1) such that the entries of A have bounded bit complexity, Algorithm 1 returns
X̃ ∈ X and D̃ ∈ Rk×d satisfying:

∥X̃D̃−A∥F ≤ (1 + ϵ) min
X∈X ,D∈Rk×d

∥XD−A∥F ,

in poly(n) time with constant probability, when k, r, and 1/ϵ are bounded by a constant.1

2.4 Algorithms for k-means

The same general approach of applying dimensionality reduction and a coreset construction along
with guessing the sparsity pattern of X∗ can be used to achieve a fixed-parameter PTAS for k-means
as well. However, we can achieve an improved time complexity matching the current best dependency
on k and ϵ up to lower order terms by further reducing the problem using results on leverage score
sampling. Specifically, we combine Theorem 17 in Woodruff [2014b] and Theorem 3.1 in Clarkson
and Woodruff [2009] to prove the following lemma.
Lemma 2.1. There is a set of matrices S ⊂ Rs×n with exactly one non-zero entry per column such
that for any A ∈ Rn×k and B ∈ Rn×d, there exists S ∈ S, so that if:

X̃ = argmin
X∈Rk×d

∥S(AX−B)∥F and X∗ = argmin
X∈Rk×d

∥AX−B∥F ,

then,

∥AX̃−B∥F ≤ (1 + ϵ)∥AX∗ −B∥F .

Furthermore, S depends only on n, k, and ϵ; and |S| = nO(k log k
ϵ).

1If k and r are not assumed to be constant, then the time complexity is exp((8k3r)O(k2r+1) logn).

5

After applying a coreset construction to reduce the k-means problem to size poly(k/ϵ), we can
efficiently apply the above lemma to then reduce the problem to size Õ(k/ϵ). Then, we brute force
over all possible left-factors to find X∗. The following theorem states our results formally.
Theorem 2.3. For any input A ∈ Rn×d and ϵ ∈ (0, 1), Algorithm 2 will return a feasible solution to
the k-means clustering problem (Definition 1.2), (X̃, D̃), satisfying:

∥X̃D̃−A∥F ≤ (1 + ϵ) · min
D∈Rk×d,X∈X

∥XD−A∥F ,

with constant probability. Furthermore, Algorithm 2 runs in n · poly(k/ϵ) + exp(kϵ polylog(k/ϵ))
time.

3 Turnstile streaming algorithms

In this section, we consider the the turnstile streaming model (see Definition 1.3). We provide upper
bounds on the space needed to compute an ϵ-relative error solution to the k-means problem and a
restricted form of the sparse dictionary learning problem in a turnstile stream. We do this by showing
that these approximately optimal solutions can be computed from a few small linear sketches of
the original data matrix, and any linear sketch can be trivially maintained in a turnstile stream by
linearity of the updates. A key idea behind these algorithms is applying the guess-the-sketch approach
introduced in Razenshteyn et al. [2016] along with the following theorem.
Theorem 3.1. (Theorem 3.1 in Clarkson and Woodruff [2009]) Given δ, ϵ > 0, suppose A and B
are matrices with n rows, and A has rank at most k. There is an m = O(k log(1/δ)/ϵ) such that, if
S is an m× n sign matrix, then with probability at least 1− δ, if X̃ = argminX ∥S(AX−B)∥2F
and X∗ = argminX ∥AX−B∥2F , then ∥AX̃−B∥F ≤ (1 + ϵ)∥AX∗ −B∥F .

Notice that, if we knew the optimal solution X∗ exactly, then by the previous theorem we could
compute an approximately optimal dictionary D̃ exactly as D̃ = (SX∗)†SA. The key observation is
that, since S is a random sign matrix and the rows of X are standard basis vectors, the set {SX |X ∈
X ,S ∈ {±1}Õ(k/ϵ)×n} is not too large. Also, we can approximately solve minX∈X ∥XD̃−A∥2F
for a fixed D̃ with constant probability by solving X̃ = minX∈X ∥(XD̃ −A)T∥2F , where T is a
moderately sized affine embedding matrix. Since the number of possible (X̃, D̃) is not too large, an
ℓ2-embedding matrix, W, can be used to approximate ∥X̃D̃−A∥2F for every possible (X̃, D̃).

Our streaming algorithm relies on carefully balancing the roles of the three sketching matrices to
minimize the size of the sketches, using the weakest guarantee possible for each component. In
particular, it is critical to use the affine embedding matrix T to only preserve the error for a fixed
D̃ instead of every subproblem and instead use the ℓ2-embedding matrix W to identify which
subproblem provides an approximate solution to the overall problem.
Theorem 3.2. (1) There are distributions of random sketching matrices T ∈ Rd×t, S ∈ Rs×n, and
W ∈ Rw×nd, with t = O(log(nk)/ϵ2), s = O(kϵ), and w = O(k

2

ϵ3 log(n)) such that SA, AT, and
W vec(A) suffice to compute a (1 + ϵ)-approximate solution to the k-means problem with at least
constant probability, where vec(A) ∈ Rnd is the flattening of A.

(2) There is an algorithm which computes a (1+ϵ)-approximate solution to the k-means problem in the
turnstile model with at least constant probability using Õ(n/ϵ2 + dk/ϵ) space for n, d > poly(k/ϵ)

in nÕ(k2/ϵ) additional time.

The previous proof critically relies on the fact that {SX |X ∈ X , S ∈ {±1}m×n} is a finite set that
is not too large. We must therefore introduce the following restricted form of the sparse dictionary
problem.
Definition 3.1. (Discrete r-sparse dictionary problem) Let X be the space of n × k matrices
with at most r non-zero entries per row and non-zero entries taking values in {−D,−(D −
1), ...,−1, 0, 1, ...(D − 1), D}. The goal of this problem is solve the following optimization problem:

X∗,D∗ = argmin
X∈X ,D∈Rk×d

∥XD−A∥F ,

where A ∈ Rn×d is an arbitrary input matrix.

6

Under this constraint that the solution is in a discrete space the proof of the streaming algorithm for
sparse dictionary learning proceeds essentially the same as for k-means while accounting for the
larger solution space.

Theorem 3.3. (1) There are distributions of random sketching matrices T ∈ Rd×t, S ∈ Rs×n, and
W ∈ Rw×nd, with t = O(r log(nkD)/ϵ2), s = O(kϵ), and w = O(k

2

ϵ3 log(nD)) such that SA, AT,
and W vec(A) suffice to compute a (1 + ϵ)-approximate solution to the discrete r-sparse dictionary
problem (Definition 3.1) with at least constant probability.

(2) There is an algorithm which computes a (1 + ϵ)-approximate solution to the r-sparse dictionary
problem in the turnstile model with at least constant probability using Õ(nr/ϵ2 + dk/ϵ) space for
n, d > poly(k/ϵ) in kr · (nD)Õ(k2/ϵ) additional time.

Removing the restriction that X∗ belongs to the restricted space would be an interesting future
problem. However, two issues are that the entries of X may be very large, since the rows of D may
not be orthogonal, and a uniform discretization is required to apply a guess-the-sketch argument.

4 Streaming lower bounds for Euclidean k-means clustering

We introduce slightly different definitions of the k-means clustering problem than the one used in
Definition 1.2 to facilitate the notation of our lower bound arguments in this section.

Definition 4.1 (k-means clustering cost). Let {ai}ni=1 ⊆ Rd be a set of n vectors in d dimensions.
Then, we define the k-means clustering cost of centers c1, c2, . . . , ck ∈ Rd to be

cost(c1, c2, . . . , ck) :=

n∑
i=1

k
min
j=1
∥ai − cj∥22.

Definition 4.2 (Approximate solutions to k-means clustering). Let {ai}ni=1 ⊆ Rd be a set of n
vectors in d dimensions. Let

OPT := min
c1,c2,...,ck∈Rd

cost(c1, c2, . . . , ck)

We say that an algorithm outputs an ϵ-approximate solution to the k-means clustering problem if the
algorithm outputs one of the following:

• Partition: a partition C1, C2, . . . , Ck ⊆ [n] such that

k∑
j=1

∑
i∈Cj

∥ai − ĉj∥22 ≤ (1 + ϵ)OPT

where ĉj := 1
|Cj |

∑
i∈Cj ai.

• Centers: centers ĉ1, ĉ2, . . . , ĉk ∈ Rd such that cost(ĉ1, ĉ2, . . . , ĉk) ≤ (1 + ϵ)OPT.

• Cost: a number c ≥ 0 such that OPT ≤ c ≤ (1 + ϵ)OPT.

4.1 Lower bounds for k-means clustering

Our most technically involved and delicate lower bound result is the following theorem, which shows
that nearly optimally solving k-means clustering to (1 + ϵ) accuracy requires Ω̃(n/ϵ) bits of space:

Theorem 1.1 (Informal restatement of Theorem C.1). Let k = d = Õ(1/ϵ). Suppose a turnstile
streaming algorithm outputs centers {ĉj}kj=1 ⊆ Rd as well as assignments of n points to the k
centers, which achieves a (1 + ϵ)-approximately optimal solution to the k-means clustering problem.
Then, the algorithm must use at least Ω̃(n/ϵ) bits of space over any constant number of passes.

We defer the full proof to Appendix C and give a proof sketch in this section to illustrate the most
important ideas.

7

The hard instance: set disjointness. The starting point to our lower bound is the information
theoretic communication complexity lower bound for the set disjointness problem due to Bar-Yossef
et al. [2004]. In the two-party set disjointness problem, two players Alice and Bob each have a bit
vector A,B ∈ {0, 1}d in d dimensions, and they must determine whether there exists a coordinate
j ∈ [d] such that Aj = Bj = 1 or not. The work of Bar-Yossef et al. [2004] shows that in order
to solve this problem, Alice and Bob must exchange messages that reveal at least Ω(d) bits of
information about their inputs, which in turn implies an Ω(d) communication complexity lower
bound for this problem, as well as an Ω(nd) communication complexity lower bound for solving a
constant fraction of n independent instances of the same problem. Furthermore, the hard instance
of Bar-Yossef et al. [2004] has a simple input distribution: the vectors (A,B) are such that the jth
coordinate (Aj , Bj) is drawn either as (0, 0) with probability 1/2 or (1, 0) with probability 1/4 or
(0, 1) with probability 1/4, except for one coordinate, which may take the value (1, 1).

We aim to make use of this result as follows. Consider the vector Z = A+B. This vector has entries
in {0, 1}, except possibly for one entry, which could be 2. If we have n such vectors, then we expect
a good clustering into k = d clusters to cluster all points with Zj = 2 together. Such a clustering
would be able to output the index of the intersection of A and B, which intuitively requires more
information than just determining whether there is an intersection or not, and thus should also require
Ω(d) bits of information cost. Furthermore, we can choose the dimension d to be roughly 1/ϵ, so that
the cost of clustering Z to the “correct” center will have a cost of Θ(d) = Θ(1/ϵ), while clustering
Z to the incorrect center will incur an additional error of Θ(1), which is an ϵ fraction of the cost.

Cost calculations. The main challenge in carrying out the idea in the previous paragraph is in
arguing that the target optimal clustering that we wish to discover indeed is a nearly optimal clustering,
and that significant deviations from this clustering result in a large cost. This involves showing a
lower bound on the cost of any clustering.

Our first step is to obtain a lower bound on the cost of any clustering of n random bit vectors in d
dimensions. If we first fix a set of k centers {cj}kj=1, then the minimum distance between a random
bit vector Z and any of the cj can be bounded by using Chernoff bounds, which implies a lower
bound of d/4−O(log d) on this quantity in expectation (Lemma C.4). Note, however, that this lower
bound is not high enough to prevent a nearly optimal solution from just assigning points according to
the best clustering of the random bits while ignoring the one entry that takes the value of Zj = 2,
which means that the clustering need not solve the problem of identifying the intersection coordinate
between A and B.

To address this problem, we need to make the cost of ignoring the intersection coordinate much more
costly. We do this by instead considering the multi-party set disjointness problem, so that we now
have t = O(

√
log d) players rather than just 2, each with an input vector A(i) ∈ {0, 1}d, so that

Z =
∑t

i=1 A
(i) is now a random bit vector except for a single entry with a t rather than a 2. Now, a

clustering which does not correctly identify the intersection coordinate will pay a cost of roughly
t2 = O(log d), which is large enough to overcome the potential savings from a good clustering of the
random bit coordinates. We also “plant” the target centers cj by adding roughly n/k copies of each
of our target centers cj as part of the input instance (Lemma C.7), so that choosing centers ĉj that are
significantly different from cj must incur a large cost. In particular, we can get the guarantee that on
average, ∥cj − ĉj∥22 ≤ o(1).

