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APPENDIX

In the subsequent sections, we begin by highlighting related works, establishing the context and
relevance of this paper within the broader academic discourse in Section A. The experimental
intricacies pertaining to the motivating example introduced in Section 3 are detailed in Section B.
The pseudo-code for our PDRVI-L algorithm is delineated in Section C. Within Section D, we
elucidate the methodologies and findings from our experiments on the American option and CartPole.
Section E presents the rigorous proof for Theorem 4. Meanwhile, Section F offers detailed proofs for
Theorem 5.2, Theorem 5.3, and Theorem 5.1.

A RELATED WORK

Offline RL: Recent research interests arouse to design offline RL algorithms with fewer dataset
requirements based on a shared intuition called pessimism, i.e., the agent can act conservatively in the
face of state-action pairs that the dataset has not covered. Empirical evidence has emerged (Fujimoto
et al., 2019; Wu et al., 2019; Kumar et al., 2019; Fujimoto & Gu, 2021; Kumar et al., 2020; Kostrikov
et al., 2021; Wu et al., 2021; Wang et al., 2018; Chen et al., 2020; Yang et al., 2021b; Kostrikov et al.,
2022). Jin et al. (2021) prove that a pessimistic variant of the value iteration algorithm can achieve
sample-efficient suboptimality under a mild data coverage assumption. Xie et al. (2021) introduce
the notion of Bellman consistent pessimism to design a general function approximation algorithm.
Rashidinejad et al. (2021) design the lower confidence bound algorithm utilizing pessimism in the
face of uncertainty and show it is almost adaptively optimal in MDPs.

Linear Function Approximation: Research interests on the provable efficient RL under the linear
model representations have emerged in recent years. Yang & Wang (2019) propose a parametric Q-
learning algorithm to find an approximate-optimal policy with access to a generative model. Zanette
et al. (2021) considers the Linear Bellman Complete model and designs the efficient actor-critic
algorithm that achieves improvement in dependence on d. Yin et al. (2022) designs the variance-aware
pessimistic value iteration to improve the suboptimality bounds over the best-known existing results.
On the other hand, Wang et al. (2020); Zanette (2021) prove the statistical hardness of offline RL with
linear representations by proving that the sample sizes could be exponential in the problem horizon
for the value estimation task of any policy.

Robust MDP and RL: The robust optimization approach has been used to address the parameters
uncertainty in MDPs first by Satia & Lave Jr (1973) and later by Xu & Mannor (2010); Iyengar
(2005); Nilim & El Ghaoui (2005); Wiesemann et al. (2013); Kaufman & Schaefer (2013); Ho et al.
(2018; 2021); Wiesemann et al. (2013). Although flourishing in the supervised learning (Namkoong
& Duchi, 2017; Bertsimas et al., 2018; Duchi & Namkoong, 2021; Duchi et al., 2021), few works
consider computing the optimal robust policy for RL. For online RL, a line of work has considered
learning the optimal MDP policy under worst-case perturbations of the observation or environmental
dynamics (Rajeswaran et al., 2016; Pattanaik et al., 2017; Huang et al., 2017; Pinto et al., 2017;
Zhang et al., 2020). For offline RL, Zhou et al. (2021b) studies the distributionally robust policy with
the offline dataset, where they focus on the KL ambiguity set and (s, a)-rectangular assumption and
develop a value iteration algorithm. Yang et al. (2021a) improve the results in Zhou et al. (2021b)
and extend the algorithms to other uncertainty sets. However, current theoretical advances mainly
focus on tabular settings.

Among the previous work, one of the closest works to ours is Tamar et al. (2014), which develops a
robust ADP method based on a projected Bellman equation. Based on this, Badrinath & Kalathil
(2021) address the model-free robust RL with large state spaces by the proposed robust least squares
policy iteration algorithm. While both provide the convergence guarantee for their algorithm, as
shown in Section 3, their robustify-then-approximate (RTA) design fail to exploit the latent structure
of the problem and may lead to the conflict between robustness and approximator, which finally yields
suboptimal decisions. Besides, Panaganti et al. (2022a) considers the robust RL problem with general
function approximator. Their algorithmic design highly depend on the choice of the ambiguity set and
have no theoretical guarantee under weaker data coverage condition. The other closed work to ours
is Goyal & Grand-Clement (2022), which considers a more general assumption for the ambiguity
set, called d-rectangular 1 for MDPs with low dimensional linear representation. They mainly focus

1Goyal & Grand-Clement (2022) call it r-rectangular.
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on the optimal policy structure for robust MDPs and the computational cost given the ambiguity set.
In contrast, we study the offline RL setting and focus on the linear function approximation with a
provable finite-sample guarantee for the suboptimality.

B DETAILS OF THE MOTIVATING EXAMPLE

For convenience, given a r.v. X , we denote its distributional robust value (refer Lemma 4.1) as
g(X, ρ) = supβ≥0{−β log(EX∼P [eX/β ]) − β · ρ}. For any action a, the corresponding reward
distribution is

ra ∼
{N (1, 1) w.p. 1− a
N (0, 0.5) w.p. a

(7)

Based on the definition of (s, a)-rectangular, the robust action-value function Qsa(a) = g(ra, 1).
The projected value function is approximated with a linear function Qproj(a) = [1− a; a]>w, where
w = arg minu Ea∼U [0,1](Vsa(a)− [1− a; a]Tu)2. The d-rectangular robust action-value function is
Qd(a) = (1− a)g(r0, 1) + ag(r1, 1).

C ALGORITHM DESIGN FOR THE PDRVI-L

Algorithm 2 PDRVI-L

1: Input: β, D = {(sτh, aτh, rτh)}N,Hτ,h=1.

2: Init: V̂H = 0.
3: for step h = H to 1 do
4: Λh ←

∑N
τ=1 φ (sτh, a

τ
h)φ (sτh, a

τ
h)
>

+ λI

5: θ̂h ← Λ−1
h

[∑N
τ=1 φ(sτh, a

τ
h)rτh

]

6: if h = H then
7: ŵH ← 0
8: else
9: Update ŵh,i with Equation 6.

10: end if
11: ν̂h = min(θ̂h + ŵh, H − h+ 1)+

12: Q̂h(·, ·)← φ(·, ·)>ν̂h − γh
∑d
i=1‖φi(s, a)1i‖Λ−1

h

13: π̂h(· | ·)← arg maxπh〈Q̂h(·, ·), πh(· | ·)〉A
14: V̂h(·)← 〈Q̂h(·, ·), π̂h(· | ·)〉A
15: end for

D EXPERIMENT SETUP

D.1 AMERICAN OPTION PRICING

We set the feature dimension d = 31 and collect a dataset with 1000 trajectories as the offline dataset.
We assume that the price follows Bernoulli distribution Cox et al. (1979),

sh+1 =

{
cush, w.p. p0,

cdsh, w.p. 1− p0,
(8)

where the cu and cd are the price up and down factors and p0 is the probability that the price goes up.
The initial price s0 is uniformly sampled from [κ− ε, κ+ ε], where κ = 100 is the strike price and
ε = 5 in our simulation. The agent can take an action to exercise the option (ah = 1) or not exercise
(ah = 0) at the time step h. If exercising the option, the agent receives a reward max(0, κ− sh) and
the state transits into an exit state. Otherwise, the price will fluctuate based on the above model and
no reward will be assigned. In our experiments, we set H = 20, cu = 1.02, cd = 0.98. We limit
the price in [80, 140] and discretize with the precision of 1 decimal place. Thus the state space size
|S| = 602.
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Since Q(sh, a = 1) = max(0, κ− sh) is known in advance, we do not need to do any approximation
for ah = 1, and only need to estimate Q̂(sh, a = 0) = φ(sh)>ŵh. The features are chosen as
φ(sh) = [ϕ(sh, s1), . . . , ϕ(sh, sd)]

>, where s1, . . . , sd are selected anchor states and ϕ(sh, si),∀i ∈
[d] is the pairwise similarity measure. In particular, we set s1 = smin = 80, sd = smax=140, and
∆ = si+1 − si = (smax − smin)/(d − 1),∀i ∈ [d − 1]. The similarity measure ϕ(sh, si) =
max(0, 1− |sh − si|/∆),∀i ∈ [d], which is the partition to the nearest anchor states. Before training
the agent, we collect data with a fixed behavior policy for N trajectories. Since taking ah = 1 will
terminate the episode, it is helpless for learning the transition model. Hence, we use a fixed policy
to collect data, which always chooses ah = 0. All the experiments are finished on a server with an
AMD EPYC 7702 64-Core Processor CPU.

D.2 CARTPOLE

For our PDRVI-L algorithm, we construct the feature map φ(s, a) = (φ1, φ2, · · · , φd) ∈ Rd using
the gaussian kernel where for action a ∈ {0, 1}, the feature map with bandwidth σ is defined as

φa·d/2+i(s, a;σ) = exp

(
−‖s− si‖

2

2σ2

)
,∀i ∈ [d/2]. (9)

We generate the anchor states si by uniformly sampling from the state space S = R4 with each
component sample from a uniform distribution U [−1, 1]. The feature dimension is d = 512.We
choose LCB coefficient γ = 0.03 and the ρ = 0.1. Note that Cartpole is a inifinite-horizon sequential
decision process and we set the discount factoris as 0.95. We iterate the algorithm until the infinity
norm of the difference between two consecutive value functions is less than 10−4.

