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9 Appendix

9.1 Additional Literature Review - Temporal Difference Methods

Temporal difference (TD) learning involves improving predictions through bootstrapping the current estimation.
Early TD methods were mainly used to estimate the value function V πθ , which used a semi-gradient update
rule to improve value function prediction (Sutton, 1988). More advanced TD methods incorporate prior traces
(TD(λ)) in a discounted manner (Tesauro, 1992). Since many reinforcement learning methods are not tabular,
Linear TD methods were also proposed that uses this methodology to learn parameters that approximate the
value function (Bradtke & Barto, 1996; Boyan, 1999). Recently, TD methods have been effectively used
to approximate Advantage function (Mnih et al., 2016), density ratio function (Gelada & Bellemare, 2019;
Hallak & Mannor, 2017; Gelada & Bellemare, 2019) and off-policy value estimation (Maei, 2011).In this work,
we will observe that the log density gradient has a recursive form that cannot be approximated using a closed
form solution. We propose a TD(0) methods to estimate the log density gradient using on-policy samples.

9.2 Proof of Proposition 1

Proof. We begin with policy gradient calculated using log density gradient, equation 6)

∇θJγ(πθ) = E(s,a)∼d
πθ
γ

[∇θ log dπθ
γ (s, a)r(s, a)]

We recall from Bellman equation, 1b that r(s, a) = Qπθ
γ − γEs′∼P(·|s,a),a′∼πθ(·|s′)[Qπθ

γ (s′, a′)], hence

∇θJγ(πθ) = E(s,a)∼d
πθ
γ

[∇θ log dπθ
γ (s, a)(Qπθ

γ (s, a)− γEs′∼P(·|s,a)πθ(a′|s′)[Qπθ
γ (s′, a′)])

We recover the policy gradient theorem in equation 2 by first multiplying equation 10 by Qπθ
γ (s′, a′)

dπθ
γ (s′, a′)(∇θ log dπθ

γ (s′, a′)−∇θ log π(a′|s′))Qπθ
γ (s′, a′)

= γ
∑
s,a

dπθ
γ (s, a)∇θ log dπθ

γ (s, a)P(s′|s, a)πθ(a′|s′)Qπθ
γ (s′, a′)

and then re-arranging terms with ∇θ log dπ
γ on the left hand side and the remaining terms on the right hand

side. We can then sum these terms to get equation 2

∇θJγ(πθ) = E(s,a)∼d
πθ
γ

[∇θ log dπθ
γ (s, a)(Qπθ

γ (s, a)− γEs′∼P(·|s,a)πθ(a′|s′)[Qπθ
γ (s′, a′)])

= E(s,a)∼d
πθ
γ

[Qπθ
γ (s, a)∇θ log π(a|s)]

This completes the proof.

9.3 Proof of Lemma 1

Proof. Recall the definition of dπθ
γ from equation 3

dπθ
γ (s) = (1− γ)

∞∑
t=0

γtP(st = s|s0 ∼ d0, at ∼ πθ(st), st+1 ∼ P(st, at))

We see that for a given state s′ ∈ S the occupancy of an agent at time t and t + 1 are related as follows,

P(st+1 = s′) =
∑

s∈S,a∈A
P(st = s) · πθ(a|s) · P(s′|s, a)
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If we multiply both sides by γt+1 and sum them up from t = 0 to ∞. We get the following form,

∞∑
t=0

γt+1P(st+1 = s′) = γ

∞∑
t=0

γt
∑

s∈S,a∈A
P(st = s)πθ(a|s)P(s′|s, a)

= γ
∑

s∈S,a∈A

∞∑
t=0

γtP(st = s)πθ(a|s)P(s′|s, a)

= γ

1− γ

∑
s∈S,a∈A

dπθ
γ (s)πθ(a|s)P(s′|s, a)

We go from the first equation to the second by exchanging the summation signs and from the second to the
third by using the definition of

∑∞
t=0 γtP(st = s) = dπθ

γ . We add P(s0 = s′) on both sides, which is nothing
but the set of initial states d0(s′), to get