At this point, we can argue that most of the k centers are the centers that expect, i.e., roughly t on
one coordinate and 1/2 on the rest of the coordinates. Thus, if we cluster a point Z whose center we
expect to be ĉj but is clustered to some other ĉj

′
, and furthermore ĉj

′
is close to our expected center

cj
′
, then we must incur an additional O(log d) cost which is too expensive. However, there is still the

possibility that for the very small number of clusters ĉj which do not satisfy ∥cj − ĉj∥22 ≤ o(1), these
centers could be assigned a very large number of points with very low cost. We also show that this
cannot be the case, by arguing that if a large number of points are assigned to very few clusters, then
the cost must be large (Lemma C.8). With this lemma in hand, we are able to show our main result in
Theorem C.1 by carefully combining the various cost contribution bounds discussed previously.

8

4.1.1 Lower bound for outputting nearly optimal centers

We note that an Ω(dk/ϵ) lower bound follows from an earlier lower bound for low rank approximation
due to Woodruff [2014a], even for row arrival streams:
Definition 4.3 (Row arrival stream). We say that an algorithm outputs an ϵ-approximate solution to
the k-means clustering problem in the row arrival streaming model if the input vectors {ai}ni=1 ⊆ Rd

arrive one at a time.
Theorem 4.1. Suppose that an algorithm outputs centers {ĉj}kj=1 ⊆ Rd that achieves a (1 + ϵ)-
approximately optimal solution to the k-means clustering problem after one pass through a row
arrival stream (Definition 4.3). Then, the algorithm must use at least Ω̃(dk/ϵ) bits of space.

We briefly justify why the techniques of Woodruff [2014a] imply Theorem 4.1. The result of Woodruff
[2014a] constructs a distribution over O(k/ϵ) × d matrices such that one can recover an arbitrary
random bit among Ω̃(dk/ϵ) random bits by appending a set of k “query” rows and then computing
a (1 + ϵ)-approximately optimal low rank approximation to the resulting matrix. Furthermore, it is
shown that a nearly optimal rank k approximation is obtained by approximating all but k rows by
zero vectors. Such a rank k approximation in fact corresponds to a clustering solution, and thus the
proof of Woodruff [2014a] immediately applies to our k-means clustering setting as well.

4.2 Lower bounds for center cost query data structures

Next, we study lower bounds against streaming algorithms which have the guarantee of approximating
the cost of an arbitrary but fixed set of centers. We formalize the guarantee we study in Definition 4.4.
Definition 4.4 (Center cost query data structure). We say that Q is an ϵ-approximate center cost
query data structure for the k means clustering problem for the instance {ai}ni=1 if, for any centers
c1, c2, . . . , ck ∈ Rd, Q outputs one of the following:

• Partition: a partition C1, C2, . . . , Ck ⊆ [n] such that

k∑
j=1

∑
i∈Cj

∥ai − cj∥22 ≤ (1 + ϵ) cost(c1, c2, . . . , ck).

• Cost: a number c ≥ 0 such that

cost(c1, c2, . . . , ck) ≤ c ≤ (1 + ϵ) cost(c1, c2, . . . , ck)

Our first lower bound is an Ω(n/ϵ2) bit space lower bound for a center cost query data structure
which can output a partition for k-means clustering with k = 2. We proceed by a standard encoding
argument, showing that any such data structure must encode Ω(n/ϵ2) many random bits. We provide
the full proof in Appendix D.1.
Theorem 4.2. Let ϵ ∈ (0, 1/3) and k = 2. Suppose that an algorithm maintains an ϵ/15-approximate
center cost query data structure for k-means clustering that outputs a partition (Definition 4.4) over
a row arrival stream (Definition 4.3). Then, the algorithm must use at least Ω(n/ϵ2) bits of space,
over any constant number of passes.

4.3 Approximation of costs and centers

We show Ω(n) space memory bounds when we only need to estimate the optimal cost or centers
achieving nearly optimal cost, up to a constant factor. Our lower bounds in this section are simpler
reductions from the set disjointness problem Razborov [1990], Bar-Yossef et al. [2004]. Proofs are
provided in Appendix D.2 and D.3.
Theorem 4.3 (Lower Bound for Estimating k-Means Clustering Cost). Let k = 2 and let X be the
set of matrices X ∈ Rn×k with standard basis vectors as rows. Let d = 1. Any randomized algorithm
which outputs a number c ≥ 0 satisfying

c ≤ min
X∈X ,D∈Rk×d

∥XD−A∥2F < 2c (2)

in a constant number of passes over a turnstile stream requires Ω(n) bits of space.

9

Theorem 4.4 (Lower Bound for Computing Approximate Centers). Let k = 3 and let X be the set
of matrices X ∈ Rn×k with standard basis vectors as rows. Let d = 1. Any randomized algorithm
which outputs centers D̃ ∈ Rk×d satisfying

min
X∈X

∥XD̃−A∥2F < 2 min
X∈X ,D∈Rk×d

∥XD−A∥2F

in a constant number passes over a turnstile stream requires Ω(n) bits of space.

4.4 New upper bounds in random order streams

In this section, we show some new upper bounds showing that we can go beyond the previously
presented lower bounds. In particular, in random order row arrival streams with bounded sensitivity,
we show that the first segment of the stream is sufficient to obtain approximately optimal centers, and
these can in turn be used to nearly optimally cluster the rest of the stream. We give the full proof of
this result in Appendix D.4.
Theorem 4.5. Suppose that the rows of A ∈ Rn×d arrive in a random order row arrival stream.
Furthermore, suppose that the sensitivities of each row ai are bounded by α, that is,

sup
c1,c2,...,ck∈Rd

minkj=1 ∥ai − cj∥22∑n
i′=1 minkj=1 ∥ai

′ − cj∥22
≤ α.

Then, there is an algorithm which, with constant probability, outputs a (1 + ϵ)-nearly optimal
clustering with partitions and centers using

Õ(αnkd/ϵ4 + dk/ϵ+ n).

bits of space. In particular, if α ≤ ϵ4/kd, then this algorithm uses just Õ(n+ dk/ϵ) bits of space.

5 Open directions

We conclude with several questions left open by our work.

1. In our PTAS for sparse dictionary learning of Theorem 2.2, can the bit complexity assump-
tion be removed?

2. In the turnstile streaming setting, our main question is settling the space complexity of
k-means clustering with assignments. Currently, the upper bound is Õ(n/ϵ2) bits whereas
our lower bound in Theorem C.1 is Ω̃(n/ϵ) bits. Can this ϵ factor gap be closed by improving
the upper bound or the lower bound?

3. In random order streaming model, we gave an k-means clustering upper bound using a
bounded sensitivity assumption in Theorem 4.5. Can this assumption be removed? What
upper bounds and lower bound are possible in this model?

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers for useful feedback on improving the presentation of this work.
Petros Drineas and Gregory Dexter were partially supported by NSF AF 1814041, NSF FRG
1760353, and DOE-SC0022085. David P. Woodruff and Taisuke Yasuda were supported by a Simons
Investigator Award.

References
Olivier Bachem, Mario Lucic, and Silvio Lattanzi. One-shot coresets: The case of k-clustering. In

International conference on artificial intelligence and statistics, pages 784–792. PMLR, 2018.

Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics approach
to data stream and communication complexity. J. Comput. Syst. Sci., 68(4):702–732, 2004. doi:
10.1016/j.jcss.2003.11.006. URL https://doi.org/10.1016/j.jcss.2003.11.006.

10

https://doi.org/10.1016/j.jcss.2003.11.006

Luca Becchetti, Marc Bury, Vincent Cohen-Addad, Fabrizio Grandoni, and Chris Schwiegelshohn.
Oblivious dimension reduction for k-means: beyond subspaces and the johnson-lindenstrauss
lemma. In Proceedings of the 51st annual ACM SIGACT symposium on theory of computing, pages
1039–1050, 2019.

Christos Boutsidis, Anastasios Zouzias, and Petros Drineas. Random projections for k-means
clustering. In John D. Lafferty, Christopher K. I. Williams, John Shawe-Taylor, Richard S.
Zemel, and Aron Culotta, editors, Advances in Neural Information Processing Systems 23:
24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a
meeting held 6-9 December 2010, Vancouver, British Columbia, Canada, pages 298–306. Cur-
ran Associates, Inc., 2010. URL https://proceedings.neurips.cc/paper/2010/hash/
73278a4a86960eeb576a8fd4c9ec6997-Abstract.html.

Christos Boutsidis, David P Woodruff, and Peilin Zhong. Optimal principal component analysis in
distributed and streaming models. In Proceedings of the forty-eighth annual ACM symposium on
Theory of Computing, pages 236–249, 2016.

Vladimir Braverman, Dan Feldman, and Harry Lang. New frameworks for offline and streaming
coreset constructions. CoRR, abs/1612.00889, 2016.

Kenneth L Clarkson and David P. Woodruff. Numerical linear algebra in the streaming model. In
Proceedings of the forty-first annual ACM symposium on Theory of computing, pages 205–214,
2009.

Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu. Dimen-
sionality reduction for k-means clustering and low rank approximation. In Proceedings of the
forty-seventh annual ACM symposium on Theory of computing, pages 163–172, 2015.

Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coreset framework for
clustering. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual
ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages
169–182. ACM, 2021.

Vincent Cohen-Addad, Hossein Esfandiari, Vahab S. Mirrokni, and Shyam Narayanan. Improved
approximations for euclidean k-means and k-median, via nested quasi-independent sets. In Stefano
Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on
Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 1621–1628. ACM, 2022a. doi:
10.1145/3519935.3520011. URL https://doi.org/10.1145/3519935.3520011.

Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, and Chris Schwiegelshohn. Towards
optimal lower bounds for k-median and k-means coresets. In Stefano Leonardi and Anupam Gupta,
editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy,
June 20 - 24, 2022, pages 1038–1051. ACM, 2022b.

Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, Chris Schwiegelshohn,
and Omar Ali Sheikh-Omar. Improved coresets for euclidean k-means. In
NeurIPS, 2022c. URL http://papers.nips.cc/paper_files/paper/2022/hash/
120c9ab5c58ba0fa9dd3a22ace1de245-Abstract-Conference.html.

Abhimanyu Das and David Kempe. Submodular meets spectral: Greedy algorithms for subset
selection, sparse approximation and dictionary selection. In Lise Getoor and Tobias Scheffer,
editors, Proceedings of the 28th International Conference on Machine Learning, ICML 2011,
Bellevue, Washington, USA, June 28 - July 2, 2011, pages 1057–1064. Omnipress, 2011. URL
https://icml.cc/2011/papers/542_icmlpaper.pdf.

David L. Donoho and Michael Elad. Optimally sparse representation in general (nonorthogonal)
dictionaries via l1 minimization. Proc. Natl. Acad. Sci. USA, 100(5):2197–2202, 2003. ISSN 0027-
8424. doi: 10.1073/pnas.0437847100. URL https://doi.org/10.1073/pnas.0437847100.

Dan Feldman and Michael Langberg. A unified framework for approximating and clustering data. In
Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd ACM Symposium on Theory
of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 569–578. ACM, 2011.

11

https://proceedings.neurips.cc/paper/2010/hash/73278a4a86960eeb576a8fd4c9ec6997-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/73278a4a86960eeb576a8fd4c9ec6997-Abstract.html
https://doi.org/10.1145/3519935.3520011
http://papers.nips.cc/paper_files/paper/2022/hash/120c9ab5c58ba0fa9dd3a22ace1de245-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/120c9ab5c58ba0fa9dd3a22ace1de245-Abstract-Conference.html
https://icml.cc/2011/papers/542_icmlpaper.pdf
https://doi.org/10.1073/pnas.0437847100

Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A ptas for k-means clustering based on
weak coresets. In Proceedings of the twenty-third annual symposium on Computational geometry,
pages 11–18, 2007.

Dan Feldman, Micha Feigin, and Nir Sochen. Learning big (image) data via coresets for dictionaries.
Journal of mathematical imaging and vision, 46:276–291, 2013.

Manuel Fernandez, David P. Woodruff, and Taisuke Yasuda. Tight kernel query complexity of
kernel ridge regression and kernel k-means clustering. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine
Learning Research, pages 7055–7063. PMLR, 2019. URL http://proceedings.mlr.press/
v97/yasuda19a.html.

J-J Fuchs. On sparse representations in arbitrary redundant bases. IEEE transactions on Information
theory, 50(6):1341–1344, 2004.

William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert
space. In Conference in modern analysis and probability (New Haven, Conn., 1982), volume 26 of
Contemp. Math., pages 189–206. Amer. Math. Soc., Providence, RI, 1984. doi: 10.1090/conm/
026/737400. URL https://doi.org/10.1090/conm/026/737400.