Now we discuss the offline dataset used in the training of PDRVI-L and RFQI. The setup is the
same as that in Panaganti et al. (2022a) for fair comparison. To be specific, we train proximal policy
optimization (PPO) Schulman et al. (2017) algorithm using RL baseline zoo Raffin (2020) with
default parameters. Then we generate the Cartpole dataset with 105 samples using an ε-greedy
version of the PPO trained policy with ε = 0.3. The preparation of the dataset can be finished by
simply running the Github Repo of Panaganti et al. (2022a).

Next we introduce the details of the baseline algorithms. We directly adopt the implementation
of RFQI from Panaganti et al. (2022a) and use the default parameters. For the implementation of
PDRVI, please refer to Jin et al. (2021).

D.3 REPRODUCTION OF RAPI

In this part, we introduce the implementation of RAPI Tamar et al. (2014) in our setting. Since the
original RAPI focuses on the online setting with general uncertainty set, we instantiate RAPI with the
episode MDP and KL-divergence as the uncertainty measure. Similar to our method, we incorporate
Lemma 4.1 to robust problem for each (s, a):

σsa(V ) = sup
β∈[0,∞)

{
−β log

(
EP (·|s,a)e

−V (·)/β
)
− ρβ

}
. (10)

In the offline setting, the main challenge is to estimate the EP (·|s,a)e
−V (·)/β from data. Since the

ordinary least squares (OLS) has the close form solution, we can estimate Equation 10 with

σ̂sa(V ) = sup
β∈[0,∞)

{
−β log

(
φ(s, a)>Λ−1

h

(
K∑

τ=1

φ (sτh, a
τ
h) ·

(
e−V (sτh+1)/β

)))
− ρβ

}
. (11)

Plugging it into the template of RAPI, we have the algorithm in Algorithm 3.

E PROOF OF SECTION 4

Before we prove the main theorem, we first introduce the following lemma.
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Algorithm 3 RPVI with KL-divergence

1: Input: β, D = {(sτh, aτh, rτh)}N,Hτ,h=1.

2: Init: V̂H = 0.
3: for step h = H to 1 do
4: Λh ←

∑N
τ=1 φ (sτh, a

τ
h)φ (sτh, a

τ
h)
>

+ λI
5: if h = H then
6: ŵH ← Λ−1

H

[∑N
τ=1 φ(sτh, a

τ
h)rτh

]

7: else
8: ŵh ← Λ−1

h

[∑N
τ=1 φ (sτh, a

τ
h)
(
rτh + σ̂sa(V̂h+1)

)]

9: end if
10: Q̂h(·, ·)← φ(·, ·)>ŵh
11: π̂h(· | ·)← arg maxπh〈Q̂h(·, ·), πh(· | ·)〉A
12: V̂h(·)← 〈Q̂h(·, ·), π̂h(· | ·)〉A
13: end for

Lemma E.1 (Robust Extended Value Difference). Let π = {πh}Hh=1 and π′ = {π′h}Hh=1 as two dif-
ferent policies. Denote P1 and P2 as two different ambiguity sets. Finally we use V πP = {V πh,P}h∈[H]

denotes the value function using policy π and the ambiguity set P . For all s ∈ S, we have

V π1,P1
(s)− V π′1,P2

(s) =

H∑

h=1

EP?1 ,π[ιh(sh, ah)|s1 = s]

+

H∑

h=1

EP?1 ,π[〈Qπ′h,P2
(s, ·), πh(·|sh)− π′(·|sh)〉A|s1 = s],

where
ιh(s, a) = inf

P1∈P1,h(s,a)
EP1

[V πh+1,P1
(s′)]− inf

P2∈P2,h(s,a)
EP2

[V πh+1,P2
(s′)],

and P ?1 = {P ?1,h}Hh=1 for some P ?1,h ∈ P1,h.

Proof.

V πh,P1
(s)− V π′h,P2

(s) = 〈Qπh,P1
(s, ·), πh(·|sh)〉A − 〈Qπ

′

h,P2
(s, ·), π′h(·|sh)〉A

= 〈Qπh,P1
(s, ·)−Qπ′h,P2

(s, ·), πh(·|sh)〉A + 〈Qπ′h,P2
(s, ·), πh(·|sh)− π′(·|sh)〉A.

(12)
Note that

Qπh,P1
(s, a)−Qπ′h,P2

(s, a) = inf
P1,h∈P1,h(s,a)

EP1,h
[V πh+1,P1

(s′)]− inf
P2,h∈P2,h(s,a)

EP2,h
[V π

′

h+1,P2
(s′)].

(13)

We set
P ?1,h = arg min

P1,h∈P1,h(s,a)
EP1

[V πh+1,P1
(s′)],

P ?2,h = arg min
P2,h∈P2,h(s,a)

EP2
[V πh+1,P2

(s′)].

Then

Equation 13 = inf
P1,h∈P1,h(s,a)

EP1,h
[V πh+1,P1

(s′)]− inf
P2,h∈P2,h(s,a)

EP2
[V π

′

h+1,P2
(s′)]

= inf
P1,h∈P1,h(s,a)

EP1,h
[V πh+1,P1

(s′)]− inf
P2,h∈P1,h(s,a)

EP2 [V π
′

h+1,P2
(s′)]

+ inf
P2,h∈P1,h(s,a)

EP2
[V π

′

h+1,P2
(s′)]− inf

P2,h∈P2,h(s,a)
EP2

[V π
′

h+1,P2
(s′)]

= EP?1,h [V πh+1,P1
(s′)− V π′h+1,P2

(s′)]

+ inf
P2,h∈P1,h(s,a)

EP2 [V π
′

h+1,P2
(s′)]− inf

P2,h∈P2,h(s,a)
EP2

[V π
′

h+1,P2
(s′)].

(14)

18



Under review as a conference paper at ICLR 2024

Now we prove the last equality, i.e., there exists P ?1,h ∈ P1,h(s, a) such that

inf
P1,h∈P1,h(s,a)

EP1,h
[V πh+1,P1

(s′)]− inf
P2,h∈P1,h(s,a)

EP2
[V π

′

h+1,P2
(s′)] = EP?1,h [V πh+1,P1

(s′)− V π′h+1,P2
(s′)].

Define h(P ) = EP [V πh+1,P1
(s′)− V π′h+1,P2

(s′)]. First we have

inf
P∈P1,h(s,a)

h(P ) = inf
P∈P1,h(s,a)

EP [V πh+1,P1
(s′)− V π′h+1,P2

(s′)]

≤ inf
P∈P1,h(s,a)

EP [V πh+1,P1
(s′)]− inf

P∈P1,h(s,a)
EP [V π

′

h+1,P2
(s′)].

On the other hand,

inf
P1,h∈P1,h(s,a)

EP1,h
[V πh+1,P1

(s′)]− inf
P2,h∈P1,h(s,a)

EP2
[V π

′

h+1,P2
(s′)]

= inf
P1,h∈P1,h(s,a)

EP1,h
[V πh+1,P1

(s′)]− EP?2,h [V π
′

h+1,P2
(s′)]

≤EP?2,h [V πh+1,P1
(s′)]− EP?2,h [V π

′

h+1,P2
(s′)]

≤ sup
P∈P1,h(s,a)

EP [V πh+1,P1
(s′)− V π′h+1,P2

(s′)].

In summary,

inf
P∈P1,h(s,a)

h(P ) ≤ inf
P1,h∈P1,h(s,a)

EP1,h
[V πh+1,P1

(s′)]− inf
P2,h∈P1,h(s,a)

EP2 [V π
′

h+1,P2
(s′)] ≤ sup

P∈P1,h(s,a)

h(P ).

We know the ambiguity set constructed by the Cressie-Read divergence is a convex set, thus it is
connected. Moreover, h function is continuous with respect to the finite-dimension probability P . By
the general intermediate value theorem in topological spaces, we know there exists P ?1,h ∈ P1,h(s, a)
such that

inf
P1,h∈P1,h(s,a)

EP1,h
[V πh+1,P1

(s′)]− inf
P2,h∈P1,h(s,a)

EP2
[V π

′

h+1,P2
(s′)] = EP?1,h [V πh+1,P1

(s′)− V π′h+1,P2
(s′)].

Iteratively preceeding with Equation 12 and 14, combining with the initization that V πH+1,P1
=

V π
′

H+1,P2
= 0, we have

V π1,P1
(s)− V π′1,P2

(s) =

H∑

h=1

EP?1 ,π[ιh(sh, ah)|s1 = s]

+

H∑

h=1

EP?1 ,π[〈Qπ′h,P2
(s, ·), πh(·|sh)− π′(·|sh)〉A|s1 = s],

where

ιh(s, a) = inf
P1,h∈P1,h(s,a)

EP1,h
[V π

′

h,P2
(s′)]− inf

P2,h∈P1,h(s,a)
EP2,h

[V π
′

h,P2
(s′)].

Lemma E.2 (Decomposition of Suboptimality (DRO version)).