∞∑
t=0

γtP(st = s′) = d0(s′) + γ

1− γ

∑
s∈S,a∈A

dπθ
γ (s)πθ(a|s)P(s′|s, a)

=⇒ 1
1− γ

dπθ
γ (s′) = d0(s′) + γ

1− γ

∑
s∈S,a∈A

dπθ
γ (s)πθ(a|s)P(s′|s, a)

=⇒ dπθ
γ (s′) = (1− γ)d0(s′) + γ

∑
s∈S,a∈A

dπθ
γ (s)πθ(a|s)P(s′|s, a)

where we used
∞∑

t=0
γt+1P(st+1 = s′) + d0(s′) =

∞∑
t=0

γtP(st = s′) = 1
1− γ

dπθ
γ (s′).

This completes the proof.

9.4 Proof of Lemma 2

Proof. Recall the optimization 8

arg min
w:S→R

∑
s′

(w(s′)− (1− γ)d0(s′) + γ
∑
s,a

w(s)πθ(a|s)P(s′|s, a))2 + λ

2 (
∑

s

w(s)− 1)2

It is worth noting that the optimization has two quadratic terms. Thus, the lowest value that they can take
is only when w(s′)− (1− γ)d0(s′) + γ

∑
s,a w(s)πθ(a|s)P(s′|s, a) = 0 and

∑
s w(s) = 1. For the next part of

the proof, we will handle them case-by-case.

Case 1. γ < 1

Recall that the first term of the optimization equation 8 goes to zero only when equation 7 (reproduced
below) is satisfied

w(s′) = (1− γ)d0(s′) + γ
∑

s∈S,a∈A
w(s)πθ(a|s)P(s′|s, a) for all s′ ∈ S.

Now all that remains to be proven is the uniqueness aspect of this form. To that end, we first write the above
set of equations in a matrix form

W = (1− γ)D0 + γPT
πθ

W, (19)
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where W = (w(s1), w(s2), ....., w(s|S|)) ∈ R|S|, Pπθ
, Dπθ

∈ R|S|×|S| where (Pπθ
)(s,s′) = Pπθ (s′|s) and Dπθ

is a
diagonal matrix whose every element correspond to d0. It is easy to see from this form here that the row sum
of this matrix is 1. We can simply re-write the above equation as follows,

(I|S| − γPT
πθ

)W = (1− γ)D0

I|S| is the identity matrix of size |S|. It now remains to prove that (I|S| − γPT
πθ

) is invertible. We propose
the following Lemma which proves the same result.

Lemma 5. For γ < 1, The matrix (I|S| − γPT
πθ

) is invertible.

Proof. It is generally easier to prove that the transpose of this matrix is invertible. Consider x ∈ R|S| is a
non-zero vector. We will now prove that (I|S| − γPπθ

)x is non-zero. To see that observe the infinty norm as
follows,

∥(I|S| − γPπθ
)x∥∞ ≥ ∥x∥∞ − γ∥Pπθ x∥∞

≥ (1− γ)∥x∥∞ > 0

We get the first equation from the triangular inequality. We get the second equation from the fact that the
row sum of the matrix Pπθ

is 1. Thus, ∥Pπθ
· x∥∞ ≤ ∥x∥∞. This implies that (I|S|− γPT

πθ
) is invertible. This

completes the proof.

Since the matrix (I|S| − γPT
πθ

) is invertible the solution is equal to dπθ
γ . The solution also satisfies the

constraint
∑

s w(s) =
∑

s dπθ (s) = 1. This completes the proof for the first case.

Case 2. γ = 1
For γ = 1 we need to solve

(I − PT
πθ

)W = 0

The proof now follows from (Zhang et al., 2020b, Theorem 1). Here we invoke Perron-Frobenius theorem
which says the dimension of the left eigenspace ofPπθ

corresponding to eigevalue 1 is one-dimensional. Since
dπθ

1 belongs in that set,the solution of these set of equations as W = αdπθ
1 . It is worth noting that only α = 1

satisfies the second constraint which is
∑

s w(s) = 1. This completes the proof.

9.5 Proof of Lemma 3

This proof is very similar to proof of Lemma 2.