Daniel M. Kane, Jelani Nelson, and David P. Woodruff. On the exact space complexity of sketching
and streaming small norms. In Moses Charikar, editor, Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19,
2010, pages 1161–1178. SIAM, 2010.

Kasper Green Larsen and Jelani Nelson. The johnson-lindenstrauss lemma is optimal for linear
dimensionality reduction. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani,
and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and
Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 82:1–82:11.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

Kasper Green Larsen and Jelani Nelson. Optimality of the johnson-lindenstrauss lemma. In Chris
Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, pages 633–638. IEEE Computer Society, 2017.

Simin Liu, Tianrui Liu, Ali Vakilian, Yulin Wan, and David P Woodruff. On learned sketches for
randomized numerical linear algebra. 2020.

Stuart P. Lloyd. Least squares quantization in PCM. IEEE Trans. Inf. Theory, 28(2):129–136, 1982.
doi: 10.1109/TIT.1982.1056489. URL https://doi.org/10.1109/TIT.1982.1056489.

Meena Mahajan, Prajakta Nimbhorkar, and Kasturi R. Varadarajan. The planar k-means problem
is np-hard. Theor. Comput. Sci., 442:13–21, 2012. doi: 10.1016/j.tcs.2010.05.034. URL https:
//doi.org/10.1016/j.tcs.2010.05.034.

Konstantin Makarychev, Yury Makarychev, and Ilya Razenshteyn. Performance of johnson-
lindenstrauss transform for k-means and k-medians clustering. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, pages 1027–1038, 2019.

B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM J. Comput., 24(2):
227–234, 1995. doi: 10.1137/S0097539792240406. URL https://doi.org/10.1137/
S0097539792240406.

Jelani Nelson and Huy L. Nguyên. Lower bounds for oblivious subspace embeddings. In Javier
Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages,
and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11,
2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science, pages 883–894.
Springer, 2014.

Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision research, 37(23):3311–3325, 1997.

12

http://proceedings.mlr.press/v97/yasuda19a.html
http://proceedings.mlr.press/v97/yasuda19a.html
https://doi.org/10.1090/conm/026/737400
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1016/j.tcs.2010.05.034
https://doi.org/10.1016/j.tcs.2010.05.034
https://doi.org/10.1137/S0097539792240406
https://doi.org/10.1137/S0097539792240406

Alexander A Razborov. On the distributional complexity of disjointness. In Automata, Languages
and Programming: 17th International Colloquium Warwick University, England, July 16–20, 1990
Proceedings 17, pages 249–253. Springer, 1990.

Ilya P. Razenshteyn, Zhao Song, and David P. Woodruff. Weighted low rank approximations
with provable guarantees. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the
48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA,
USA, June 18-21, 2016, pages 250–263. ACM, 2016. doi: 10.1145/2897518.2897639. URL
https://doi.org/10.1145/2897518.2897639.

James Renegar. On the computational complexity and geometry of the first-order theory of the reals.
part i: Introduction. preliminaries. the geometry of semi-algebraic sets. the decision problem for
the existential theory of the reals. Journal of symbolic computation, 13(3):255–299, 1992a.

James Renegar. On the computational complexity of approximating solutions for real algebraic
formulae. SIAM Journal on Computing, 21(6):1008–1025, 1992b.

Zhao Song, David P. Woodruff, and Peilin Zhong. Relative error tensor low rank approximation.
In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2772–
2789. SIAM, 2019. doi: 10.1137/1.9781611975482.172. URL https://doi.org/10.1137/1.
9781611975482.172.

Murad Tukan, Xuan Wu, Samson Zhou, Vladimir Braverman, and Dan Feldman. New coresets for
projective clustering and applications. In International Conference on Artificial Intelligence and
Statistics, pages 5391–5415. PMLR, 2022.

David P. Woodruff. Low rank approximation lower bounds in row-update streams. In Zoubin
Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, ed-
itors, Advances in Neural Information Processing Systems 27: Annual Conference on Neu-
ral Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,
pages 1781–1789, 2014a. URL https://proceedings.neurips.cc/paper/2014/hash/
58e4d44e550d0f7ee0a23d6b02d9b0db-Abstract.html.

David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends® in
Theoretical Computer Science, 10(1–2):1–157, 2014b.

David P. Woodruff and Taisuke Yasuda. New subset selection algorithms for low rank approximation:
Offline and online. In Symposium on Theory of Computing Conference, STOC’23. ACM, 2023.

13

https://doi.org/10.1145/2897518.2897639
https://doi.org/10.1137/1.9781611975482.172
https://doi.org/10.1137/1.9781611975482.172
https://proceedings.neurips.cc/paper/2014/hash/58e4d44e550d0f7ee0a23d6b02d9b0db-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/58e4d44e550d0f7ee0a23d6b02d9b0db-Abstract.html

A Missing proofs for Section 2

In this section, we provide the missing proofs for Theorem 2.1, Theorem 2.2, and Theorem 2.3, along
with prerequisite definitions and results. We also provide Algorithm 1 and Algorithm 2.

Recall that, after introducing the dimensionality reduction result of Theorem 2.1, we assume d =
poly(k/ϵ) in subsequent sections for clearer exposition.

A.1 Dimensionality reduction

We first restate an affine embedding guarantee provided for the CountSketch matrix by prior work.

Lemma A.1. (From Lemma A.2 of Liu et al. [2020]) Given matrices A, B with n rows, a sparse
embedding matrix S (i.e., CountSketch) with O(rank(A)2/ϵ2) rows satisfies for all X of appropriate
dimension with constant probability:

∥S(AX−B)∥ = (1± ϵ)∥AX−B∥2F
Moreover, the matrix product S ·A can be computed in O(nnz(A)) time.

Next, we combine a few prior results to provide a regression error guarantee with a sketch that can be
efficiently applied.

Lemma A.2. Given δ, ϵ > 0, suppose A and B are matrices with n rows, and A has rank at most
k. There is an s = O(k log(k)/ϵ) and a random matrix S ∈ Rs×n such that, with high constant
probability, if:

X̃ = argmin
X

∥S(AX−B)∥2F and X∗ = argmin
X

∥AX−B∥2F ,

then,

∥AX̃−B∥F ≤ (1 + ϵ)∥AX∗ −B∥F .

Furthermore, S ·A can be computed in O(nnz(A) + d · poly(k/ϵ)) time.

Proof. We will define S ∈ Rs×n as S = G ·C, where G ∈ Rs×c is a Gaussian sketching matrix
and C ∈ Rc×n is a CountSketch matrix, where c = poly(k/ϵ). Note that SA can be computed by
first computing CA in O(nnz(A)) time and then computing G ·CA in O(d · poly(k/ϵ)) time.

Our first step is to show that the distribution of S is an ℓ2-subspace embedding (see Definition
2 of Woodruff [2014b]). By Theorem 9 of Woodruff [2014b], the distribution of C is an ℓ2-
subspace embedding and by Theorem 6 of Woodruff [2014b], the distribution of G is an ℓ2-subspace
embedding, each with high constant probability.

We can compose the ℓ2-subspace embedding guarantees to get the following bound with high
probability via the union bound.

(1− ϵ)∥x∥2 ≤ ∥Cx∥2 ≤ (1 + ϵ)∥x∥2
⇒ (1− ϵ)2∥x∥2 ≤ ∥GCx∥2 ≤ (1 + ϵ)2∥x∥2

Hence, S is an ϵ-subspace embedding for a fixed k-dimensional space with high constant probability
after adjusting ϵ by a constant factor. Therefore, ∥UTSSTU−I∥2 ≤ ϵ, with high constant probability.
The rest of the proof is the same as the proof of Theorem 3.1 in Clarkson and Woodruff [2009] while
using this ℓ2-embedding matrix S instead of a random sign matrix.

Proof of Theorem 2.1

Proof. By Lemma A.2, there exists a random matrix S ∈ Rs×n for s = O(kϵ log(k)), such that, with
at least constant probability,

D̃ = argmin
D∈Rk×d

∥S(X∗D−A)∥2F ⇒ ∥X∗D̃−A∥F ≤ (1 + ϵ)∥X∗D∗ −A∥F .

14

In this case, we can solve for D̃ exactly as D̃ = (SX∗)†SA, hence, D̃ = RSA for some R ∈ Rk×s.
Therefore, D̃ = R̃SA, where,

R̃ = argmin
R∈Rk×s

∥X∗RSA−A∥2F .

Let T1 ∈ Rd×O(s2/ϵ2) be a count sketch matrix. Since rank(SA) ≤ s, Lemma A.1 guarantees
that ∥MSAT1 −AT1∥2F = (1± ϵ)∥MSA−A∥2F for all M ∈ Rn×s simultaneously with at least
constant probability. Since this holds for all M ∈ Rn×s, and {XD |X ∈ X ,D ∈ Rk×s} ⊂ Rn×s,
we have that:

X̃′, R̃′ = argmin
X∈X ,R∈Rk×s

∥XRSAT1 −AT1∥2F

⇒ ∥X̃′R̃′SA−A∥2F ≤ (1 + ϵ)∥X∗R̃SA−A∥2F = (1 + ϵ)∥X∗D̃−A∥2F ≤ (1 + ϵ)2∥X∗D∗ −A∥2F .
(3)

However, note that SAT1 has rank of at most s. Let T2 ∈ RO(s2/ϵ2)×s be the top s right singular
vectors of SAT1, and let T = T1T2, then,

X̃′, R̃′ = argmin
X∈X ,R∈Rk×s

∥XRSAT1 −AT1∥2F

= argmin
X∈X ,R∈Rk×s

∥(XRSAT1 −AT1)T2T
T
2 ∥2F + ∥AT1(I−T2T

T
2)∥2F

= argmin
X∈X ,R∈Rk×s

∥XRSAT1T2 −AT1T2∥2F

= argmin
X∈X ,R∈Rk×s

∥XRSAT−AT∥2F .

Notice that {RSAT |R ∈ Rk×s} = Rk×s with probability one if rank(A) > s. If it does not hold
that rank(A) > s, then we may directly reduce the dimension of the problem by SVD. Therefore,
we can instead solve:

X̃′, D̃′ = argmin
X∈X ,D∈Rk×s

∥XD−AT∥2F .

By the above equations, R̃′ = D̃′(SAT)† and by eqn. (3), ∥X̃′R̃′SA−A∥2F ≤ (1 + ϵ)2∥X∗D∗ −
A∥2F . Therefore, we can return X = X̃′ and D = D′(SAT)†SA to guarantee:

∥XD−A∥2F ≤ (1 + ϵ)2∥X∗D∗ −A∥2F ≤ (1 + 3ϵ)∥X∗D∗ −A∥2F .

Now we work out the time complexity of the above reduction. First, we must compute AT to
reduce to the smaller optimization problem. To do this, we can sample the CountSketch matrix
T1 ∈ Rk×O(s2/ϵ4) and compute AT1 in O(nnz(A) + poly(k/ϵ)) time. Then, we sample the
sketching matrix S ∈ RO(k/ϵ·log k)×n and compute SAT1 in O(nnz(A) + poly(k/ϵ)) time. Then,
we compute T2 via the SVD of SAT1 and compute AT = AT1T2 in poly(k/ϵ) time. From here,
we then solve the optimization problem for X̃′ and D̃′.

To convert D̃′ to an approximate solution to the original problem, we must compute D =
D′(SAT)†SA. We can compute (SAT)† via the SVD and then form D′(SAT)† in poly(k/ϵ)
time. Then, we compute the matrix product SA in O(nnz(A)) time. Finally, the matrix product
D′(SAT)†SA can be computed in O(d · poly(k/ϵ)) time.

Therefore, the total time complexity of the reduction procedure is O(nnz(A) + (n+ d) poly(k/ϵ)).

A.2 PTAS for sparse-dictionary

A.2.1 Coreset construction for Sparse Dictionary Learning

We begin by providing a coreset construction for the r-sparse dictionary learning problem, which we
derive from coreset construction for the projective clustering problem defined here.

15

Definition A.1. ((ℓ,m)-Projective clustering problem) Let A ∈ Rn×d be a matrix containing n
points. For a fixed sequence F = {F1, ..., Fℓ}, of m-dimensional subspaces, define:

cost(F ,A) =

n∑
i=1

min
F∈F

dist(F ,Ai)
2,

where dist(Ai, F)2 denotes the squared Euclidean distance of the i-th row of A to the fixed subspace
F .

The goal of the (ℓ,m)-Projective clustering problem is to find a size ℓ collection of m-dimensional
linear subspaces, F∗, that minimizes the above cost function, i.e., F∗ = argminF cost(F ,A).