SubOpt(π̂;P) =

H∑

h=1

EP∗,π∗ [〈Qπ̂h,P̂(sh, ·), π∗h(·|sh)− π̂h(·|sh)〉|s1 ∼ µ]

+

H∑

h=1

EP∗,π∗ [ιh(sh, ah)|s1 ∼ µ]−
H∑

h=1

EP?,π̂[ιh(sh, ah)|s1 ∼ µ],

where

ιh(s, a) := EP?h [V π̂
h+1,P̂(s′)]− EP̂?h [V π̂

h+1,P̂(s′)],

P ?h = arg min
Ph∈Ph(s,a)

EPh [V πh+1,P(s′)], P̂ ?h = arg min
P̂h∈P̂h(s,a)

EP̂h [V π
h+1,P̂(s′)].
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Proof. By the definition above, the suboptimality of the policy π̂ can be decomposed as

SubOpt(π̂;P) = (Es∼µ[V ∗1 (s)]− Es∼µ[V̂1(s)])︸ ︷︷ ︸
I

+ (Es∼µ[V̂1(s)]− Es∼µ[V π̂1 (s)])︸ ︷︷ ︸
II

, (15)

where {V̂h}Hh=1 are the estimated value functions constructed by any algorithm.

To clarify the proof, we write explicitly the dependence of the value function with respect to the
policy, the ambiguity set: V̂1(s) = V π̂

1,P̂(s) and V ∗1 (s) = V π
?

1,P(s). Correspondingly, we have

Q̂1(s, a) = Qπ̂
1,P̂(s, a) and Q∗1(s, a) = Qπ

?

1,P(s, a). Apply Lemma E.1 to the I term in equation 15
with π = π∗, π′ = π̂ and P1 = P as the ambiguity set centered around the training transition model
while P2 = P̂ as the ambiguity set centered around the empirical model. Thus we have

V π
?

1,P(s)− V π̂
1,P̂(s) =

H∑

h=1

EP∗,π∗ [〈Qπ̂h,P̂(sh, ·), π∗h(·|sh)− π̂h(·|sh)〉|s1 = s]

+

H∑

h=1

EP∗,π∗ [ιh(sh, ah)|s1 = s],

(16)

where

ιh(sh, ah) = EP?h [V π̂
h+1,P̂(s′)]− EP̂?h [V π̂

h+1,P̂(s′)].

Similarily, apply Lemma E.1 to the II term in equation 15, we have

V π̂
1,P̂(s)− V π̂1,P(s) = −(V π̂1,P(s)− V π̂

1,P̂(s))

= −
H∑

h=1

EP?,π̂[ιh(sh, ah)|s1 = s].
(17)

Putting equation 16 and equation 17 into equation 15 we yield the desired conclusions.

Proof of Lemma 4.2 . Recall the Bellman equation for the d-rectangular robust MDP (Equation 4):

(BhV )(s, a) = r(s, a) + inf
Ph∈PKL(ψh;ρ)

Es′∼Ph(·|s,a)[V (s′)]

=
∑

i∈[d]

φi(s, a)θh,i +
∑

i∈[d]

φi(s, a) min
ψ′h,i∈PKL(ψh,i;ρ)

ψ′>h,iV
(18)

Since M ∈Mrob, from the proof of above that for any f ∈ F , we have Bhf ∈ F for any h ∈ [H],
which finish the second part of the proof of lemma 4.2.

Lemma E.3. For any fix h ∈ [H] and i ∈ [d], we denote

β∗h,i ∈ arg max
βh,i≥0

{−βh,i · Eψh,i [e−Vh+1(s′)/βh,i ]− βh,iρ}.

Then β∗h,i ≤ β := H−h+1
ρ .

Proof. This proof is by invoking the part 2 in the Lemma 4 in Zhou et al. (2021b) with M = H .

Thus in the following, we consider the variant of the dual form of the KL optimization,

sup
βh,i∈[0,β]

{−βh,i · Eψh,i [e−Vh+1(s′)/βh,i ]− βh,iρ}.
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Algorithm 4 PDRVI-L-META

1: Input: β, D = {(sτh, aτh, rτh)}N,Hτ,h=1.

2: Init: V̂H = 0.
3: for step h = H to 1 do
4: Λh ←

∑N
τ=1 φ (sτh, a

τ
h)φ (sτh, a

τ
h)
>

+ λI

5: θ̂h ← Λ−1
h

[∑N
τ=1 φ(sτh, a

τ
h)rτh

]

6: if h = H then
7: ŵH ← 0
8: else
9: ψ̂h (s′)← Λ−1

h

[∑N
τ=1 φ (sτh, a

τ
h)1

(
sτh+1 = s′

)>]
, for s′ ∈ S

10: w̄h,i ← θ̂h,i + supβ∈[0,∞)

{
−β log

(
ψ̂>h,i

(
e−V̂h+1/β − 1

)
+ 1
)
− ρβ

}

11: end if
12: ν̂h = min(θ̂h + ŵh, H − h+ 1)+

13: Q̂h(·, ·)← φ(·, ·)>ν̂h − γh
∑d
i=1‖φi(s, a)1i‖Λ−1

h

14: π̂h(· | ·)← arg maxπh〈Q̂h(·, ·), πh(· | ·)〉A
15: V̂h(·)← 〈Q̂h(·, ·), π̂h(· | ·)〉A
16: end for

F PROOF OF THEOREM 5.2

In the following, we rewrite our algorithms into the form of PDRVI-L-META. The proposed PDRVI-
L-META algorithm is to facilitate the presentation of our proof. In specific, we introduce ψ̂h as the
estimator for ψh in the update of ŵh. We ignore the rewritten for Algorithm 1 as it is similar.

Before we start the proof, it is obvious to note that
∑d
i=1 φi(s, a) = 1,∀(s, a) ∈ S × A under

the Assumption 4.1. In this section, we mainly prove the Theorem 5.2. By setting the model
mis-specification ξ = 0, we can recover the results in Theorem 4.1.

Proposition F.1. With probability at least 1− δ, for all h ∈ [H], we have

ιh(s, a) ≤β(eH/β − 1)(2ξ
√
d+ 10

√
dζ1)

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

+ 2
√

2
√
β(eH/β − 1)

√
Hζ2

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

+ (H − h)ξ,

for ζ1 = log(2N + 16Nd3/2H2eH/β) and ζ2 = log(2dNH3

δρ ).

Proof. From the DRO Bellman optimality equation and Lemma 4.1, we denote

(BhV̂h+1)(s, a) = rh(s, a) + inf
Ph+1∈Ph+1

EPh+1(·|s,a)[V̂h+1(s′)]

= rh(s, a) + inf
P̃h+1∈P̃h+1

EP̃h+1(·|s,a)[V̂h+1(s′)]

+ ( inf
Ph+1∈Ph+1

EPh+1(·|s,a)[V̂h+1(s′)]− inf
P̃h+1∈P̃h+1

EP̃h+1(·|s,a)[V̂h+1(s′)])

=

d∑

i=1

φi(s, a)θh,i + (H − h)ξ

+

d∑

i=1

φi(s, a) max
βh,i∈[β,β]

{−βh,i · log(Eψh,i [e−V̂h+1(s′)/βh,i ])− βh,iρ}.
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Combined with the empirical Bellman operator in our algorithm 1,

ιh(s, a) = (BhV̂h+1)(s, a)− (B̂hV̂h+1)(s, a)

= φ(s, a)>(θh − θ̂h) + φ(s, a)>(wh − w̃h) + (H − h)ξ,
(19)

where wh,i := maxβh,i∈[β,β]{−βh,i log(Eψh,i [e−V̂h+1(s′)/βh,i ])− βh,iρ} and

w̃h,i := maxβh,i∈[β,β]{−βh,i log(ψ̂>h,i[e
−V̂h+1(s′)/βh,i − 1] + 1)− βh,iρ}.

Step 1: we analyze the error in the reward estimation, i.e., φ(s, a)>(θh − θ̂h).

φ(s, a)>(θh − θ̂h) = φ(s, a)>Λ−1
h Λhθh − φ(s, a)>Λ−1

h [

N∑

τ=1

φ(sτh, a
τ
h)rh(sτh, a

τ
h)]

= φ(s, a)>Λ−1
h Λhθh − φ(s, a)>Λ−1

h [

N∑

τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)>θh]

= φ(s, a)>Λ−1
h Λhθh − φ(s, a)>Λ−1

h (Λh − λI)θh

= λφ(s, a)>Λ−1
h θh

≤ λ‖θh‖Λ−1
h
‖φ(s, a)‖Λ−1

h

≤
√
dλ‖φ(s, a)‖Λ−1

h

≤
√
dλ

d∑

i=1

‖φi(s, a)1i‖Λ−1
h
.

(20)

Here the last inequality is from

‖θh‖Λ−1
h

=
√
θ>h Λ−1

h θh ≤ ‖Λ−1
h ‖1/2‖θh‖ ≤

√
d/λ,

by using the fact that ‖Λ−1
h ‖ ≤ λ−1 and the Definition 2.1.

Step 2: we turn to the estimation error from the transition model, i.e., φ(s, a)>(wh− ŵh). We define
two auxiliary functions:

ĝh,i(β) := −β · log(ψ̂>h,i[e
−V̂h+1(s′)/β − 1] + 1)− βρ,

and
gh,i(β) := −β · log(Eψh,i [e−V̂h+1(s′)/β ])− βρ.