Proof. Let us restate the optimization problem in Lemma 3 (equation 11):

min
w:S×A→Rn

{
E(s′,a′)∼d

πθ
γ
∥ν(s′, a′)∥2 + λ

2

∥∥∥E(s,a)∼d
πθ
γ

[w(s′, a′)]
∥∥∥2
}

ν(s′, a′) := dπθ
γ (s′, a′)(w(s′, a′)−∇θ log πθ(a′|s′))− γ

∑
s,a

dπθ
γ (s, a)P(s′|s, a)πθ(a′|s′)w(s, a)

We note that it has two quadratic terms. As in Lemma 2, this loss function can only go to zero if and only if
both the quadratic terms turn out to be zero. This implies that

ν(s′, a′) = 0 for all (s′, a′) ∈ S ×A and E(s′,a′)∼d
πθ
γ

[w(s′, a′)] = 0.

We take two cases.

Case 1. γ < 1

Similar to Lemma 2, for a finite state-action space we can re-write equation 11 in a linear form

(I|S|×|A| − γPT
πθ

) Dπθ
W = Dπθ

G (20)

17



Published in Transactions on Machine Learning Research (10/2024)

where, W ∈ R|S|·|A|×n is the matrix with every row corresponding to w(s, a) for each state-action pair (s, a).
Similarly, G ∈ R|S|·|A|×n has its rows as ∇θ log πθ for each state-action pair. Let Pπθ

, Dπθ
∈ R|S|·|A|×|S|·|A|

where (Pπθ
)((s,a),(s′,a′)) = Pπθ (s′, a′|s, a) and Dπθ

is a diagonal matrix whose every element correspond to
dπθ

γ for each state-action pair. The ergodicity assumption implies that Dπθ
is invertible. Additionally, we also

proved in Lemma 5 in Section 9.4 that (I − γPT
πθ

) is invertible. This ensures that the solution of equation 20
is unique and equal to the log density gradient. Since, log density gradient always satisfies the constraint
E(s,a)∼d

πθ
γ

[∇θ log dπθ (s, a)] = 0, the second constraint becomes redundant. This completes the proof.

Case 2. γ = 1

For γ = 1 we have the following set of equations

(I|S|×|A| − PT
πθ

) Dπθ
W = Dπθ

G and eT Dπθ
W = 0.

Let us look at the equations column by column. The matrix (I|S|×|A| − PT
πθ

) is not invertible since the
vector dπθ

1 is in its nullspace. Since ∇θ log dπθ
1 satisfies the first equation, every column can be written as

∇θ log dπθ
γ + v where v is any vector in the span of {dπθ

1 }. This implies that Dπθ
v = PT

πθ
Dπθ

v. invoking
Perron-Frobenius theorem as in Lemma 9.4, we see that v lies in the span of {dπθ

1 }. We complete the proof
by trying to satisfy the second constraint eT Dπθ

v = 0 which gives us v = 0. This completes the proof.

9.6 Proof of Lemma 4

Proof. We will prove contraction first for γ ∈ [0, 1).

Proof of Contraction: To prove contraction, we will show that given any arbitrary functions U, V : S×A →
Rn, their difference under the L1 norm of the distribution dπθ

γ is a contraction.∑
s′,a′

dπθ
γ (s′, a′)|Yγ · U(s′, a′)− Yγ · V (s′, a′)|

=
∑
s′,a′

dπθ
γ (s′, a′)|γ

∑
s,a

dπθ
γ (s, a)(U(s, a)− V (s, a))P(s′|s, a)πθ(a′|s′)|

≤ γ
∑
s′,a′

dπθ
γ (s′, a′)

∑
s,a

dπθ
γ (s, a)|U(s, a)− V (s, a)|P(s′|s, a)πθ(a′|s′)

≤ γ
∑
s,a

dπθ
γ (s, a)

∑
s′,a′

dπθ
γ (s′, a′) |U(s, a)− V (s, a)|P(s′|s, a)πθ(a′|s′)

≤ γ
∑
s,a

dπθ
γ (s, a)

∑
s′,a′

|U(s, a)− V (s, a)|P(s′|s, a)πθ(a′|s′)

≤ γ
∑
s,a

dπθ
γ (s, a)|U(s, a)− V (s, a)| = γ∥U − V ∥d

πθ
γ

1 .