We will use this to construct a reweighted form of the r-sparse dictionary problem with smaller size
which we define next.
Definition A.2. (Weighted r-SDL) Let Xr ⊂ Rn×k denote the set of matrices with at most r non-zero
entries per row. For a given input matrix A ∈ Rn×d, such that k ≪ n, d, and diagonal matrix
W ∈ Rn×n return:

(X∗,D∗) = argmin
X∈X ,D∈Rk×d

∥W(XD−A)∥2F . (4)

The parameter k is the number of dictionary elements and the parameter r determines how many
dictionary elements can be used to represent each row of A.
Theorem A.1. Let r, k, A, and X be defined as in the sparse dictionary learning problem (Definition
1.1). If the entries of A can each be represented by b bits, then there exists an algorithm which
computes a diagonal matrix W ∈ Rw×w and A′ ∈ Rw×d in O(n2k4rbk

2r+1

) time, such that,∣∣∣ min
X∈X

∥W(XD−A′)∥2F − min
X∈X

∥XD−A∥2F
∣∣∣ ≤ ϵ · min

X∈X
∥XD−A∥2F ,

for all D ∈ Rk×d. Furthermore, w = O((8k3rb log d)O(kr+1) log n).

Proof. First, we observe that any coreset for the (ℓ,m)-projective clustering problem (Definition
A.1) with ℓ =

(
k
r

)
and m = r provides a coreset for the r-sparse dictionary learning problem. This is

because if the collection of subspaces F contains all r-dimensional subspaces spanned by r rows of
the dictionary D, then minX∈X ∥XD−A∥2F = cost(F ,A).

By Theorem 1.22 and Theorem 3.3 in Tukan et al. [2022], Algorithm 2 of Tukan et al. [2022] outputs
a set of points P and weight function w(p) : P → R such that:∣∣∣ cost(F ,A)−

∑
p∈P

w(p) · min
F∈F

dist(F ,A′
i)

2
∣∣∣ ≤ ϵ · cost(F ,A),

for all F that are a j-size sequence of k-dimensional subspaces.

If F is the collection of all r-dimensional subspaces spanned by r rows of the dictionary D, then we
can rewrite the above guarantee in matrix notation as follows:∣∣∣ min

X∈X
∥W(XD−A′)∥2F − min

X∈X
∥XD−A∥2F

∣∣∣ ≤ ϵ · min
X∈X

∥XD−A∥2F ,

where A′
i is the i-th point in the point set P and W ∈ Rw×w is a diagonal matrix where Wii is the

weight w(pi).

Theorem 1.2 of Tukan et al. [2022] then guarantees that w = O((8ℓ3 log(d∆))O(ℓm) log n), where
∆ is the the ratio of the largest and smallest non-zero entry magnitudes of A. Therefore, ∆ ≤ 2b,
and so w = O((8ℓ3b log d)O(ℓm) log n). Furthermore, by the discussion below Theorem 3.3 of
Tukan et al. [2022], their algorithm runs in O(n2ℓ4(log∆)ℓ

2m) = O(n2ℓ4bℓ
2m) time. Substituting

in ℓ = kr ≥
(
k
r

)
and m = r to these bounds gives the final theorem statement.

2We have confirmed through correspondence to the authors that there is a typo in Definition 1.9
of Tukan et al. [2022], and the definition should also state (1 − ϵ)

∑
p∈C w(p)dist(H(X,v),p)2 ≤∑

p∈C dist(H(X,v),p)2. That is, Definition 1.9 defines a standard relative error coreset guarantee in the
ℓ22-norm.

16

A.2.2 Polynomial Solver for a Restricted SDL Problem

Next, we show that by adding a further restriction on the weighted r-SDL problem, we can solve the
problem in polynomial time. First, define the sparsity pattern N ∈ {(Ni)i∈[n] | |Ni| = r,Ni ⊂ [k]},
and let XN to be the set of n × k matrices such that Xij = 0 if j ̸∈ Nij for all X ∈ XN . That
is, X ∈ XN is a matrix where only r fixed entries per row may be non-zero, and these entries are
specified by the sparsity pattern N . We define the following restricted solver.

Definition A.3. For a given r-SDL problem, let PolySolver be an algorithm which takes as input a
sparsity patternN , diagonal matrix W ∈ Rn×n, input matrix A ∈ Rn×d, dictionary size k, sparsity
r, and error tolerance ϵ ∈ (0, 1). If N is the sparsity pattern of the optimal left-factor X∗, then
PolySolver outputs X̃ ∈ XN and D̃ ∈ Rk×d which satisfy:

∥W(X̃D̃−A)∥2F ≤ (1 + ϵ) · ∥X∗D∗ −A∥2F .

Lemma A.3. There exists an implementation of PolySolver that runs in O(2O(nr+kd)) time given
that the entries of A have bounded bit complexity.

Proof. For i ∈ [n] and j ∈ [r], let xij denote the j-th smallest entry in Ni of a matrix X ∈
XN . Observe that the entry [XD]st has the form

∑r
j=1 xsjDNs,j ,t , hence [W(XD − A)]st =

Wss(
∑r

j=1 xsjDNs,j ,t −Ast). Therefore, ∥W(XD−A)∥2F is a fourth degree polynomial in the
set of variables {xij | i ∈ [n], j ∈ [r]} and the entries of D.

By Renegar [1992a], for a given polynomial P (y1, y2, ..., yv) of degree t, we can determine whether
there exists a solution satisfying P (y1, y2, ..., yv) ≤ L and y21 ≤M in (2t)O(v) poly(H) time, where
H upper bounds the bit complexity of L and M (see Theorem 2.2 in Razenshteyn et al. [2016] for a
restatement of this result). Under the assumptions of our lemma, H is bounded by a constant.

We follow the approach of Razenshteyn et al. [2016] and use binary search to determine an approxi-
mately optimal solution for our polynomial minimization problem. First, since the bit complexity of
the entries of A are assumed to be bounded by a constant, by Corollary 38 of Boutsidis et al. [2016],
the objective error of the problem is either zero or greater than 2−O(k). Therefore, we can use binary
search to find a value of L satisfying ∥X∗D∗ −A∥2F ≤ L ≤ (1 + ϵ)∥X∗D∗ −A∥2F by running the
decision algorithm of Renegar log 2O(k) = O(k) times.

Then, we can repeatedly use binary search on each variable yi with the constraints y2i ≤ M and
P (y1, y2, ..., yv) ≤ L. After determining a variable yi through binary search, we can fix that variable,
and then perform the procedure on the next variable. Overall, if the magnitude of the entries of W,
X∗, and D∗, are bounded by a doubly-exponential factor of O(nr + kd), we invoke the decision
algorithm 2O(nr+kd) additional times to get an overall time complexity of 2O(nr+kd).

A.2.3 Algorithm for sparse dictionary learning

Here, we present our algorithm for r-sparse dictionary learning along with a proof of its correctness
and time complexity.

Algorithm 1 PTAS for r-sparse dictionary learning
Require: A ∈ Rn×d, ϵ ∈ (0, 1), and k, r ∈ N such that r ≤ k.

1: Compute A′ ∈ Rw×d and W ∈ Rw×w by the algorithm of Theorem A.1.
2: Initialize D̃ = 0 and δ = ∥A∥F .
3: for N ∈ {(Ni)i∈[w] | |Ni| = r, Ni ⊂ [k]} do
4: Compute X′,D′ = PolySolver(N ,W,A′, k, r, ϵ)
5: if ∥X′D′ −WA′∥F < δ then
6: Set D̃ = D′ and δ = ∥X′D′ −WA′∥F
7: end if
8: end for
9: return D̃ and X̃ = argminX∈X ∥XD̃−A∥F .

17

Proof of Theorem 2.2:

Proof. Correctness: In Step 1 of the algorithm, by Theorem A.1, we compute the diagonal scaling
matrix W ∈ Rw×w and A′ ∈ Rw×d such that, for any fixed D ∈ Rk×d:∣∣∣ min

X∈X
∥W(XD−A′)∥2F − min

X∈X
∥XD−A∥2F

∣∣∣ ≤ ϵ · min
X∈X

∥XD−A∥2F .

Therefore, we can restrict our attention to solving for the dictionary D that minimizes the coreset
error, minX∈X ∥W(XD−A′)∥2F .

At some iteration of the loop, we will guess the sparsity pattern of X∗ ∈ X , which we denote N ∗.
By the guarantee of PolySolver (Definition A.3), X′ ∈ XN∗ and D′ ∈ Rk×d computed in Step 4
of the algorithm satisfy:

∥W(X′D′ −A′)∥2F ≤ (1 + ϵ) · ∥X∗D∗ −A∥2F .
Therefore,

min
X∈X

∥XD′ −A∥F ≤ (1 + ϵ)2 · min
X∈X ,D∈Rk×d

∥XD−A∥F .

Hence, the matrices D̃ and X̃ achieve ϵ-relative error after adjusting by a constant factor.

Time complexity:

The overall time complexity of Algorithm 1 is given by:
O(Coreset construction) + |N | × PolySolver time + O(Solve for X)

By Theorem A.1, the coreset construction takes O(n2k4r2k
2r+1

) time and w =

O(((8k3rb log d)O(kr+1) log n). The size of N is |N | =
(
k
r

)w
, and the time for one call to

PolySolver is O(2O(wr+poly(k/ϵ))) by Lemma A.3. Therefore,

|N | × PolySolver time = exp(w · r log k) · exp(wr) = exp((8k3rb log d)O(kr+1) log n)

Finally, solving for X takes n · poly(k, r, 1/ϵ) time, so we can ignore this term. We conclude that,
overall, Algorithm 1 runs in exp((8k3rb log d)O(k2r+1) log n) time. Note that this is equal to poly(n)
time under the assumption that k, r, ϵ, and b are bounded by a constant.

A.3 PTAS for k-means

In this section, we provide our algorithm for k-means along with a proof of its correctness and time
complexity. In order to improve the time complexity dependency on k and ϵ, we use the idea of brute
force leverage score sampling, which we introduce next.

A.3.1 Brute force leverage score sampling

Definition A.4. (Leverage Score Sampling - Definition 16 in Woodruff [2014b]) Let Z ∈ Rn×k have
orthonormal columns, and let pi = ℓ2i /k, where ℓ2i = ∥eTi Z∥22 is the i-th leverage score of Z. Note
that (p1, ..., pn) is a distribution. Let β > 0 be a parameter, and suppose we have any distribution
q = (q1, ..., qn) for which for all i ∈ [n], qi ≥ βpi.

Let s be a parameter. Construct and n × s sampling matrix Ω and an s × s rescaling matrix D
as follows. Initially, Ω = 0 and D = 0. For each column j of Ω,D, independently, and with
replacement, pick a row index i ∈ [n] with probability qi, and set Ωi,j = 1 and Djj = 1/

√
qis.

Lemma A.4. There is a set of matrices S ⊂ Rs×n with exactly one non-zero entry per column such
that for any A ∈ Rn×k and B ∈ Rn×d, there exists S ∈ S, so that if:

X̃ = argmin
X∈Rk×d

∥S(AX−B)∥F and X∗ = argmin
X∈Rk×d

∥AX−B∥F ,

then,
∥AX̃−B∥F ≤ (1 + ϵ)∥AX∗ −B∥F .

Furthermore, S depends only on n, k, and ϵ; and |S| = nO(k log k
ϵ).

18

Proof. Let Z ∈ Rn×k be a matrix with orthonormal columns. The corresponding leverage score
sampling distribution p satisfies pi = ∥eTi Z∥22/k. We can discretize each entry pi as follows. Let
It = [1/2t−1, 1/2t). Then discretize each pi by setting qi = 1/2t−1 if pi ∈ It for t ≤ log n, in
which case pi ≤ qi ≤ 2pi. If pi ̸∈ ∪t≤lognIt, then set qi = 2

n , in which case pi < qi.

By Theorem 17 of Woodruff [2014b], if S̃ = ΩD is constructed as described in Definition A.4 from
the discretized distribution q, then for s = O(k log(k)/ϵ2), with at least constant probability,

∥ZT S̃T S̃Z− I∥2 ≤ ϵ. (5)

This implies that there exists a fixed matrix S with one non-zero entry per column achieving the above
error guarantee that selects s = O(k log(k)/ϵ2) rows of Z and rescales the row by 1/

√
qis when the

i-th row is selected. Let S be the space of all matrices that select s rows of Z with replacement and
reweights the i-th row according to all possible configurations of q. Then, since there are nO(k log k/ϵ2)
possible ways of selecting s rows with replacement, and for a fixed selection of rows, the reweighting
matrix D has (log n)O(k log(k)/ϵ2) possibilities, |S| = nO(k log(k)/ϵ2).