Then

|
∑

i∈[d]

φi(s, a)(wh,i − w̃h,i)|

≤
∑

i∈[d]

|φi(s, a)(wh,i − w̃h,i)| (21)

=
∑

i∈[d]

φi(s, a)| max
βh,i∈[β,β]

gh,i(βh,i)− max
βh,i∈[β,β]

ĝh,i(βh,i)|

≤
∑

i∈[d]

φi(s, a) max
βh,i∈[β,β]

|gh,i(βh,i)− ĝh,i(βh,i)|

=
∑

i∈[d]

φi(s, a) max
βh,i∈[β,β]

{|βh,i · (log(ψ̂>h,i[(e
−V̂h+1(s′)/βh,i − 1)] + 1)− log(Eψh,i [e−V̂h+1(s′)/βh,i ]))|}

=
∑

i∈[d]

φi(s, a) max
βh,i∈[β,β]

{|βh,i · (log(ψ̂>h,i[e
(H−V̂h+1(s′))/βh,i − eH/βh,i ] + eH/βh,i)− log(Eψh,i [e(H−V̂h+1(s′))/βh,i ]))|}

≤
∑

i∈[d]

φi(s, a) max
βh,i∈[β,β]

{|βh,i · (ψ̂>h,i[e(H−V̂h+1(s′))/βh,i − eH/βh,i ] + eH/βh,i − Eψh,i [e(H−V̂h+1(s′))/βh,i ])|},

(22)
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where the last inequality follows from the fact I.2 by setting x = βh,i log(ψ̂>h,i[e
(H−V̂h+1(s))/βh,i −

eH/βh,i ] + eH/βh,i) and y = βh,i logEψh,i [e(H−V̂h+1(s))/βh,i ]. To ease the presentation, we index
the finite states from 1 to S and introduce the vector V̂h+1 ∈ RS where [V̂h+1]j = V̂h,i(sj) and
[H − V̂h+1]j = H − V̂h+1(sj).

We denote 1j ∈ Rd×1 with the j-the component as 1 and the other components are 0 and 1 ∈ RS is
a all-one vector. Notice that

Eψh,i [e(H−V̂h+1(s′))/βh,i ]

= Eψh,i [e(H−V̂h+1(s′))/βh,i − eH/βh,i ] + eH/βh,i

= ψ>h,i(e
(H−V̂h+1)/βh,i − eH/βh,i) + eH/βh,i

= 1>i ψ
>
h (e(H−V̂h+1)/βh,i − eH/βh,i) + eH/βh,i

= 1>i Λ−1
h Λhψ

>
h (e(H−V̂h+1)/βh,i − eH/βh,i) + eH/βh,i

= 1>i Λ−1
h (

N∑

τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)> + λI)ψ>h (e(H−V̂h+1)/βh,i − eH/βh,i) + eH/βh,i

= 1>i Λ−1
h

N∑

τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)>ψ>h (e(H−V̂h+1)/βh,i − eH/βh,i)

+ λ1>i Λ−1
h ψ>h (e(H−V̂h+1)/βh,i − eH/βh,i) + eH/βh,i

= 1>i Λ−1
h

N∑

τ=1

φ(sτh, a
τ
h)P̃h+1(·|sτh, aτh)>(e(H−V̂h+1)/βh,i − eH/βh,i)

+ λ1>i Λ−1
h ψ>h (e(H−V̂h+1)/βh,i − eH/βh,i) + eH/βh,i ,

and

ψ̂>h,i[(e
(H−V̂h+1(s′))/βh,i − eH/βh,i)] + eH/βh,i

= ψ̂>h,i(e
(H−V̂h+1)/βh,i − eH/βh,i) + eH/βh,i

= 1>i Λ−1
h

N∑

τ=1

φ(sτh, a
τ
h)1(sτh+1)>(e(H−V̂h+1)/βh,i − eH/βh,i) + eH/βh,i ,

where 1(sτh+1) ∈ Rd×1 with the correponding component for the sτh+1 being 1 and the other
being 0 and ψh = [ψh,1, ψh,2, · · · , ψh,d] ∈ Rd×S . Now we are ready for controlling the error in
Equation 21. In particular, we aim to control the error within the maximum of Equation 21 for any
given βh,i ∈ [β, β], that is

∣∣∣βh,i
(
ψ̂>h,i[(e

(H−V̂h+1(s′))/βh,i − eH/βh,i)] + eH/βh,i − Eψh,i [e(H−V̂h+1(s′))/βh,i ]
)∣∣∣ .

By using the above decomposition, we have

∣∣∣βh,i
(
ψ̂>h,i[(e

(H−V̂h+1(s′))/βh,i − eH/βh,i)] + eH/βh,i − Eψh,i [e(H−V̂h+1(s′))/βh,i ]
)∣∣∣

=

∣∣∣∣∣βh,i1
>
i Λ−1

h

(
N∑

τ=1

φ(sτh, a
τ
h) · (1(sτh+1)− P̃h+1(·|sτh, aτh))>(e(H−V̂h+1)/βh,i − eH/βh,i)

)∣∣∣∣∣

+
∣∣∣λβh,i1>i Λ−1

h ψ>h (e(H−V̂h+1)/βh,i − eH/βh,i)
∣∣∣ .
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We further decompose the difference,
∣∣∣∣∣βh,i1

>
i Λ−1

h

(
N∑

τ=1

φ(sτh, a
τ
h) · (1(sτh+1)− P̃h+1(·|sτh, aτh))>(e(H−V̂h+1)/βh,i − eH/βh,i)

)∣∣∣∣∣

+
∣∣∣λβh,i1>i Λ−1

h ψ>h (e(H−V̂h+1)/βh,i − eH/βh,i)
∣∣∣

=

∣∣∣∣∣βh,i1
>
i Λ−1

h

(
N∑

τ=1

φ(sτh, a
τ
h) · (Ph+1(·|sτh, aτh)− P̃h+1(·|sτh, aτh))>(e(H−V̂h+1)/βh,i − eH/βh,i)

)∣∣∣∣∣

+

∣∣∣∣∣βh,i1
>
i Λ−1

h

(
N∑

τ=1

φ(sτh, a
τ
h) · (1(sτh+1)− Ph+1(·|sτh, aτh))>(e(H−V̂h+1)/βh,i − eH/βh,i)

)∣∣∣∣∣

+
∣∣∣λβh,i1>i Λ−1

h ψ>h (e(H−V̂h+1)/βh,i − eH/βh,i)
∣∣∣

≤
∣∣∣∣∣ξβh,i(e

H/βh,i − 1) · 1>i Λ−1
h

N∑

τ=1

φ(sτh, a
τ
h) + βh,i1

>
i Λ−1

h

(
N∑

τ=1

φ(sτh, a
τ
h) · ετh(βh,i, V̂h+1)

)∣∣∣∣∣

+
∣∣∣λβh,i1>i Λ−1

h ψ>h (e(H−V̂h+1)/βh,i − eH/βh,i)
∣∣∣ ,

where ετh(β, V ) := (Ph+1(·|sτh, aτh) − 1(sτh+1))>(e(H−V )/βh,i − eH/βh,i) and |e(H−V )/βh,i −
eH/βh,i | ≤ (eH/βh,i − 1).

Plug into Equation 22 we have

|φ(s, a)>(wh − w̃h)|

= |
d∑

i=1

φi(s, a)(wh,i − w̃h,i)|

≤ ξ
d∑

i=1

max
βh,i∈[β,β]

φi(s, a)|βh,i(eH/βh,i − 1) · 1>i Λ−1
h

N∑

τ=1

φ(sτh, a
τ
h)|

︸ ︷︷ ︸
I

+

d∑

i=1

φi(s, a)|1>i Λ−1
h (

N∑

τ=1

φ(sτh, a
τ
h) · max

βh,i∈[β,β]
βh,iε

τ
h(βh,i, V̂h+1))|

︸ ︷︷ ︸
II

+

d∑

i=1

max
βh,i∈[β,β]

φi(s, a)|λβh,i1>i Λ−1
h ψ>h (e(H−V̂h+1)/βh,i − eH/βh,i)

)
|

︸ ︷︷ ︸
III

.

(23)

For I term in 23, for any βh,i ∈ [β, β] we know,

ξ

d∑

i=1

|βh,i(eH/βh,i − 1) · φi(s, a)1>i Λ−1
h

N∑

τ=1

φ(sτh, a
τ
h)|

≤ ξ
d∑

i=1

‖βh,i(eH/βh,i − 1)φi(s, a) · 1i‖Λ−1
h
‖
N∑

τ=1

φ(sτh, a
τ
h)‖Λ−1

h
.