This completes the proof. The contraction property is useful in proving uniqueness and convergence which
we prove next.

Case 1. γ < 1

Let Y k
γ denote that Yγ has been composed with itself k times. We are interested in what happens when

limk→∞ Y k
γ .

Y k
γ C0 = γkD−1

πθ
(PT

πθ
)kDπθ

C0 +
k−1∑
t=0

γtD−1
πθ

(PT
πθ

)tDπθ
G

Noting that Pπθ
is a transition probability matrix so every element is bounded above by 1, and since γ < 1,

we get that limk→∞ γkDπθ
(PT

πθ
)kDπθ

C0 = 0. Focusing on the other terms as k →∞ we get the following,

lim
k→∞

k−1∑
t=0

γtD−1
πθ

(PT
πθ

)tDπθ
G = D−1

πθ
(I − γPT

πθ
)−1Dπθ

G
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From equation 20 we see that limk→∞ Y k
γ C0 = ∇θ log dπθ

γ which completes the proof.

9.7 Additional Details Linear-TD

For large problem spaces, it is difficult to learn w(s′, a′) for all the state-action spaces. In that case, we use
linear function approximation, see for example, Gelada & Bellemare (2019); Hallak & Mannor (2017). We
choose a feature map Φ : S × A → Rd and ζ ∈ Rd×n are the linear parameters that we wish to learn. We
want to approximate w(s, a) as ζT Φ(s, a) for each state action pair (s, a). The TD(0) algorithm with linear
function approximation has the following update

ζT
k+1 ← ζT

k + αk(γζT
k Φ(sk, ak) + g(s′

k, a′
k)− ζT

k Φ(s′
k, a′

k))Φ(s′
k, a′

k)T , (21)

where (sk, ak) ∼ dπθ
γ , s′

k ∼ P(·|sk, ak), a′
k ∼ πθ(·|s′

k) and αk is the learning rate. To prove convergence,
re-write equation 21 in the following linear form,

ζk+1 = ζk + αk(Ak+1ζk + gk+1)

where, Ak := γΦ(s′
k, a′

k)(Φ(sk, ak)T − Φ(s′
k, a′

k)T ), gk := Φ(s′
k, a′

k)(∇θ log πθ(a′
k|s′

k))T . We further define,

A := γE[Φ(s′, a′)(Φ(s, a)T − Φ(s′, a′)T ) | (s, a) ∼ dπθ
γ , s′ ∼ P(·|s, a), a′ ∼ πθ(·|s′)],

g := E[Φ(s′, a′)(∇θ log πθ(a′|s′))T | (s, a) ∼ dπθ
γ , s′ ∼ P(·|s, a), a′ ∼ πθ(·|s′)]

To prove the convergence of this linear TD update rule, we make a few standard assumptions.
Assumption 2. 1. The matrix Ψ has linearly independent rows.

2. The matrix A is non-singular.

3. The feature matrix Φ has uniformly bounded second moments.
Theorem 3. Under Assumption 2 and the fact that the learning rate satisfies the Robbins Monroe condition
Robbins & Monro (1951) then the TD update equation 21 converges in probability to the solution

lim
k→∞

ζk = −A−1b

Proof. The proof follows similar to (Zhang et al., 2020b, Theorem 2) which invokes (Borkar & Meyn, 2000,
Theorem 2.2). We first re-write the updated equation in the following form

ζk+1 = ζk + αk(Aζk + g + (Ak+1 −A)ζk + (gk+1 − g)).