At this point, we have shown that for parameter ϵ > 0, there is a set of matrices S such that there
exists S ∈ S satisfying eqn. (5), and |S| = nO(k log(k)/ϵ2). By setting ϵ′ =

√
ϵ in the above result,

and following the proof of Theorem 3.1 in Clarkson and Woodruff [2009], we can conclude the
theorem statement.

A.3.2 Algorithm for k-means

Here we present our fixed-parameter PTAS for k-means described in Section 2.4 and then provide
the proof for Theorem 2.3.

Algorithm 2 PTAS for k-means
Require: Input matrix A ∈ Rn×d, error tolerance ϵ ∈ (0, 1), and number of clusters k ∈ [n].

1: Compute a coreset for the k-means problem using Algorithm 3 of Bachem et al. [2018], denoted
by the weights ω1...ωn, with w = poly(k/ϵ) non-zero weights.

2: Compute a w × n matrix W, such that if ωj is the t-th non-zero weight in the coreset, then
Wtj = ωt.

3: Initialize D̃ = 0 and δ = ∥A∥F .
4: for S ∈ Sw,k do
5: for Y ∈ {SWX |X ∈ X} do
6: Set D′ = (SY)†SWA
7: Compute X′ = argminX∈WX ∥XD′ −WA∥F 3

8: if ∥X′D′ −WA∥F < δ then
9: Set D̃ = D′ and δ = ∥X′D′ −WA∥F

10: end if
11: end for
12: end for
13: return D̃ and X̃ = argminX∈X ∥XD̃−A∥F .

Proof of Theorem 2.3:

Proof. Correctness:

In the first two steps of Algorithm 2, we use Algorithm 3 of Bachem et al. [2018] to compute
an ϵ-relative error coreset for k-means error. By Theorem 2 in Bachem et al. [2018], for some
w = poly(k/ϵ), Algorithm 3 of Bachem et al. [2018] generates an epsilon relative error coreset with
high constant probability. In matrix notation, this implies that their algorithm can be used to compute
a matrix W ∈ Rw×n with one non-zero entry per row such that, for all D ∈ Rk×d,∣∣∣ min

X∈X
∥W(XD−A)∥F − min

X∈X
∥XD−A∥F

∣∣∣ ≤ ϵ · min
X∈X

∥XD−A∥F .

3Let WX denote the set {WX |X ∈ X}, for the computed matrix W.

19

Therefore, if D′ ∈ Rk×d achieves less than (1 + ϵ) error on the coreset problem, then it will attain
(1 + ϵ)2 ≤ 1 + 3ϵ error on the original problem as well. By Lemma 2.1, when Y = SWX∗,

D′ = (SY)†SWA = argmin
X∈Rk×d

∥S(WX∗D−WA)∥F ,

which implies that,

∥WX∗D′ −WA∥F ≤ (1 + ϵ) · min
D∈Rk×d

∥WX∗D−WA∥F .

Hence, in some iteration, D′ will achieve at most a 1+ ϵ factor error over the coreset problem, giving
a ϵ-relative error on the original problem after adjusting by a constant factor.

Time complexity:

First, by Lemma 2 of Bachem et al. [2018], computing W takes O(nkd) time.

Next, by Lemma 2.1, |Sw,k| = wO(k log k
ϵ) = 2O(k

ϵ polylog(k/ϵ)). For a fixed S ∈ S, |{SWX |X ∈
X}| = kO(k

ϵ log k) = 2O(k
ϵ polylog(k)), since there are O(kϵ) rows of X selected by SW, and the

non-zero entry in each of those rows can be in one of k positions. This implies that the inner loop of
Algorithm 2 is executed exp(kϵ polylog(k/ϵ)) times.

Hence, the overall running time is n · poly(k/ϵ) + exp(kϵ polylog(k/ϵ)) under our assumption that
d = poly(k/ϵ).

B Information Theory Preliminaries

Definition B.1 (Entropy and Mutual Information). Let X,Y, Z be discrete random variables. Then,
the entropy of X is defined as

H(X) :=
∑
x

Pr[X = x] log
1

Pr[X = x]

and the conditional entropy of X given Y is defined as

H(X | Y) := Ey∼Y [H(X | Y = y)]

The mutual information between X and Y is defined as

I(X;Y) := H(X)− H(X | Y) = H(Y)− H(Y | X)

and the conditional mutual information between X and Y given Z is defined as

I(X;Y | Z) := H(X | Z)− H(X | Y, Z) = H(Y | Z)− H(Y | X,Z).

Fact B.1 (Chain Rule). Let X1, X2, Y, Z be discrete random variables. Then,

I(X1, X2;Y | Z) = I(X1;Y | Z) + I(X2;Y | X1, Z)

Fact B.2. Let X,Y be discrete random variables. Then, H(X) ≥ H(X | Y), with equality when X
and Y are independent.
Lemma B.1 (Information cost decomposition (Lemma 5.1, Bar-Yossef et al. [2004])). Let Π be a
protocol overLn for someL ⊆ X×Y . Let ζ be a mixture of product distributions onL×D, let η = ζn,
and suppose ((X,Y), D) ∼ η. Then, I(X,Y ; Π(X,Y) | D) ≥

∑n
j=1 I(X

j , Y j ; Π(X,Y) | D).

B.1 Total Variation Distance Lemma

We need the following total variation distance calculation:
Lemma B.2 (Total variation distance bound). Let µ be a distribution over a finite alphabet Q and let
D := µd. Let D′ be the same distribution, except a uniformly random index i ∼ [d] is set to some
q∗ ∈ Q. Then,

TV(D,D′) ≤

√
1− µ(q∗)

µ(q∗)

1√
d

20

Proof. For any x ∈ Qd and q ∈ Q, let

sq(x) = |{q ∈ Q : xj = q}|

denote the number of coordinates j ∈ [d] such that xj = q. Then, we have that

D(x) =
∏
q∈Q

µ(q)sq(x)

D′(x) =
∑

xj=q∗

Pr(x | I = j) Pr(I = j) =
sq∗(x)

d

1

µ(q∗)

∏
q∈Q

µ(q)sq(x).

Then,

TV(D,D′) =
∑
x∈Qd

|D(x)−D′(x)|

=
1

µ(q∗)

∑
x∈Qd

D(x)
∣∣∣∣µ(q∗)− sq∗(x, y)

d

∣∣∣∣
=

1

µ(q∗)d

∑
x∈Qd

D(x) |sq∗(x)− µ(q∗)d|

=
1

µ(q∗)d
E

x∼D
[|sq∗(x)− µ(q∗)d|]

≤ 1

µ(q∗)d

√
Varx∼D [sq∗(x)]

=
1

µ(q∗)d

√
d · µ(q∗)(1− µ(q∗))

=

√
1− µ(q∗)

µ(q∗)

1√
d
.

C Proof of Ω̃(n/ϵ) Lower Bound for k-Means Clustering

C.1 Hardness Lemma for Assignment to Centers

In this section, we show information complexity lower bounds for a multi-player communication
game based on a point assignment problem, when the input instance to the assignment problem is
given by the sum Z =

∑t
l=1 X

(l) ∈ Rd of vectors X(1), X(2), . . . , X(t) ∈ Rd, each held by one of
t players, and we must assign Z to the closest center cj ∈ Rd for j ∈ [k].

C.1.1 Assignment of a Single Point

We start by studying the problem of assigning a single point to a set of centers, as well as a hard
random instance for this problem. Our instance is based on the information theoretic approach to the
set disjointness problem and its t-bit generalization due to Bar-Yossef et al. [2004]. We define the
point assignment problem as follows:

Definition C.1 (Point assignment problem). Let X(i) ∈ {0, 1}d be binary vectors for i ∈ [t] such
that Z =

∑t
i=1 X

(i) has at most one entry j ∈ [d] such that Zj > 1. We say that a randomized
protocol Π(X(1), X(2), . . . , X(t)) solves the point assignment problem with probability at least 1− δ
if for any X(i), Π(X(1), X(2), . . . , X(t)) outputs some ej ∈ [d] such that Zj = t if such a j ∈ [d]
exists and any el for l ∈ [d] otherwise, with probability at least 1− δ.

The hard instance that we study for the point assignment problems is generated as follows. For each
of the d coordinates, with probability 1/2, we set the jth coordinates of the t players’ vectors to all
zeros, and with probability 1/2, we set the jth coordinate of a uniformly random player to 1, and

21

everyone else’s jth coordinate to 0. Finally, we select a uniformly random coordinate j ∈ [d], and set
the jth coordinate to 1 for every player with probability 1− α and 0 for every player with probability
α. The formal definition is given in Definition C.2:
Definition C.2 (Hard instance for point assignment). We define a distribution over t random bit
vectors in d dimensions {X(i)}ti=1 as follows. Let B = {Bj}dj=1 ∼ [t]d, and let I ∼ [d] be a

uniformly random index. Then for j = I , we draw the jth coordinates {X(i)
j }ti=1 as

C ∼
{
(1, 1, . . . , 1) w.p. 1− α

(0, 0, . . . , 0) w.p. α

and for j ̸= I , we draw the t values {X(i)
j }ti=1 on the jth coordinate of each X(i) uniformly

from {0, el} where l = Bj . Let ζ denote the distribution over ({X(i)}ti=1, (I,B,C)) on a single
coordinate. We also denote by Z the sum Z =

∑t
i=1 X

(i) ∈ Rd.

Throughout this section, we assume that Π is a randomized protocol that solves the point assignment
problem with probability at least 1− δ. We now derive information complexity lower bounds for this
problem, on the input instance of Definition C.2. We refer to Appendix B for standard preliminaries
for information theory.

A crucial definition for the proof of the set disjointness information complexity lower bound of
Bar-Yossef et al. [2004], as well as our point assignment lower bound, is the following:
Definition C.3 (Conditional information complexity (Definition 4.5, Bar-Yossef et al. [2004])). The
δ-error conditional information complexity of a function f : X t → Y with respect to a distribution ζ ,
denoted by CICζ,δ(f), is defined as the smallest value of I({X(l)}tl=1; Π({X(l)}tl=1) | T) over the
input distribution ({X(l)}tl=1, T) ∼ ζ for any δ-error protocol Π for f , that is, a protocol Π which
errs with probability at most δ on any input.

We first show in Lemma C.1 that for Ω(d) coordinates j ∈ [d], the jth coordinate must reveal Ω(1/t2)
bits of information, by lower bounding the information cost on the jth coordinate by the conditional
information complexity of the t-bit AND problem, that is, ANDt(x

(1), x(2), x(t)) :=
∧t

l=1 x
(l). This

conditional information complexity term is bounded by Ω(1/t2) by Theorem 7.2 of Bar-Yossef et al.
[2004]. As done in Bar-Yossef et al. [2004], the only valid inputs to the ANDt problem that we
consider are the all 0 vector, the all 1 vector, and the t standard basis vectors el ∈ {0, 1}t for l ∈ [t].
Lemma C.1 (Reduction lemma). For at least d/3 coordinates j ∈ [d],

I({X(l)
j }

t
l=1; Π({X(l)}tl=1) | I,B,C) ≥ α

2
CICζ,δ′(ANDt)

for δ′ := 4(3δ + 2/
√
d− 1) + (3/d +

√
2t/
√
d), where ζ is the distribution defined in Definition

C.2.

Proof. Our proof roughly follows Lemma 5.2 of Bar-Yossef et al. [2004].

Identifying d/3 good coordinates. We first show that for a large number of coordinates j ∈ [d],
the protocol Π is correct for the ANDt problem when restricted to the jth coordinate, that is, Π
outputs coordinate j when I = j and C = (1, 1, . . . , 1), while Π outputs a coordinate other than j
when C ̸= (1, 1, . . . , 1).

For j ∈ [d], let δ(j) denote the failure probability of the protocol Π over the input distribution of
Definition C.2, conditioned on I = j. By averaging, we have that δ(j) ≤ 3δ for at least (2/3)d
coordinates j ∈ [d]. Next, for j ∈ [d], let p(j) denote the probability that the protocol Π outputs the
standard basis vector ej , conditioned on I = j and C ̸= (1, 1, . . . , 1). First, if the input distribution
is just the product distribution with each coordinate drawn as {X(i)

j }ti=1 for ({X(i)
j }ti=1, D

j) ∼ ζ,
then note that at least (2/3)d coordinates j ∈ [d] will have ej output with probability at most 3/d.
Now if instead we uniformly draw I ∼ [d] and set {X(i)

I }ti=1 = C for some C ̸= (1, 1, . . . , 1), then
the total variation distance between this distribution and the product distribution is at most

√
2t/
√
d

by a total variation distance calculation carried out in Lemma B.2. Thus, p(j) ≤ 3/d +
√
2t/
√
d

for these (2/3)d coordinates j. Now by a union bound, there are at least d/3 coordinates such that
δ(j) ≤ 3δ and p(j) ≤ 3/d+

√
2t/
√
d. We will show the information complexity lower bound on

these coordinates. From this point forth in this proof, we fix j to be such a coordinate.