Note that

d∑

i=1

‖βh,i(eH/βh,i − 1)φi(s, a) · 1i‖Λ−1
h
≤ β(eH/β − 1)

d∑

i=1

‖φi(s, a)1i‖Λ−1
h
.
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Then we turn to control ‖∑N
τ=1 φ(sτh, a

τ
h)‖Λ−1

h
as follow,

‖
N∑

τ=1

φ(sτh, a
τ
h)‖Λ−1

h
=

√√√√(

N∑

τ=1

φ(sτh, a
τ
h))>Λ−1

h (

N∑

τ=1

φ(sτh, a
τ
h))

=

√√√√Tr(Λ−1
h (

N∑

τ=1

φ(sτh, a
τ
h))(

N∑

τ=1

φ(sτh, a
τ
h))>)

=
√

Tr(Λ−1
h (Λh − λ · I))

≤
√

Tr(Λ−1
h Λh)

=
√
d.

Thus

I =ξ

d∑

i=1

max
βh,i∈[β,β]

φi(s, a)|βh,i(eH/βh,i − 1) · 1>i Λ−1
h

N∑

τ=1

φ(sτh, a
τ
h)|

≤ξ
√
dβ(eH/β − 1)

d∑

i=1

‖φi(s, a)1i‖Λ−1
h
.

For term III and any βh,i ∈ [β, β],

d∑

i=1

|λβh,iφi(s, a)1>i Λ−1
h ψ>h (e(H−V̂h+1)/βh,i − eH/βh,i)|

≤
d∑

i=1

λ‖φi(s, a)1>i Λ−1
h ‖1‖βh,iψ>h (e(H−V̂h+1)/βh,i − eH/βh,i)‖∞

≤ λβ(eH/β − 1)

d∑

i=1

‖φi(s, a)1>i Λ−1
h ‖1

≤
√
dλβ(eH/β − 1)

d∑

i=1

‖φi(s, a)1>i Λ−1
h ‖2

≤
√
dλβ(eH/β − 1)‖Λ−1/2

h ‖2
d∑

i=1

‖φi(s, a)1i‖Λ−1
h

≤
√
dλβ(eH/β − 1)

d∑

i=1

‖φi(s, a)1i‖Λ−1
h
,

the second inequality is from ‖e(H−V̂h+1)/βh,i − eH/βh,i‖∞ ≤ (eH/β − 1) and the three inequality
is from ‖x‖1 ≤

√
d‖x‖2 for any x ∈ Rd.
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To control II term, we invoke Lemma G.1 with the choice of λ = 1 and then with probability at least
1− δ,

d∑

i=1

|φi(s, a)1>i Λ−1
h (

N∑

τ=1

φ(sτh, a
τ
h) · max

βh,i∈[β,β]
βh,iε

τ
h(βh,i, V̂h+1))|

≤
d∑

i=1

‖φi(s, a)1i‖Λ−1
h
‖
N∑

τ=1

φ(sτh, a
τ
h) · max

βh,i∈[β,β]
βh,iε

τ
h(βh,i, V̂h+1)‖Λ−1

h

≤ (4
√
dβ(eH/β − 1)

√
log(2N + 16Nd3/2H2eH/β)

+ 2
√

2β(eH/β − 1)(

√
H

β
· log(

2dNH3

δρ
) +
√

2))

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

≤ (eH/β − 1)(8β
√
dζ1 + 2

√
2
√
βHζ2)

d∑

i=1

‖φi(s, a)1i‖Λ−1
h
,

where the first inequality is from
√
x+ y ≤ √x +

√
y for x, y ≥ 0. The second inequality is by√

dζ1 ≥ 1 where ζ1 = log(2N + 16Nd3/2H2eH/β) and ζ2 = log(2dNH3

δρ ). Thus we have

|φ(s, a)>(wh − w̃h)|

≤ β(eH/β − 1)(ξ
√
d+ 8 ·

√
dζ1 +

√
d)

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

+ 2
√

2
√
β(eH/β − 1)

√
Hζ2

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

+ ξ
√
dβ(eH/β − 1)

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

≤ β(eH/β − 1)(ξ
√
d+ 9 ·

√
dζ1)

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

+ 2
√

2
√
β(eH/β − 1)

√
Hζ2

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

+ ξ
√
dβ(eH/β − 1)

d∑

i=1

‖φi(s, a)1i‖Λ−1
h
,

(24)
where the second inequality is by noticing that f(β) = β(eH/β − 1) and g(β) =

√
β(eH/β − 1) are

both monotonically decreasing with β > 0 and the last inequality is from
√
dζ1 ≥ 1.

Plug Equation 20 and 24 into Equation 19 to finally upper bound the Bellman error,

|ιh(s, a)|
= |(BhV̂h+1)(s, a)− (B̂hV̂h+1)(s, a)|

≤
√
d

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

+ β(eH/β − 1)(ξ
√
d+ 9 ·

√
dζ1)

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

+ 2
√

2
√
β(eH/β − 1)

√
Hζ2

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

+ ξ
√
dβ(eH/β − 1)

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

+ (H − h)ξ

≤ β(eH/β − 1)(2ξ
√
d+ 10

√
dζ1)

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

+ 2
√

2
√
β(eH/β − 1)

√
Hζ2

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

+ (H − h)ξ,

where the last inequality is from the fact that f(β) = β(eH/β − 1) ≥ H ≥ 1 and and
√
dζ1 > 1.
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Proof of Theorem 5.2. Our policy is the greedy policy w.r.t. to the estimated Q-function, thus we can
reduce the suboptimality reduction in Lemma E.2 into

SubOpt(π̂;P) ≤
H∑

h=1

Eπ̂ [ιh (sh, ah) | s1 ∼ µ]−
H∑

h=1

Eπ∗ [ιh (sh, ah) | s1 ∼ µ] . (25)

Putting Proposition F.1 in the Equation 25 we know that with probability at least 1− δ/2,

SubOpt(π̂;P)

≤ (eH/β − 1)(2ξ
√
dβ + 10 ·

√
dζ1β + 2

√
2
√
β
√
Hζ2) ·

H∑

h=1

(Eπ̂[‖Λ−1
h ‖tr(φ(s,a))] + Eπ∗ [‖Λ−1

h ‖tr(φ(s,a))]) + · · ·

+ (H − 1)Hξ/2.

Based on the Assumption 5.1, Definition 2.1 and using the similar steps in the proof of Corollar 4.6 in
Jin et al. (2021), we can conclude that when N is sufficiently large so that N ≥ 40/c · log(4dH/δ),
for all h ∈ [H], it holds that with probability at least 1− δ/2,

‖Λ−1
h ‖tr(φ(s,a)) =

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

≤
d∑

i=1

‖φi(s, a)1i‖‖Λ−1
h ‖−1/2

≤
√

2

cN
:= c/

√
N, ∀(s, a) ∈ S ×A,∀h ∈ [H],

where the second inequality is from Assumption 4.1. In conclusions, when N ≥ 40/c · log(4dH/δ),
we have probability at least 1− δ,

SubOpt(π̂;P) ≤ c1Hβ(eH/β − 1)(ξ
√
d+

√
dζ1)/N1/2 + c2

√
β(eH/β − 1)

√
ζ2H

3/2/N1/2

+ (H − 1)Hξ,

for some absolute constants c1 and c2 that only depend on c.

G AUXILIARY LEMMAS FOR THE PROOF FOR THEOREM 5.2

Lemma G.1. For all i ∈ [d], βh,i ∈ [β, β], and the estimator {V̂h}Hh=1 constructed from Algorithm 1,
we have the following holds with probability at least 1− δ,

‖
N∑

τ=1

φ(sτh, a
τ
h) · ετh(βh,i, V̂h+1)‖2

Λ−1
h

≤16d(eH/βh,i − 1)2ζ1 + 8(eH/βh,i − 1)2(
H

βh,i
ζ2 + 2),

for ζ1 = log(2N + 16Nd3/2H2eH/β), ζ2 = log(2dNH3

δρ ) and some absolute constant c > 1.

Proof. For the fixed h ∈ [H] and fixed τ ∈ [N ], we define the σ-algebra,

Fτh := σ({sτ ′h , aτ
′

h }ττ ′=1 ∪ {rτ
′

h , s
τ ′

h+1}(τ−1)∨0
τ ′=1 ),

i.e., Fτh is the filtration generated by the samples {sτh, aτh}ττ ′=1 ∪ {rτh, sτh+1}
(τ−1)∨0
τ ′=1 . Notice that

E[ετh(βh,i, V̂h+1)|Fτh ] = 0. However, V̂h+1 depends on {(sτh, aτh)}τ∈[N ] via {(sτh′ , aτh′)}h′>h,τ∈[N ]

and thus we cannot directly apply vanilla concentration bounds to control ‖∑N
τ=1 φ(sτh, a

τ
h) ·

ετh(βh,i, V̂h+1)‖Λ−1
h

.

To tackle this point, we consider the function family Vh(R). In specific,

Vh(R) = {Vh(x; w̃) : S → [0, H − h+ 1]|‖w̃‖ ≤ R},
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and

Vh(x; w̃) = max
a∈A
{φ(s, a)>w̃}.

We let Nε(R) be the minimal ε-cover of Vh(R) with respect to the supremum norm, i.e., for any
function V ∈ Vh(R), there exists a function V ′ ∈ Nε(R) such that

sup
s∈S
|V (s)− V ′(s)| ≤ ε.

Hence, for V̂h+1, we have V †h+1 ∈ Nε(R) such that

sup
s∈S
|V̂h+1(s)− V †h+1(s)| ≤ s.