The proof follows almost equivalently from (Zhang et al., 2020b, Theorem 2) since the assumptions are the
same. The above equation has separated the update into the deterministic part, h(ζk) := Aζk + g and the
Martingale part, Mk+1 := (Ak − A)ζk + (gk − g). To apply this theorem, we now need to show that the
function h(ζ) is asymptomatically stable. For stability, we will now show that the matrix A has all negative
Eigenvalues. Consider any unit eigenvector x. We will now try to evaluate xT Ax.

xT Ax = xT E(s,a)∼d
πθ
γ

[−Φ(s, a)Φ(s, a)T + γΦ(s, a)Es′∼P(·|s,a),a′∼πθ(·|s′)[Φ(s′, a′)]] x

= −E(s,a)∼d
πθ
γ

[xT Φ(s, a)Φ(s, a)T x] + γ[xT Φ(s, a)Es′∼P(·|s,a),a′∼πθ(·|s′)[Φ(s′, a′)]]

Using Cauchy-Shwartz inequality on the second term. We now get the following,

xT Ax ≤ −(1− γ)E(s,a)∼d
πθ
γ

[xT Φ(s, a)Φ(s, a)T x] ≤ 0

Since A is non-singular (Assumption 2), the eigenvalues cannot be zero. Thus, the eigenvalues for this problem
are strictly negative. This guarantees asymptotic stability of h(ζ) and completes the proof.
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9.8 Proof of Theorem 1

Proof. The proof follows similar to to (Zhang et al., 2020b, Theorem 2) which invokes (Borkar & Meyn, 2000,
Theorem 2.2). We first re-write the updates in equation 18 in matrix form as dt+1 = dt + εt(Gt+1dt + ht+1)
with dt := [αt, βt, τT

t ] and Gt+1, ht+1 are as follows,

Gt+1 =

 0 −At −λΦt

At −Ct 0
λΦT

t 0 −λ

 , ht+1 =

 0
−Bt

0


where, At = (ΦtΦT

t − γΦt(Φ′
t)T ), Bt = ΦgT

t , Ct = ΦtΦT
t . We can calculate the expectation for each of these

matrices as follows (the expectation is taken over all possible values of (s, a) distributed as dπθ
γ ),

G = Ep[Gt+1] =

 0 −A −λDπθ

T Φ
A C 0

λΦT Dπθ
0 −λ

 , h = E(s,a)∼d
πθ
γ

[ht+1] =

 0
−B
0


Where,

A := Ψ(I − γPπθ
)Dπθ

ΨT , B := ΨDπθ
GT , C := ΨDπθ

Ψ,

Ep[·] := E(s,a)∼d
πθ
γ ,s′∼P(·|s,a),a′∼πθ(·|s′)[·]

where Dπθ
is a diagonal matrix with the diagonal being dπθ

γ . We will now prove the convergence of the linear
function approximation case. We first separate the deterministic term h(dt) and the stochastic term Mt+1

dt+1 = dt + εt(Gdt + g︸ ︷︷ ︸
h(dt)

+ (Gt+1 −G)dt + (gt+1 − g))︸ ︷︷ ︸
Mt+1

From here, the proof follows equivalently to (Zhang et al., 2020b, Theorem 2), with exactly same assumptions.
The remaining part of the proof requires us to show that the function h(d) is symptomatically stable. We
show that by demonstrating that the eigenvalues of the matrix G are strictly negative. Let v be an arbitrary
eigenvector of G corresponding to an arbitrary eigenvalue ν, then

µ = vT Gv

= vT
2 Av1 + λvT

3 ΦT Dπθ
v1 − vT

1 Av2 − λvT
1 ΦT Dπθ

v3 − vT
2 Cv2 − λvT

3 v3

= −λvT
3 v3 − vT

2 Cv2 ≤ 0

Now, we just need to show that the eigenvalue is not zero. We will prove that using contradiction. Assume
that there exists a v such that Gv = 0 and v ̸= 0. This implies that,

−Av2 − λΦT Dπθ
v3 = 0

Av1 = 0
λDπθ

T Φv1 − λv3 = 0

Since A is a non-singular matrix (Assumption 1) we have v1 = 0 which implies that v3 = 0 from the third
equation. This leaves us with Av2 = 0 which leaves us with v2 = 0, which is a contradiction. This finishes
the proof. It now is proven that the eigenvalue is strictly negative. This completes the proof.