22

Reduction lemma. Note that for any j ∈ [d],

I({X(l)
j }

t
l=1; Π({X(l)}tl=1) | I,B,C)

= E
i∼I,b−j∼B−j

[
I({X(l)

j }
t
l=1; Π({X(l)}tl=1) | I = i, Bj , B−j = b−j , C)

]
≥ α E

i∼I,b−j∼B−j

[
I({X(l)

j }
t
l=1; Π({X(l)}tl=1) | I = i, Bj , B−j = b−j , C = (0, 0, . . . , 0))

]
where the last inequality is true since C = (0, 0, . . . , 0) with probability α.

Next, for each pair (i, b−j), we construct a protocol Πi,b for a single copy of the AND problem with
conditional information complexity loss exactly equal to

I({X(l)
j }

t
l=1; Π({X(l)

j }
t
l=1) | I = i, Bj , B−j = b−j , C = (0, 0, . . . , 0)).

Let {x(l)}tl=1 be a single copy of the t-bit AND problem. First note that conditioned on I , B−j , and
C, the hard instance of Definition C.2 is a product distribution, that is, the t players can generate their
inputs independently for all coordinates except j. Then, the t players generate such an input instance
according to I = i, B−j = b−j , and C = (0, 0, . . . , 0), and then replaces the jth input by {x(l)}tl=1.
The t players then simulate the original protocol Π with this input, and outputs 1 as the answer to the
AND problem if Π assigns the jth standard basis vector to Z =

∑t
l=1 X

(l), and 0 otherwise.

Note that if {x(l)}tl=1 is drawn according to the distribution of C in Definition C.2 and the index
i on which to plant C = (0, 0, . . . , 0) is drawn uniformly randomly, then by Lemma B.2, the total
variation distance between D conditioned on I = j and the simulated input distribution D′ is at most
2/
√
d− 1 (note that there are two different “I”s here, one for the original problem instance where

we are setting the random coordinate I = i to be all zeros, and one for the fixed coordinate I = j to
be the planted input {x(l)}tl=1 in the simulated instance). Then, letting S({X(l)}tl=1) be the event
that the protocol Π is successful on input {X(l)}tl=1, we have that

Pr
{X(l)}t

l=1∼D′
[S({X(l)}tl=1)]

≥ Pr
{X(l)}t

l=1∼D
[S({X(l)}tl=1)]−

∣∣∣∣∣ Pr
{X(l)}t

l=1∼D
[S({X(l)}tl=1)]− Pr

{X(l)}t
l=1∼D′

[S({X(l)}tl=1)]

∣∣∣∣∣
≥ Pr

{X(l)}t
l=1∼D

[S({X(l)}tl=1)]− TV(D,D′)

≥ 1− 3δ − 2√
d− 1

.

Thus, Π is successful with probability at least 1− 3δ − 2/
√
d− 1 under D′. Then by averaging, we

have that for at least d/2 choices of I = i, the Π is successful with probability at least 1− 2(3δ +
2/
√
d− 1) conditioned on the choice of I = i.

Next, we bound the correctness probability of the protocol Πi,b for the ANDt problem, for the set
of d/2 choices of i as defined above. First, note that on this instance, if {x(l)}tl=1 = (1, 1, . . . , 1),
then Π is correct if and only if it assigns Z to ej , since Zj = t whereas Zl ≤ 1 for every other
l ∈ [d]. Since Π must be correct with probability at least 1 − 2(3δ + 2/

√
d− 1) overall, it is

correct with probability at least 1 − 4(3δ + 2/
√
d− 1) conditioned on {x(l)}tl=1 = (1, 1, . . . , 1).

On the other hand, if {x(l)}tl=1 ̸= (1, 1, . . . , 1), then by our condition on the coordinate j, Π
assigns ej to Z with probability at most 3/d+

√
2t/
√
d. Thus, for these inputs, Πi,b is correct with

probability at least 1 − (3/d +
√
2t/
√
d). Thus, overall, Πi,b is correct with probability at least

1− 4(3δ + 2/
√
d− 1)− (3/d+

√
2t/
√
d) = 1− δ′ on any input.

Finally, let ({X ′(l)}tl=1, B
′) ∼ ζ. Then, note that the joint distribution of ({X ′(l)}tl=1, B

′,Πi,b) is
exactly the same as the joint distribution of ({X(l)

j }tl=1, B
j ,Π({X(l)}tl=1)), conditioned on I =

i, B−j = b−j , C = (0, 0, . . . , 0). Thus, this shows that

I({X(l)
j }

t
l=1; Π({X(l)}tl=1) | I = i, Bj , B−j = b−j , C = (0, 0, . . . , 0))

= I({X ′(l)}tl=1; Πi,b) ≥ CICζ,δ′(ANDt).

23

Chaining together the previous inequalities yields the claimed result.

Combining Lemma C.1 with Lemma B.1 yields the following:

Lemma C.2. For δ ≤ 1/50 and
√
2t/d ≤ 1/20, we have

I({X(l)}tl=1; Π({X(l)}tl=1) | I,B,C) = Ω(d/t2).

Proof. If δ ≤ 1/50, then 12δ ≤ 12/50 < 1/4 so for large enough d, the δ′ in Lemma C.1 is at most
1/3. In this case, CICζ,δ′(ANDt) = Ω(1/t2) by Theorem 7.2 of Bar-Yossef et al. [2004], which,
combined with Lemma B.1, yields the statement of the lemma.

C.1.2 Assignment of Multiple Points

Next, we show by a direct sum argument that solving the assignment problem for n points requires a
protocol to reveal Ω(nd/t2) bits of information.

Lemma C.3. Let
√
2t/d ≤ 1/20. Let ({X(l)}tl=1, (I,B,C)) = {({X(i,l)}tl=1, (I

i, Bi, Ci))}ni=1
be drawn as n i.i.d. from the hard distribution of Definition C.2. Suppose that a protocol Π outputs a
correct solution to the point assignment problem of Definition C.1 for least a 399/400 fraction of
points {X(i,l)}tl=1 for i ∈ [n], with probability at least 399/400. Then,

I({X(l)}tl=1; Π({X(l)}tl=1) | I,B,C) = Ω(nd/t2).

Proof. Let i ∼ [n] be a uniformly random index. Then, by a union bound, the ith instance of the
point assignment problem is solved correctly with probability at least 1− 2/400 = 1− 1/200. Now
for each fixed i ∈ [n], let δ(i) be the probability that the ith instance is solved correctly. Then, over
the randomness used by the protocol as well as i ∼ [n], we have that

Pr
i∼[n]
{ith instance is correct} =

n∑
i=1

1

n
Pr{ith instance is correct} = 1

n

n∑
i=1

1− δ(i) ≥ 1− 1

200

so Ei∼[n]δ(i) ≤ 1/200. Then for at least n/2 indices i′ ∈ [n], we have that δ(i′) ≤ 2/200 = 1/100.
We now claim that on these coordinates i′ ∈ [n], we have that

I({X(i′,l)}tl=1; Π({X(l)}tl=1) | I,B,C) = Ω(d/t2).

Indeed, note that I({X(i′,l)}tl=1; Π({X(l)}tl=1) | I,B,C) is the expectation of

I({X(i′,l)}tl=1; Π({X(l)}tl=1) | Ii
′
, Bi′ , Ci′ , I−i′ = i−i′ , B−i′ = b−i′ , C−i′ = c−i′)

over i−i′ ∼ I−i′ , b−i′ ∼ B−i′ , c−i′ ∼ C−i′ . Now for each fixing i−i′ , b−i′ , c−i′ , let
δ(i−i′ , b−i′ , c−i′) that the i′th instance of the point assignment problem is correct given these fixings.
Then by Markov’s inequality, for at least half of the fixings, we have δ(i−i′ , b−i′ , c−i′) ≤ 2/100 =
1/50. Note that each of these fixings corresponds to a protocol for solving the point assignment
problem with probability at least 1− 1/50. Thus, we have by Lemma C.2 that

I({X(i′,l)}tl=1; Π({X(l)}tl=1) | Ii
′
, Bi′ , Ci′ , I−i′ = i−i′ , B−i′ = b−i′ , C−i′ = c−i′) = Ω(d/t2)

for these fixings. Since this event occurs with probability at least 1/2, it follows that
I({X(i′,l)}tl=1; Π({X(l)}tl=1) | I,B,C) = Ω(d/t2) as well.

Finally, by Lemma B.1, we have that

I({X(l)}tl=1; Π({X(l)}tl=1) | I,B,C) ≥
n∑

i=1

I({X(i,l)}tl=1; Π({X(l)}tl=1) | I,B,C)

≥ n

2
· Ω(d/t2) = Ω(nd/t2).

24

C.2 Lower Bounds for Clustering in Row Insertion Streams

Our first result is to show that an algorithm for computing a (1 + ϵ)-approximate nearly optimal
k-means clustering on n points for k = d = Θ(1/ϵ) on row insertion streams requires Ω(n/ϵ) bits of
space.

For this result, we need a lower bound against any nearly optimal clustering, so we need to “plant” our
desired centers in order to force the solution to look like standard basis vectors. This will allow us to
use the clustering algorithm to solve the point assignment problem. In order to determine the number
of points we need to plant the centers, we first need a lower bound on the cost of any clustering of
random bits, which we show in the next section.

C.2.1 Cost Lower Bound on Random Points

We first lower bound the cost of any clustering of the random points of the hard instance in Definition
C.2. We start with a bound in expectation:
Lemma C.4 (Expectation bound for clustering random bits). Fix a set of centers c1, c2, . . . , ck ∈
[0, 1]d. Let Z ∈ {0, 1}d be a vector of d uniformly random bits. Then,

E
Z

[
k

min
j=1
∥Z − cj∥22

]
≥ d

4
− log(kd) + 1

2
.

Proof. Let µ := E[Z] (i.e., the vector with 1/2 in every entry). Fix a specific center cj for j ∈ [k].
Then,

∥Z − cj∥22 = ∥Z − µ∥22 + ∥µ− cj∥22 + 2⟨Z − µ, µ− cj⟩ = d

4
+ ∥µ− cj∥22 + 2⟨Z − µ, µ− cj⟩

By Hoeffding’s inequality, we have

Pr
{∣∣⟨Z − µ, µ− cj⟩

∣∣ ≥ t∥µ− cj∥2
}
≤ 2 exp

(
−2t2

)
so for t =

√
log(kd)/2, this probability is at most 2/kd. By a union bound over the k choices of j,

we have that

Pr

{
k

min
j=1
∥Z − cj∥22 ≤

d

4
+ ∥µ− cj∥22 − 2

√
log(kd)/2∥µ− cj∥2

}
≤ 2

d
.

Note that

∥µ− cj∥22−2
√
log(kd)/2∥µ− cj∥2 =

(
∥µ− cj∥2 −

√
log(kd)/2

)2

− log(kd)/2 ≥ − log(kd)/2

so

Pr

{
k

min
j=1
∥Z − cj∥22 ≥

d

4
− log(kd)

2

}
≥ 1− 2

d
.

It follows that

E
[

k
min
j=1
∥Z − cj∥22

]
≥

(
1− 2

d

)(
d

4
− log(kd)

2

)
≥ d

4
− log(kd) + 1

2

Lemma C.4 shows that when clustering random bits, we can only save approximately a (1− 1/Θ̃(d))
factor for any clustering compared to a single center, in expectation. Since all but one coordinate in
the hard instance of Definition C.2 are random bits, and the one coordinate can only decrease the
cost by a factor of (1− 1/Θ̃(d)), any clustering into k centers still has cost at least approximately
(1− 1/Θ̃(d)) times the cost of a single center.

The next lemma converts the result of Lemma C.4 into a high probability result about any clustering,
via a net argument.
Lemma C.5. Let {Zi}ni=1 be n independent uniformly random bit vectors in d dimensions. Suppose
that n ≥ 16d log(d2d/δ) = 32d2 log(d/δ). Then, with probability at least 1− δ, we have that

min
c1,c2,...,ck∈[0,1]d

n∑
i=1

k
min
j=1
∥Zi − cj∥22 ≥ n

(
d

4
− log(kd) + 9

2

)
.