For the ease of presentation, we ignore the subscript of βh,i and use β in the following. Next we
denote Nε(β, β) the minimal ε-cover of the [β, β] with respect to the absolute value, i.e., for any
β ∈ [β, β], there exists Nε(β) ∈ Nε(β, β) such that

|β −Nε(β)| ≤ ε.

We proceed our analysis for all i ∈ [d] and β ∈ [β, β]

‖
∑

τ∈[N ]

φ(sτh, a
τ
h)ετh(β, V̂h+1)‖2

Λ−1
h

≤ 2‖
∑

τ∈[N ]

φ(sτh, a
τ
h)ετh(β, V †h+1)‖2

Λ−1
h

+ 2‖
∑

τ∈[N ]

φ(sτh, a
τ
h)(ετh(β, V̂h+1)− ετh(β, V †h+1))‖2

Λ−1
h

≤ sup
V ∈Nε(R)

2‖
∑

τ∈[N ]

φ(sτh, a
τ
h)ετh(β, V )‖2

Λ−1
h

+ 2‖
∑

τ∈[N ]

φ(sτh, a
τ
h)(ετh(β, V̂h+1)− ετh(β, V †h+1))‖2

Λ−1
h

≤ sup
V ∈Nε(R)

4‖
∑

τ∈[N ]

φ(sτh, a
τ
h)ετh(Nε(β), V )‖2

Λ−1
h

︸ ︷︷ ︸
I

+ · · ·

+ sup
V ∈Nε(R)

4‖
∑

τ∈[N ]

(φ(sτh, a
τ
h)(ετh(β, V )− ετh(Nε(β), V )))‖2

Λ−1
h

︸ ︷︷ ︸
II

+ · · ·

+ 2‖
∑

τ∈[N ]

φ(sτh, a
τ
h)(ετh(β, V̂h+1)− ετh(β, V †h+1))‖2

Λ−1
h

︸ ︷︷ ︸
III

, (26a)

where the first and second inequality is from the fact that ‖a+ b‖2Λ ≤ 2‖a‖2Λ + 2‖b‖2Λ for any vectors
a, b ∈ Rd and any positive definite matrix Λ ∈ Rd×d. Here we decompose it into three parts: I term
represents the error within a finite ball Nε(R) which can be controlled via classical finite-sample
error. II term is the discretion error from the β, which can be controlled by choose proper ε. III term
is also the discretion error from the V function space.
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We invoke Lemma G.2, Lemma I.7 and Lemma I.8 for the term I, II and III respectively and have
with probability at least 1− δ, for all h ∈ [H],

‖
∑

τ∈[N ]

φ(sτh, a
τ
h)ετh(β, V̂h+1)‖2

Λ−1
h

≤ 4d
(
eH/β − 1

)2

log

(
1 +

N

λ

)

+ 8
(
eH/β − 1

)2

· log

(
H |Nε(R,B, λ)|

∣∣Nε(β, β̄)
∣∣

δ

)

+
16N2(H − h)2ε2

λβ4
e2H/β +

8N2ε2

λβ2
e2H/β

≤ 4d(eH/β − 1)2 log(1 +
N

λ
) + 8(eH/β − 1)2 · log(

H2

εδρ
) + 8d(eH/β − 1)2 · log(1 +

4R

ε
)

+
16N2(H − h)2ε2

λβ4
e2H/β +

8N2ε2

λβ2
e2H/β ,

where the second inequality is from Lemma I.1 and the fact that Nε(β, β) ≤ H
ρε .

By choosing R = 2Hd3/2, λ = 1, ε = 2
4NHeH/β

, then for all β ∈ [β, β]

‖
∑

τ∈[N ]

φ(sτh, a
τ
h)ετh(β, V̂h+1)‖2

Λ−1
h

≤ 4d(eH/β − 1)2 · log(2N) + 8(eH/β − 1)2 · H
β

log(
2dNH3

δρ
) +

1

β4
+

1

2H2β2

+ 8d(eH/β − 1)2 · log(1 + 16Nd3/2H2e
H
β )

≤ 16d(eH/β − 1)2 log(2N + 16Nd3/2H2eH/β)

+ 8(eH/β − 1)2 · H
β

log(
2dNH3

δρ
) +

1

β4
+

1

2H2β2

≤ 16d(eH/β − 1)2 log(2N + 16Nd3/2H2eH/β) + 8(eH/β − 1)2(
H

β
log(

2dNH3

δρ
) + 2),

where the second inequality is from 2N > 1 and the third inequality is from (eH/β − 1)2 ≥
(Hβ + H2

β2 )2 ≥ H2

β2 + H4

β4 ≥ 1
2H2β2 + 1

β4 .

Lemma G.2 (Concentration of Self-Normalized Processes). Let V : S → [0, H] be any fixed
function. For any fixed h ∈ [H], any 0 < δ < 1, all V ∈ Nε(R) and all β ∈ Nε(β, β), we have the
following holds with probability at least 1− δ,

‖
N∑
τ=1

φ(sτh, a
τ
h)ετh(β, V )‖2

Λ−1
h

>d
(
eH/β − 1

)2

log

(
1 +

N

λ

)
+ 2

(
eH/β − 1

)2

· log

(
H |Nε(R,B, λ)|

∣∣Nε(β, β̄)
∣∣

δ

)
.

Proof. Recall the definition of the filtration Fτh and note that φ(sτh, a
τ
h) ∈ Fτh . Moreover, for

any fixed function V : S → [0, H] and any fixed β ∈ [β, β], we have ετh(β, V ) ∈ Fτh and
E[ετh(β, V )|Fτh ] = E[(P (·|sτh, aτh) − 1(sτh+1))>(e(H−V )/β − eH/β)|Fτh ] = 0. Moreover, as we
have |εh(V )| ∈ [0, eH/β − 1], for all fixed h ∈ [H] and all τ ∈ [N ], ετh(β, V ) is mean zero and
(eH/β − 1)-sub-Gaussian conditional on Fτh .

We invoke Lemma I.3 with V = λ · I , Xt = φ(sτh, a
τ
h), ητ = ετh(β, V ) and R = eH/β − 1, we have

P

(
‖
N∑

τ=1

φ(xτh, a
τ
h) · εh(β, V )‖2

Λ−1
h

> 2(eH/β − 1)2 · log(
det(Λh)1/2

δ · det(λ · I)1/2
)

)
≤ δ,
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for any δ > 0. Moreover, det(λ · I) = λd, and

‖Λh‖ = ‖λ · I +

N∑

τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)>‖ (27)

≤ λ+

N∑

τ=1

‖φ(sτh, a
τ
h)φ(sτh, a

τ
h)>‖ (28)

≤ λ+N, (29)

det(Λh) ≤ (λ+N)d for Λh is a positive-definite matrix. Hence we know

2(eH/β − 1)2 · log

(
det(Λh)1/2

δ · det(λ · I)1/2

)

= 2(eH/β − 1)2 · d
2

log

(
1 +

N

λ

)
+ 2(eH/β − 1)2 · log(1/δ)

≤ d(eH/β − 1)2 log

(
1 +

N

λ

)
+ 2(eH/β − 1)2 · log(1/δ),

which implies

P

(
‖
N∑

τ=1

φ(sτh, a
τ
h)ετh(β, V )‖2

Λ−1
h

> d(eH/β − 1)2 log(1 +
N

λ
) + 2(eH/β − 1)2 · log(1/δ)

)
≤ δ.

Finally we know by the union bound that for all h ∈ [H], the following holds with probability at least
1− δ, all V ∈ Nε(R) and all β ∈ Nε(β, β),

‖
N∑

τ=1

φ(sτh, a
τ
h)ετh(β, V )‖2

Λ−1
h

>d
(
eH/β − 1

)2

log

(
1 +

N

λ

)

+2
(
eH/β − 1

)2

· log

(
H |Nε(R,B, λ)|

∣∣Nε(β, β̄)
∣∣

δ

)
.

H PROOF OF THEOREM 5.3

In this section, we mainly prove the Theorem 5.3. By setting the model mis-specification ξ = 0, we
can recover the results in Theorem 5.1.

Proof of Theorem 5.1. Following the same argument, V̂h+1 depends on {(sτh, aτh)}τ∈[N ] via
{(sτh′ , aτh′)}h′>h,τ∈[N ] and thus we cannot directly apply vanilla concentration bounds to control
‖∑N

τ=1 φ(sτh, a
τ
h) · ετh(βh,i, V̂h+1)‖Λ−1

h
.

To tackle this point, we consider the function family Vh(R). In specific,

Vh(R) = {Vh(x;w, γ,Λ) : S → [0, H − h+ 1]|‖w‖ ≤ R, γ ∈ [0, B],Λ � λ · I},

and

Vh(x;w, γ,Λ) = max
a∈A
{max{φ(s, a)>w − γ ·

d∑

i=1

√
(φi(s, a)1i)>Λ−1(φi(s, a)1i), 0}}.