9.9 Proof of Theorem 2

Proof. The proof of this Theorem is almost similar to the proof of Zhang et al. (2020b) except the need to
bound different terms. To simplify the proof, we first lump the maximization and minimization variables
together and update these parameters in matrix form. We call the grouped maximization variables y = (β, τ)
and minimization variable α. We re-write Algorithm 1 in matrix form as follows (in Algorithm 3), where,
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Algorithm 3 Projected Log Density Gradient
1: for i = 1, 2, ..., n do:
2: αt+1 = ΠX(αt − εt(G1,tyt))
3: yt+1 = ΠY,Z(yt+1 + εt(G2,tαt + G3.tyt + G4,t)
4: Return ᾱ, ȳ

Where, ᾱ =
∑n

i=1
εiαi∑n

i=1
εi

, ȳ =
∑n

i=1
εiyi∑n

i=1
εi

G1,t :=
[
−(ΦtΦT

t − γΦtΦ′T
t ) −λΦt

]
G2,t :=

[
ΦtΦT

t − γΦtΦ
′T
t

λΦT
t

]
, G3,t :=

[
−ΦtΦT

t 0
0 −λ

]
G4,t :=

[
−Φtg

T
t

0

]
.

We also project our variables αt, yt on the closed and convex sets X ⊂ Rd×n, Y ⊂ Rd×n × R1×n. We output
the weighted average ᾱ and ȳ. Before, proposing a sample complexity bound, we first define the optimization
gap ϵg(α, y) as follows,

ϵg(α, y) := max
y′∈Y

L(α, y′)− min
α′∈X

L(α′, y)

Note that ϵg(α∗, y∗) = 0, where α∗, y∗ are the solutions to the min-max problem. From here, on the proof
follow almost similarly to Zhang et al. (2020b). The proof follows from (Liu et al., Proposition 3) and (Zhang
et al., 2020b, Proposition 2), both of which rely on (Nemirovski et al., 2009, Proposition 3.2) to state the
O
(√

1
n

)
bound. Proposition 3.2 in Nemirovski et al. (2009) says that set X, Y, Z should be closed, convex

and bounded sets, which is part of our assumption. Our min-max loss function is Lipschitz continuous and
the minimization problem is convex and the maximization problem is concave. It can also be seen that both
the primal and dual form of the optimization has equal optimal values α∗, y∗. We now proceed to apply the
bound proposed by Nemirovski et al. (2009). To that end, we first need to bound certain terms. We define
Dα and DY as follows,

Dα = max
x∈X
∥x∥2 −min

x∈X
∥x∥2

DY = max
y∈Y
∥y∥2 −min

y∈Y
∥Y ∥2

From Assumption 1 which says the second moment of all the features is bounded we can similarly write the
following bound

E[∥Gi,t −Gi∥2] ≤ σ2
i ∀i ∈ {1, 2, 3, 4}.

Therefore, we obtain bounds for the stochastic sub-gradient Gα(α, y), GY (α, y) as follows,

Gα(α, y) = G1,tyt

GY (α, y) = (G2.tαt + G3,tyt + G4,t)

and for their second moment as follows,

E[∥Gα(α, y)∥2] = σ2
1D2

Y + σ2
1∥Ḡ1,t∥2 ≤ Cα

E[∥GY (α, y)∥2] = σ2
2D2

Y + σ2
2∥Ḡ2,t∥2 + σ2

3D2
Y + σ2

3∥Ḡ3,t∥2 + σ2
4∥Ḡ4,t∥2 ≤ CY ,

where we used the fact that E[∥x∥2] ≤ E[∥x− E[x]∥2] + ∥E[x]∥2. If we now follow the procedure as proposed
by Nemirovski et al. (2009) we can define M∗ as follows,

M2
∗ = 2C2

αDα2 + 2C2
Y D2

Y
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If we fix the learning rate as εt = c
M∗

√
t

for any positive constant c. We can now bound the optimality gap
with probability at least 1− δ using (Nemirovski et al., 2009, Proposition 3.2)

ϵ(ᾱ, ȳ) ≤ 5
n

(8 + 2 log 2
δ

)M∗ max{c,
1
c
}

This completes the proof.
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