25

Proof. Let {cj}kj=1 and {c′j}kj=1 be two sets of centers such that ∥cj − c′j∥22 ≤ 1/d. Then,

k
min
j=1
∥Zi − cj∥22 ≤

k
min
j=1
∥Zi − c′j∥22 + ∥c′j − cj∥22 + 2∥Zi − c′j∥2∥c′j − cj∥2

≤
k

min
j=1
∥Zi − c′j∥22 + 3

so if {cj}kj=1 has high cost, then {c′j}kj=1 must as well. We now consider a net N ⊆ [0, 1]d of size
d2d such that for any c ∈ [0, 1]d, there exists c′ ∈ N such that ∥c − c′∥22 ≤ 1/d. Now fix a set of
centers {cj}kj=1 ∈ N k. By Lemma C.4, we have that

EZ [
k

min
j=1
∥Z − cj∥22] ≥

d

8

for sufficiently large d, so we have that

Pr

{
n∑

i=1

k
min
j=1
∥Zi − cj∥22 ≤ (1− 1/d)nE

Z

[
k

min
j=1
∥Z − cj∥22

]}
≤ exp

(
− nd

16d2

)
≤ δ

d2d

by Chernoff bounds. Then by a union bound, the same holds simultaneously for every {cj}kj=1 ∈ N k

with probability at least 1− δ.

Now for an arbitrary set of centers c1, c2, . . . , ck ∈ [0, 1]d, there exists some {c′j}kj=1 ∈ N k such
that ∥cj − c′j∥22 ≤ 1/d for every j ∈ [k]. Then,

n∑
i=1

k
min
j=1
∥Zi − cj∥22 ≥

n∑
i=1

(
k

min
j=1
∥Zi − c′j∥22 − 3

)
≥ (1− 1/d)nE

Z

[
k

min
j=1
∥Z − c′j∥22

]
− 3n

≥ (1− 1/d)n

(
d

4
− log(kd) + 1

2

)
− 3n

≥ n

(
d

4
− log(kd) + 9

2

)
.

C.2.2 Upper Bound on a Nearly Optimal Cost

We first upper bound the optimal cost of clustering by giving an explicit clustering construction, and
upper bounding the cost. We define this clustering in Definition C.4:
Definition C.4 (Nearly optimal clustering). We define a clustering for points drawn from Definition
C.2. Consider the variables I and C as defined in Definition C.2. If C = (1, 1, . . . , 1) and I = j,
then we assign the point to cluster j. On the other hand, if C ̸= (1, 1, . . . , 1) and I = j, then we
assign the point to a uniformly random point j′ ∈ [d] \ {j} such that X(l)

j′ = 1 for some l ∈ [t]. If no
such coordinate exists, we assign it to any cluster. Furthermore, we define the center cj by setting its
j′th coordinate to be

cjj′ =

{
t+1
2 if j′ = j

1
2 if j′ ̸= j

The cost of this clustering is bounded in the following lemma:
Lemma C.6. Let {Zi}ni=1 be drawn i.i.d. from the distribution of Definition C.2. Then, with
probability at least 1 − (1/2)d−1, the clustering defined in Definition C.4 has cost at most n(d +
t2 − 2t)/4.

Proof. Let ({X(i,l)}tl=1, (I
i, Bi, Ci)) denote the ith element drawn from Definition C.2, for i ∈ [n].

We handle the cost calculation by conditioning on the event that at least one nonzero coordinate is
drawn on [d] \ {Ii}, since this occurs with probability at least 1− (1/2)d−1.

26

Fix a cluster j ∈ [k]. We will consider the distribution of points {X(i,l)}tl=1, conditioned on the
event that the point being clustered to cluster j in the clustering of Definition C.4. Note then that
the jth coordinate comes from a point such that Ii = j and Ci = (1, 1, . . . , 1), or the jth coordinate
comes from a point with

∑t
l=1 X

(i,l) = 1 and Ii ̸= j and Ci = (0, 0, . . . , 0). In either case, the
coordinates [d] \ {j} are in {0, 1}, and the jth coordinate is in {1, t}. Then for our defined center
cj , the squared cost is (1/2)2 = 1/4 on d − 1 coordinates and ((t − 1)/2)2 = (t − 1)2/4 on one
coordinate per point, for a total of n · ((d− 1)/4 + (t− 1)2/4) = n(d+ t2 − 2t)/4 as claimed.

C.2.3 Planting Centers

With our nearly optimal clustering of Definition C.4 in mind, we now add copies of these centers
into our instance in order to encourage the clustering algorithm to find this solution. Note that this
increases the cost of any other clustering, without increasing the cost of this clustering.

Lemma C.7. Let n ≥ 32d2 log(d/δ). Consider the input instance to k-means clustering given by n
random points drawn according to Definition C.2, together with

γ :=
400t2n

k

(
log(kd) + 9

2
+

t2 − 2t

4
+

(d+ t2 − 2t)

4d

)
= O

(
t2n

k
(log(kd) + t2)

)
copies of each center cj for j ∈ [k] as defined in Definition C.4. Furthermore, let {ĉj}kj=1 be
centers achieving a (1 + 1/d)-nearly optimal solution to the k-means clustering instance. Then,
∥cj − ĉj∥22 ≤ 1/4 for at least (1− 1/100t2)k of the centers cj .

Proof. Recall that in Lemma C.5, we showed that any clustering of n random points drawn from
Definition C.2 must have a cost of at least nd/4− n(log(kd) + 9)/2 with probability at least 1− δ.
Then, with probability at least 1− (1/2)d−1, the value of the optimal solution is bounded above by
n(d+ t2 − 2t)/4 by Lemma C.6, so we must have that

γ

k∑
j=1

∥cj − ĉj∥22 + n

(
d

4
− log(kd) + 9

2

)
≤ (1 + 1/d)

n(d+ t2 − 2t)

4

which implies that

1

k

k∑
j=1

∥cj − ĉj∥22 ≤
1

400t2

by rearranging. By averaging, at least (1− 1/100t2)k of the k centers j ∈ [k] satisfy ∥cj − ĉj∥22 ≤
1/4.

Note that Lemma C.7 only allows us to characterize the behavior of (1− 1/100t2)k many cluster
centers, which still allows for the possibility that the remaining k/100t2 centers are able to fit many
points with low cost. The following lemmas show that this cannot happen.

Lemma C.8. Consider a set of k′ centers ĉj ∈ Rd for j ∈ [k′]. Let {Zi}n′

i=1 be n′ ≥M points such
that Zi takes the value t on coordinate li ∈ [d], and furthermore, we have

∣∣{i ∈ [n′] : Zi
l = t}

∣∣ ≤M
for any l ∈ [d]. Then, the cost of any clustering of these n′ points with k′ clusters is at least

n′ d

4
− n

log((k′ + 1)d) + 9

2
+

4

5
t2(n′ − 10k′ ·M)

Proof. We first lower bound the cost of the k′ centers by a “random” part of the cost and the “spike”
part of the cost. For each j ∈ [k′], define the center c̄j which is the center ĉj with all entries greater
than 1 set to 1.

Suppose that Zi is a point with some coordinate l ∈ [d] such that Zi
l = t. Note then that on the lth

coordinate, we have that

(Zi
l − ĉjl)

2 ≥ (Zi
l − ĉjl)

2 + (bi − c̄jl)
2 − 1

27

for some random bit bi ∼ {0, 1}. For all other coordinates l ∈ [d], if ĉjl > 1, then we lower bound
the cost on the lth coordinate by

(Zi
l − ĉjl)

2 ≥ (Zi
l − 1)2 + (1− ĉjl)

2 = (Zi
l − c̄jl)

2 + (1− ĉjl)
2

while if ĉjl ≤ 1, then we simply write the cost as (Zi
l − ĉjl)

2 = (Zi
l − c̄jl)

2. Note then that the cost
lower bounds derived above can be grouped into a cost corresponding to a clustering cost of random
bit vectors with centers c̄j ∈ Rd, and everything else.

We will first lower bound the latter costs. Note that these costs are given by (t − ĉjl)
2 − 1 for

the coordinate l ∈ [d] such that Zi
l = t and (ĉjl − 1)2 for the coordinates l ∈ [d] such that

ĉjl > 1. In fact, we can note that this is just one less than the ℓ2 distance between ĉj and the vector
(1, 1, . . . , 1, t, 1, . . . , 1), i.e., the all ones vector with t in the lth position, since we can WLOG
threshold all entries of ĉj less than 1 to be exactly 1. Note that this cost is minimized when there
are n′/M different indices l ∈ [d], each which has

∣∣{i ∈ [n′] : Zi
l = t}

∣∣ = M , and when all vectors
Zi with the same coordinate l for Zi

l = t are clustered to the same center (see, e.g., Fernandez
et al. [2019]). For each l ∈ [d], denote by G(l) the set {i ∈ [n′] : Zi

l = t}. Then, there are at most
10k′ indices l ∈ [d] that belong to clusters consisting of at most 10 groups G(l). All other indices
l ∈ [d] belong to clusters that consist of at least 10 groups G(l), and thus the center of this cluster has
coordinates with magnitude at most t/10. Thus, for at least n′ − 10k′ ·M points, the cost is at least
(t− t/10)2 = (9/10)2t2 ≥ (4/5)t2.

Next, we lower bound the cost of clustering the random bit vectors by c̄j . By Lemma C.5, the total
cost of any clustering of n random points with k′ + 1 clusters must be at least

n

(
d

4
− log((k′ + 1)d) + 9

2

)
.

One way to cluster these n random points is to first cluster n′ points using k′ clusters, and then
cluster all the remaining n− n′ points with the fixed center given by the vector with all 1/2s, which
gives a cost of d/4 for any point. Then by the above cost lower bound, it follows that the cost of the
clustering of the n′ points using the k′ clusters must be at least

n

(
d

4
− log((k′ + 1)d) + 9

2

)
− (n− n′)

d

4
= n′ d

4
− n

log((k′ + 1)d) + 9

2
.

C.2.4 Reduction from Point Assignment

Finally, we obtain an information complexity lower bound for the k-means clustering problem, by a
reduction from the point assignment problem of Lemma C.3.

Theorem C.1. Let t = max{2000, 80
√
log(kd) + 10 + 2}. Let {Zi}ni=1 be drawn i.i.d. from the

distribution of Definition C.2, with α = 1/100t2. Consider the input instance given by these points,
together with the planted centers as specified in Lemma C.7. Suppose that ĉj ∈ Rd for j ∈ [k] are
centers that achieve a (1 + ϵ) approximation, for ϵ = (log(kd) + 10)/(d + (t − 1)2) = Õ(1/d).
Suppose that we assign el to Zi whenever Zi is clustered to the center ĉj that has largest entry in the
lth coordinate for l ∈ [d]. Then, this solves the point assignment problem (Definition C.1) for at least
(399/400)n of the Zi for i ∈ [n]. Hence, solving k-means clustering up to (1 + ϵ) accuracy on this
instance requires Ω(nd/t2) = Ω̃(nd) = Ω̃(n/ϵ) bits of communication.

Proof. Let {ĉj}kj=1 be a clustering achieving a (1 + ϵ) approximation. We will show that we must
have at most n/400 incorrect classifications of the points Zi.

We first introduce some notation. For each j ∈ [k], we let G(j) ⊆ [n] denote the subset of points
i ∈ [n] such that Zi

j = t, and we let G(0) := [n] \
⋃

j∈[k] G
(j) denote the set of points such that

∥Zi∥∞ ≤ 1. Note then that G(0) corresponds to the set of points with C = (0, 0, . . . , 0) for C
defined in Definition C.2, and thus has size E

∣∣G(0)
∣∣ = αn in expectation and size Θ(αn) with

28

probability at least 1− δ by Chernoff bounds. We will also define c̄j for each j ∈ [k] to be the center
ĉj with any entry larger than 1 set to be equal to 1.

By Lemma C.7, there is a subset S ⊆ [k] of size at least |S| ≥ (1−1/100t2)k such that ∥cj− ĉj∥22 ≤
1/4. We make use of this fact later, and first bound the cost of points that can be clustered by the
remaining at most k′ = |[k] \ S| ≤ k/100t2 centers. Note that by Chernoff bounds and a union
bound, we have that

∣∣{i ∈ [n] : Zi
l = t}

∣∣ ≤ 2n/k for every l ∈ [n]. Then by Lemma C.8, if there are
n′ points clustered by these k′ centers, then the cost is at least

n′ d

4
− n

log(kd) + 9

2
+

4

5
t2
(
n′ − 10

k

100t2
2n

k

)
≥ n′

(
d

4
+

4

5
t2
)
− n

log(kd) + 10

2
(6)

Now let j ∈ S. We will bound the cost of the points Zi ∈ G(j), as a function of the number of points
that are clustered to some center ĉj

′
for j′ ̸= j. Let Zi be a point clustered to some center ĉj

′
for

j′ ̸= j and j′ ∈ S (recall that we have already handled the cost of clustering points to centers outside
of S). Then, the cost on the jth coordinate is bounded below by

(Zi
j − ĉj

′

j) ≥
(
t− 1

2
− ∥cj

′
− ĉj

′
∥∞

)2

≥ (t− 1)2.