30



Under review as a conference paper at ICLR 2024

We continue from the Equation 26a in Subsection G, i.e.,

‖
∑

τ∈[N ]

φ(sτh, a
τ
h)ετh(β, V̂h+1)‖2

Λ−1
h

≤ sup
V ∈Nε(R)

4‖
∑

τ∈[N ]

φ(sτh, a
τ
h)ετh(Nε(β), V )‖2

Λ−1
h

︸ ︷︷ ︸
I

+ · · ·

+ sup
V ∈Nε(R)

4‖
∑

τ∈[N ]

(φ(sτh, a
τ
h)(ετh(β, V )− ετh(Nε(β), V )))‖2

Λ−1
h

︸ ︷︷ ︸
II

+ · · ·

+ 2‖
∑

τ∈[N ]

φ(sτh, a
τ
h)(ετh(β, V̂h+1)− ετh(β, V †h+1))‖2

Λ−1
h

︸ ︷︷ ︸
III

,

We invoke Lemma G.2, Lemma I.7 and Lemma I.8 for the term I, II and III respectively and for all
h ∈ [H] and any β ∈ [β, β] we have the following holds with probability at least 1− δ, ,

‖
∑

τ∈[N ]

φ(sτh, a
τ
h)ετh(β, V̂h+1)‖2

Λ−1
h

≤ 4d
(
eH/β − 1

)2

log

(
1 +

N

λ

)

+ 8
(
eH/β − 1

)2

· log

(
H |Nε(R,B, λ)|

∣∣Nε(β, β̄)
∣∣

δ

)

+
16N2(H − h)2ε2

λβ4
e2H/β +

8N2ε2

λβ2
e2H/β

≤ 4d(eH/β − 1)2 log(1 +
N

λ
) + 8(eH/β − 1)2 · log(

H2

εδρ
) + 8d(eH/β − 1)2 · log(1 +

4R

ε
)

+
16N2(H − h)2ε2

λβ4
e2H/β +

8N2ε2

λβ2
e2H/β + 8(eH/β − 1)2 · d2 log(1 +

8
√
dB2

λε2
),

where the second inequality is from Lemma I.2 and the fact that |Nε(β, β)| ≤ H
ρε .

By choosing R = 2Hd3/2, ζ2 = log( 2dNH3

δρ ), ζ3 = log(2N + 32N2H3d5/2ζe2H/β), λ = 1,

γ = β(eH/β − 1)(ξ
√
d+ c1d

√
ζ3) + c2(eH/β − 1)

√
Hζ2, B = 2γ, ε = 2

4NHeH/β
≤ β

2 , then

‖
∑

τ∈[N ]

φ(sτh, a
τ
h)ετh(β, V̂h+1)‖2

Λ−1
h

≤ 4d(eH/β − 1)2 · log(2N) + 8(eH/β − 1)2 · H
β

log(
2dNH3

δρ
) +

1

β4
+

1

2H2β2

+ 8d(eH/β − 1)2 · log(1 + 8NH2e
H
β ) + 8d2(eH/β − 1)2 · log(1 + 32(c′)2N2H3d5/2γe2H/β)

≤ 16d(eH/β − 1)2 log(2N + 8NH2eH/β) +
1

β4
+

1

2H2β2

+ 8(eH/β − 1)2 · H
β

log(
2dNH3

δρ
) + 8d2(eH/β − 1)2 · log(1 + 32(c′)2N2H3d5/2γe2H/β)

≤ 16d(eH/β − 1)2 log(2N + 16Nd3/2H2eH/β) + 8(eH/β − 1)2(
H

β
log(

2dNH3

δρ
) + 2)

+ 8d2(eH/β − 1)2 · log(1 + 32(c′)2N2H3d5/2γe2H/β)

≤ 32d2(eH/β − 1)2 · log(2N + 32(c′)2N2H3d5/2γe2H/β) + 8(eH/β − 1)2 · (H
β

log(
2dNH3

δρ
) + 2)

≤ 64d2(eH/β − 1)2 · log(2N + 32(c′)2N2H3d5/2γe2H/β) + 8(eH/β − 1)2 · H
β

log(
2dNH3

δρ
)
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Thus we have

max
i∈[d],βh,i∈[β,β]

βh,i‖
N∑

τ=1

φ(sτh, a
τ
h) · ετh(βh,i, V̂h+1)‖Λ−1

h

≤ max
i∈[d],βh,i∈[β,β]

8dβh,i(e
H/βh,i − 1) ·

√
log(2N + 32N2H3d5/2ζe2H/β)

+ max
i∈[d],βh,i∈[β,β]

2
√

2βh,i(e
H/βh,i − 1) ·

√
H

βh,i
log(

2dNH3

δρ
)

≤ max
i∈[d],βh,i∈[β,β]

8dβh,i(e
H/βh,i − 1) ·

√
log(2N + 32N2H3d5/2ζe2H/β)

+ max
i∈[d],βh,i∈[β,β]

2
√

2βh,i(e
H/βh,i − 1) ·

√
H log(

2dNH3

δρ
)

≤ 8dβ(eH/β − 1)
√
ζ3 + 2

√
2
√
β(eH/β − 1)

√
Hζ2,

holds for probability at least 1 − δ for all h ∈ [H] for some constant c > 1 and ζ2 = log( 2dNH3

δρ )

and ζ3 = log(2N + 32N2H3d5/2ζe2H/β). Thus we have

|φ(s, a)>(wh − ŵh)|

≤ max
i∈[d],βh,i∈[β,β]

βh,i(e
H/βh,i − 1)(ξ

√
d+ 8d

√
ζ3 +

√
d)

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

+ 2
√

2
√
βh,i(e

H/βh,i − 1)
√
Hζ2

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

≤ β(eH/β − 1)(ξ
√
d+ 9d

√
ζ3)

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

+ 2
√

2
√
β(eH/β − 1)

√
Hζ2

d∑

i=1

‖φi(s, a)1i‖Λ−1
h
,

(30)
where the last inequality is by noticing that f(β) = β(eH/β − 1) and g(β) =

√
β(eH/β − 1) are

both monotonically decreasing with β > 0.

Plug Equation 30 and 20 into Equation 19 to finally upper bound the Bellman error with the choice
λ = 1,

|ιh(s, a)| ≤
√
d

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

+ β(eH/β − 1)(ξ
√
d+ 9d

√
ζ3)

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

+ 2
√

2
√
β(eH/β − 1)

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

+ (H − h)ξ

≤ β(eH/β − 1)(ξ
√
d+ 10d

√
ζ3)

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

+ 2
√

2
√
β(eH/β − 1)

√
Hζ2

d∑

i=1

‖φi(s, a)1i‖Λ−1
h

+ (H − h)ξ,

where the last inequality is from the fact that f(β) = β(eH/β − 1) ≥ H ≥ 1 and and
√
dζ3 > 1 as

N ≥ e/2.
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Using the similar steps in the proof of Corollar 4.5 in Jin et al. (2021), we know that

SubOpt(π̂;P) ≤ c′
H∑

h=1

E[

d∑

i=1

√
(φi(s, a)1i)>Λ−1

h (φi(s, a)1i)] +H(H − 1)ξ/2

≤ c′
H∑

h=1

E[

d∑

i=1

√
Tr(Λ−1

h (φi(s, a)1i)(φi(s, a)1i)>)] +H(H − 1)ξ/2

≤ c′
H∑

h=1

E[

d∑

i=1

√
λh,i,j

1 + c† ·N · λh,i,j
] +H(H − 1)ξ/2

≤ c′
H∑

h=1

E[

d∑

i=1

√
1

1 + c† ·N ] +H(H − 1)ξ/2

≤ c′ · d1/2H/
√
N +H(H − 1)ξ/2,

where c′ := c1β(eH/β−1)(ξd+d3/2
√
ζ3)H/+c2

√
β(eH/β−1)d1/2H3/2

√
ζ2 and c1, c2 are some

absolute constants only depend on c†.

In conclusions, we have probability at least 1− δ,

SubOpt(π̂;P) ≤c1β(eH/β − 1)(ξd+ d3/2
√
ζ3)H/N1/2 + c2

√
β(eH/β − 1)d1/2H3/2

√
ζ2/N

1/2

+H(H − 1)ξ/2.

I AUXILIARY LEMMA

Before we proceed our analysis, we need the following lemmas.
Fact I.1. For x, y ≥ 0 and b > 0, we have |e−by − e−bx| ≤ b|x− y|.
Fact I.2. For x, y ≥ 0 and b > 0, we have b|x− y| ≤ |ebx − eby|.
Lemma I.1 (ε-Covering Number Jin et al. (2020)). Let V denote a class of functions mapping from
S to R with following parametric form

V (s) = max
a

w>φ(s, a),

where the parameters w satisfy ‖w‖ ≤ L, β ∈ [0, B] Assume ‖φ(x, a)‖ ≤ 1 for all (x, a)
pairs, and let Nε be the ε-covering number of V with respect to the distance dist (V, V ′) =
supx |V (x)− V ′(x)|. Then

log|Nε(R,B, λ)| ≤ ds log(1 + 4R/ε).