On the other hand, if the assigned center is correct, i.e. j′ = j, then the cost lower bound on the jth
coordinate is

(Zi
j − ĉj

′

j) ≥
(
t− t+ 1

2
− ∥cj

′
− ĉj

′
∥∞

)2

≥ (t− 2)2/4.

Thus, each incorrectly classified point pay an additional cost (t− 1)2 − (t− 2)2/4 ≥ (t− 2)2/2 on
the jth coordinate. We will later lower bound the cost of the rest of the coordinates via Lemma C.5.

In the last remaining cases of i ∈ G(0) and i ∈ G(j) for j /∈ S, we will only be able to lower bound
the cost by the cost of the random coordinates via Lemma C.5, but not by the additional (t− 2)2/4
term on the jth coordinate. This will be fine, as there are only roughly n/t2 such points, since∣∣G(0)

∣∣ ≤ 2αn = n/50t2 and |[k] \ S| ≤ (1/100t2)k so∣∣∣∣∣∣
⋃

j∈[k]\S

G(j)

∣∣∣∣∣∣ ≤ k

100t2
2n

k
≤ n

50t2
.

Thus, at least n−n′−(n/50t2+n/50t2) points will incur a cost of (t−2)2/4, for a cost contribution
of

(t− 2)2

4

(
n− n′ − (n/50t2 + n/50t2)

)
= (n− n′)

(t− 2)2

4
− n

100

Finally, we bring all the above calculations together. Suppose that there are b points Zi that belong
to G(j) for some j ∈ S, but are clustered to some other ĉj

′
for j′ ∈ S. First, the cost of the points

that are clustered to some center not in S is given in (6). Next, the cost of clustering the random
coordinates of all other points is similarly bounded below by Lemma C.5 by

(n− n′)
d

4
− n

log(kd) + 9

2
.

Thus, altogether, the cost is bounded below by

b
(t− 2)2

2
+ (n− n′)

(
d

4
+

(t− 2)2

4

)
+ n′

(
d

4
+

4

5
t2
)
− n(log(kd) + 10)

≥ b
(t− 2)2

2
+

nd

4
+ n

(t− 2)2

4
+ n′ (t− 2)2

2
− n(log(kd) + 10)

Then, if b or n′ are greater than n/800, then this cost is at least

n

800

(t− 2)2

2
+

nd

4
+ n

(t− 2)2

4
− n(log(kd) + 10)

29

For t ≥ 2000, we have that
1

2

n

800

(t− 2)2

2
≥ n

4
· 2t

and for t ≥ 80
√
log(kd) + 10 + 2, we have that

1

2

n

800

(t− 2)2

2
≥ 2n(log(kd) + 10)

and thus if both of these hold, then the cost is at least

nd

4
+ n

(t− 1)2

4
+ n(log(kd) + 10).

Thus, by our choice of ϵ, this fails to be a (1 + ϵ)-approximate solution, and thus we must have
that b and n′ are both at most n/800. Thus, the algorithm can incorrectly classify at most n/400
points.

D Missing Proofs from Section 4

D.1 Proof of Theorem 4.2

Proof of Theorem 4.2. Let d = 2
⌈
1/ϵ2

⌉
and let X = {Xi}ni=1 ⊆ {0, 1}d/2 be a collection of n

uniformly random bit vectors, each with d/2 coordinates. Then for each i ∈ [n], we form a vector
ai ∈ Rd by setting the (2j − 1)th and 2jth coordinates to be

(ai2j−1, a
i
2j) =

{
(0, 1) if Xi

j = 0

(1, 0) if Xi
j = 1

Fix any j ∈ [d/2], and suppose that we query the cost of two centers given by the vectors c1 =√
d · e2j−1 and c2 =

√
d · e2j . Then, the center cost query data structure must output a partition

C1, C2 ⊆ [n] such that∑
i∈C1

∥ai − c1∥22 +
∑
i∈C2

∥ai − c2∥22 ≤ (1 + ϵ/15) cost(c1, c2).

We claim that the partition must assign all but at most n/10 of the ai to its closest center. Note that
this implies the theorem. Indeed, given the center cost query data structure M , we can reconstruct a
bits X ′ which agrees with X on all but at most (n/10)(d/2) = nd/20 bits, so

H(M) ≥ H(M)− H(M | X)

= I(M ;X)

≥ I(X ′;X) data processing inequality

= H(X)− H(X | X ′)

≥ nd

2
− nd

20
= Ω(nd).

Then, M must use at least Ω(nd) bits to describe, since the number of bits of a message upper bounds
the entropy of a random variable.

Note first that the cost of this query on any vector is at least

(
√
d− 1)2 ≥ (1− 1/

√
d)2d ≥ (1− 2/

√
d)d ≥ d/2

and at most
∥ai − c1∥22 ≤ 2∥ai∥22 + 2∥c1∥22 = 3d.

Thus, the total error that the partition can incur is at most∑
i∈C1

∥ai − c1∥22 +
∑
i∈C2

∥ai − c2∥22 − cost(c1, c2) ≤ ϵ cost(c1, c2) ≤ 3 · ϵ

15
nd ≤

√
d

5
n

30

By averaging over the n vectors, there can be at most n/10 indices i ∈ [n] such that ai is assigned to
a cluster with center c ∈ {c1, c2} with

∥ai − c∥22 −min
{
∥ai − c1∥22, ∥ai − c2∥22

}
≥ 2
√
d

Now consider a single vector ai, and say that (ai2j−1, a
i
2j) = (0, 1). Note then that the difference

between the cost of assigning this vector to c1 versus the cost of assigning this vector to c2 is at least

(
√
d)2 + 12 − (

√
d− 1)2 ≥ 2

√
d.

Thus, there are at most n/10 vectors that can be assigned to the incorrect center.

D.2 Proof of Theorem 4.3

Proof of Theorem 4.3. The proof is by a reduction from set disjointness Razborov [1990]. Suppose
that Alice and Bob are two players who hold an instance of set disjointness, that is, Alice has a subset
A ⊆ [n] and Bob has a subset B ⊆ [n], and they must determine whether A ∩B is empty or not by
sending each other messages in any number of rounds. It is known that any randomized algorithm
solving this task with probability at least 2/3 requires Ω(n) bits of communication Razborov [1990].

Suppose that there is a randomized turnstile streaming algorithm A which can output a relative error
approximation to the k means clustering cost with probability at least 2/3 while using r passes and
space at most M . Then, we claim that Alice and Bob can use this algorithm to solve set disjointness
in 2rM bits of communication, which implies that M = Ω(n/r). To do this, Alice first runs the
algorithm A on the input stream which updates Ai,1 ← Ai,1 + 1 for every i ∈ A. Then, Alice sends
the memory state of A, which is at most M bits, to Bob. Bob then continues to run the algorithm A
by updating running it on the stream which updates Ai,1 ← Ai,1 + 1 for every i ∈ B. Finally, Bob
also adds two dummy coordinates which has entries 0 and 1 each. Bob can then send the memory
state back to Alice, which again is at most M bits. This can be repeated for r passes, for a total of
2rM bits of communication.

We now show that given an estimate c satisfying (2), Alice and Bob can determine whether A ∩B
is empty or not. If A ∩ B is empty, then note that all rows of A are either 0 or 1, so the k-means
clustering cost for k = 2 is 0 and thus c must be 0. On the other hand, if A ∩B is nonempty, then
there is at least one row of A that is 2 as well as a 0 and a 1 from the two dummy coordinates added
by Bob, so the cost is strictly positive. Thus, c must be strictly positive in this case.

D.3 Proof of Theorem 4.4

Proof of Theorem 4.4. Our proof for this result roughly follows our proof of Theorem 4.3, so we
only point out the important changes. We again let Alice and Bob have subsets A ⊆ [n] and B ⊆ [n],
respectively. However, for this reduction, we construct our input instance A to be (2n + 3) × 1.
First, Alice inserts her items i ∈ A from A in two coordinates, updating A2i,1 ← A2i,1 + 1
and A2i+1,1 ← A2i+1,1 + 1 for every i ∈ A. Similarly, Bob updates A in the two coordinates
A2i,1 ← A2i,1 + 1 and A2i+1,1 ← A2i+1,1 + 1 for every i ∈ B. Finally, Bob inserts three dummy
coordinates which has entries 0, 1, and 3.

We now claim that an approximate set of centers D̃ can distinguish the cases between A ∩B empty
and A∩B nonempty. In the former case, the set of centers output by the k-means clustering algorithm
must be {0, 1, 3}, since this is the unique solution with a cost of 0. On the other hand, if A ∩ B is
nonempty, then we claim that the k-means clustering algorithm cannot output {0, 1, 3}. Indeed, in
this case, the cost of this solution is at least 2 since there are at least two coordinates whose value
is 2. On the other hand, the solution of {0, 1, 2} has a cost of 1, since there is only a single dummy
coordinate of 3 that does not intersect exactly with these centers.

D.4 Proof of Theorem 4.5

We will need the following sensitivity sampling theorem:
Theorem D.1 (Sensitivity sampling, Feldman and Langberg [2011], Braverman et al. [2016],
Woodruff and Yasuda [2023]). Let

σ̃i ≥ sup
c1,c2,...,ck∈Rd

minkj=1 ∥ai − cj∥22∑n
i′=1 minkj=1 ∥ai

′ − cj∥22

31

and S̃ :=
∑n

i=1 σ̃i. Suppose that for each i ∈ [n], ai is sampled independently with probability
pi := min{1, Õ(σ̃ikd/ϵ

2)}, with an associated weight wi = 1/pi if i is sampled and 0 otherwise.
Then, for every c1, c2, . . . , ck ∈ Rd, we have that

n∑
i=1

k
min
j=1
∥ai − cj∥22 = (1± ϵ)

n∑
i=1

wi

k
min
j=1
∥ai − cj∥22.

We then obtain the following result:

Proof of Theorem 4.5. Note that if a dataset has sensitivities bounded by α, then a uniformly random
sample of size Õ(αnkd/ϵ2) is a sample as given in Theorem D.1. Thus, approximately optimal
centers ĉ1, ĉ2, . . . , ĉk ∈ Rd are approximately optimal centers for the entire dataset. These centers
can be found using just

Õ((αnkd/ϵ2)/ϵ2 + dk/ϵ) = Õ(αnkd/ϵ4 + dk/ϵ)

bits of space, using our turnstile streaming k means clustering result (Theorem 3.2). Furthermore,
because the input stream is a random order stream, these approximately optimal centers ĉ1, ĉ2, . . . , ĉk

can be obtained after seeing the first Õ(αnkd/ϵ2) elements of the stream. With approximately
optimal centers in hand, note that the rest of the n− Õ(αnkd/ϵ2) points can be assigned on the fly,
and thus space complexity is just an additional O(n log k) bits.

32

	Introduction
	Our contributions
	PTAS for dictionary learning and clustering
	Dictionary learning and clustering on streams

	Fixed parameter PTAS for sparse dictionary learning
	PTAS for r-sparse dictionary learning
	Dimensionality reduction
	Algorithm for sparse dictionary learning
	Algorithms for k-means

	Turnstile streaming algorithms
	Streaming lower bounds for Euclidean k-means clustering
	Lower bounds for k-means clustering
	Lower bound for outputting nearly optimal centers

	Lower bounds for center cost query data structures
	Approximation of costs and centers
	New upper bounds in random order streams

	Open directions
	Missing proofs for Section 2
	Dimensionality reduction
	PTAS for sparse-dictionary
	Coreset construction for Sparse Dictionary Learning
	Polynomial Solver for a Restricted SDL Problem
	Algorithm for sparse dictionary learning

	PTAS for k-means
	Brute force leverage score sampling
	Algorithm for k-means

	Information Theory Preliminaries
	Total Variation Distance Lemma

	Proof of Omega(n/eps) Lower Bound for k-Means Clustering
	Hardness Lemma for Assignment to Centers
	Assignment of a Single Point
	Assignment of Multiple Points

	Lower Bounds for Clustering in Row Insertion Streams
	Cost Lower Bound on Random Points
	Upper Bound on a Nearly Optimal Cost
	Planting Centers
	Reduction from Point Assignment

	Missing Proofs from Section 4
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Theorem 4.4
	Proof of Theorem 4.5