Lemma I.2. Let V denote a class of functions mapping from S to R with following parametric form

V (s) = max
a

w>φ(s, a) + β

d∑

i=1

√
(φi(s, a)1i)>Λ−1(φi(s, a)1i),

where the parameters (w, β,Λ) satisfy ‖w‖ ≤ L, β ∈ [0, B] and the minimum eigenvalue satisfies
λmin(Λ) ≥ λ. Assume ‖φ(x, a)‖ ≤ 1 for all (x, a) pairs, and let Nε be the ε-covering number of V
with respect to the distance dist (V, V ′) = supx |V (x)− V ′(x)|. Then

logNε ≤ d log(1 + 4L/ε) + d2 log
[
1 + 8d1/2B2/

(
λε2
)]
.

Proof. Equivalently, we can reparametrize the function class V by let A = β2Λ−1, so we have

V (s) = max
a

w>φ(s, a) +

d∑

i=1

√
(φi(s, a)1i)>A(φi(s, a)1i),
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for ‖w‖ ≤ L and ‖A‖ ≤ B2λ−1. For any two functions V1, V2 ∈ V , let them take the form in Eq.
(27) with parameters (w1, A1) and (w2, A2), respectively. Then, since both min{·, H} and maxa
are contraction maps, we have

dist (V1, V2)

≤ sup
x,a

∣∣∣∣∣

[
w>1 φ(x, a) +

d∑

i=1

√
(φi(s, a)1i)>A2(φi(s, a)1i)

]
−

[
w>2 φ(x, a) +

d∑

i=1

√
(φi(s, a)1i)>A1(φi(s, a)1i)

] ∣∣∣∣∣

≤ sup
φ:‖φ‖≤1

∣∣∣∣∣

[
w>1 φ+

d∑

i=1

√
(φi(s, a)1i)>A1(φi(s, a)1i)

]
−
[
w>2 φ+

d∑

i=1

√
(φi(s, a)1i)>A2(φi(s, a)1i)

]∣∣∣∣∣

≤ sup
φ:‖φ‖≤1

∣∣∣(w1 − w2)
>
φ
∣∣∣+ sup

φ:‖φ‖≤1

d∑

i=1

√
|(φi(s, a)1i)> (A1 −A2) (φi(s, a)1i)|

= ‖w1 − w2‖+
√
‖A1 −A2‖ sup

φ:‖φ‖≤1

d∑

i=1

‖φi(s, a)1i‖

≤ ‖w1 − w2‖+
√
‖A1 −A2‖F ,

where the second last inequality follows from the fact that |√x − √y| ≤
√
|x− y| holds for any

x, y ≥ 0. For matrices, ‖ · ‖ and ‖ · ‖F denote the matrix operator norm and Frobenius norm
respectively.

Let Cw be an ε/2-cover of
{
w ∈ Rd | ‖w‖ ≤ L

}
with respect to the 2-norm, and CA be an ε2/4-cover

of
{
A ∈ Rd×d | ‖A‖F ≤ d1/2B2λ−1

}
with respect to the Frobenius norm. By Lemma D.5, we

know:

|Cw| ≤ (1 + 4L/ε)d, |CA| ≤
[
1 + 8d1/2B2/

(
λε2
)]d2

.

By Eq. (28), for any V1 ∈ V , there exists w2 ∈ Cw and A2 ∈ CA such that V2 parametrized by
(w2, A2) satisfies dist (V1, V2) ≤ ε. Hence, it holds that Nε ≤ |Cw| · |CA|, which gives:

logNε ≤ log |Cw|+ log |CA| ≤ d log(1 + 4L/ε) + d2 log
[
1 + 8d1/2B2/

(
λε2
)]

This concludes the proof.

Lemma I.3 (Self-Normalized Bound for Vector-Valued Martingales Abbasi-Yadkori et al. (2011)).
Let {Ft}∞t=0 be a filtration. Let {ηt}∞t=1 be a real-valued stochastic process such that ηt is Ft-
measurable and ηt is conditionally R-sub-gaussian for some R ≥ 0, i.e.,

∀λ ∈ R,E[eληt |Ft−1] ≤ eλ
2R2

2 .

Let {Xt}∞t=1 be an Rd-valued stochstic process such that Xt is Ft−1-measurable. Assume that V is
a d× d positive definite matrix. For any t ≥ 0, define

Vt = V +

>∑

s=1

XsX
>
s , St =

>∑

s=1

ηsXs.

Then for any δ > 0, with probability at least 1− δ, for all t ≥ 0,

‖St‖2V −1
t
≤ 2R2 log(

det(Vt)
1/2 det(V )−1/2

δ
).

Lemma I.4. For any 0 ≤ x ≤ H , |β′ − β| ≤ ε for some ε > 0, we have

|e(H−x)/β′ − e(H−x)/β | ≤ e2H/β · 4H

β2
ε.
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Proof. We denote f(z) = e(H−x)/z . Then

|f ′(z)| = |e(H−x)/z · (H − x)

z2
|

≤ eH/z · H
z2

≤ e2H/β · 4H

β2
,

where the last inequality is from the fact that z ≥ β − ε ≥ β
2 . Thus by the mean value theorem we

know

|e(H−x)/β′ − e(H−x)/β | ≤ e2H/β · 4H

β2
ε.

Lemma I.5. For any β ∈ [β, β], and any ε-net over [β, β], i.e., Nε(β) for some ε > 0, we have

|ε(β, V )− ε(Nε(β), V )| ≤ 2e2H/β · 4H

β2
ε.

Proof.

|ε(β, V )− ε(Nε(β), V )|
= |Es′ [e(H−V (s′))/β ]− e(H−V (sτh+1))/β − (Es′ [e(H−V (s′))/Nε(β)]− e(H−V (sτh+1))/Nε(β))|
= |Es′ [e(H−V (s′))/β − e(H−V (s′))/Nε(β)]|+ |(e(H−V (sτh+1))/β − e(H−V (sτh+1))/Nε(β))|

≤ 2e2H/β · 4H

β2
ε,

where the last inequality is form Lemma I.4.

Lemma I.6. For any V † and V ‡ : S → [0, H], and ‖V † − V ‡‖∞ ≤ ε, for some ε > 0, we have

|ε(β, V †)− ε(β, V ‡)| ≤ eH/β 2ε

β
.

Proof.

|ε(β, V †)− ε(β, V ‡)|
= |Es′ [e(H−V †(s′))/β ]− e(H−V †(s′))/β − (Es′ [e(H−V ‡(s′))/β ]− e(H−V ‡(s′))/β)|
= |Es′ [e(H−V †(s′))/β − e(H−V ‡(s′))/β ]|+ |(e(H−V †(s′))/β − e(H−V ‡(s′))/β)|
= eH |Es′ [e(−V †(s′))/β − e(−V ‡(s′))/β |+ |(e(−V †(s′))/β − e(−V ‡(s′))/β)|

≤ eH/β 2ε

β
,

where the last inequality is form Fact I.1.

Lemma I.7.

‖
∑

τ∈[N ]

(φ(sτh, a
τ
h) (ετh(β, V )− ετh(Nε(β), V )))‖2

Λ−1
h

≤ 4N2(H − h)2ε2

λβ4 e2H/β .
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Proof.

‖
∑

τ∈[N ]

(φ(sτh, a
τ
h) (ετh(β, V )− ετh(Nε(β), V )))‖2

Λ−1
h

≤
N∑

τ,τ ′

φ(sτh, a
τ
h)>Λ−1

h φ(sτh, a
τ
h) · (ετh(β, V )− ετh(Nε(β), V )) · (ετ ′h (β, V )− ετ ′h (Nε(β), V )

≤ 4(H − h)2ε2

β4 e2H/β
N∑

τ,τ ′

|φ(sτh, a
τ
h)>Λ−1

h φ(sτh, a
τ
h)|

≤ 4(H − h)2ε2

β4 e2H/β
N∑

τ,τ ′

‖φ(sτh, a
τ
h)‖2‖Λ−1

h ‖

≤ 4N2(H − h)2ε2

λβ4 e2H/β ,

where the first inequality is from Lemma I.5.

Lemma I.8.

‖
∑

τ∈[N ]

φ(sτh, a
τ
h)(ετh(β, V̂h+1)− ετh(β, V †h+1))‖2

Λ−1
h

≤ 4N2ε2

λβ2 e2H/β .

Proof.

‖
∑

τ∈[N ]

φ(sτh, a
τ
h)(ετh(β, V̂h+1)− ετh(β, V †h+1))‖2

Λ−1
h

≤
N∑

τ,τ ′

φ(sτh, a
τ
h)>Λ−1

h φ(sτh, a
τ
h) · (ετh(β, V̂h+1)− ετh(β, V †h+1)) · (ετ ′h (β, V̂h+1)− ετ ′h (β, V †h+1)

≤ 4ε2

β2 e
2H/β

N∑

τ,τ ′

|φ(sτh, a
τ
h)>Λ−1

h φ(sτ
′

h , a
τ ′

h )|

≤ 4ε2

β2 e
2H/β

N∑

τ,τ ′

‖φ(sτh, a
τ
h)‖|φ(sτ

′

h , a
τ ′

h )‖|‖Λ−1
h ‖

≤ 4N2ε2

λβ2 e2H/β ,

where the first inequality is from Lemma I.6 and the last inequality is from the fact that ‖x‖2 ≤ ‖x‖1
for any x ∈ Rd and Assumption 4.2 that ‖φ(s, a)‖1 = 1 and also the fact that ‖Λ−1

h ‖ ≤ 1
λ .
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