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ABSTRACT

Effective planning in the real world requires not only world knowledge, but the
ability to leverage that knowledge to build the right representation of the task
at hand. Decades of hierarchical planning techniques have used domain-specific
temporal action abstractions to support efficient and accurate planning, almost
always relying on human priors and domain knowledge to decompose hard tasks
into smaller subproblems appropriate for a goal or set of goals. This paper describes
Ada (Action Domain Acquisition), a framework for automatically constructing
task-specific planning representations using task-general background knowledge
from language models (LMs). Starting with a general-purpose hierarchical planner
and a low-level goal-conditioned policy, Ada interactively learns a library of
planner-compatible high-level action abstractions and low-level controllers
adapted to a particular domain of planning tasks. On two language-guided
interactive planning benchmarks (Mini Minecraft and ALFRED Household Tasks),
Ada strongly outperforms other approaches that use LMs for sequential decision-
making, offering more accurate plans and better generalization to complex tasks.

1 INTRODUCTION

People make complex plans over long timescales, flexibly adapting what we know about the world
in general to govern how we act in specific situations. To make breakfast in the morning, we might
convert a broad knowledge of cooking and kitchens into tens of fine-grained motor actions in order to
find, crack, and fry a specific egg; to achieve a complex research objective, we might plan a routine
over days or weeks that begins with the low-level actions necessary to ride the subway to work.
The problem of adapting general world knowledge to support flexible long-term planning is one
of the unifying challenges of AI. While decades of research have developed representations and
algorithms for solving restricted and shorter-term planning problems, generalized and long-horizon
planning remains a core, outstanding challenge for essentially all AI paradigms, including classical
planning (Erol et al., 1994), reinforcement learning (Sutton et al., 1999), and modern generative
AI (Wang et al., 2023a).

How do humans solve this computational challenge? A growing body of work in cognitive science
suggests that people come up with hierarchical, problem-specific representations of their actions
and environment to suit their goals, tailoring how they represent, remember, and reason about the
world to plan efficiently for a particular set of tasks (e.g., Ho et al., 2022). In AI, a large body of
work has studied hierarchical planning using domain-specific temporal abstractions—progressively
decomposing high-level goals into sequences abstract actions that eventually bottom out in low-level
control. An extensive body of work has explored how to plan using these hierarchical action spaces,
including robotic task-and-motion planning (TAMP) systems (Garrett et al., 2021) and hierarchical
RL frameworks (Sutton et al., 1999).

However, identifying a set of abstract actions that are relevant and useful for achieving any given set
of goals remains the central bottleneck in general. Intuitively, “useful” high-level actions must satisfy
many different criteria: they should enable time-efficient high-level planning, correspond feasible low-
level action sequences, and compose and generalize to new tasks. Despite efforts to learn high-level
actions automatically in both classical planning (Nejati et al., 2006) and RL formulations (Dietterich,
2000), most state-of-the-art robotics and planning systems rely on human expertise to hand-engineer
new planning representations for each new domain (Ahn et al., 2022).

∗Asterisk indicates equal contribution. Correspondence to zyzzyva@mit.edu. Code for this paper will
be released at: https://github.com/CatherineWong/llm-operators
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(a) To solve grounded planning tasks…

Mini Minecraft

ALFRED 
Household

Bring a hot egg to the table.

Place chilled wine in the cabinet.

Put away sliced bread into the fridge.

Place a cold potato slice in the oven.

Mine iron.

Mine gold. 

Craft a wood plank.

Craft a bed.

(b) ...we learn a library of grounded actions with a hierarchical planning framework

(:action chill-object-1
:parameters (?r ?o ?l)
:precondition (and
(receptacleType ?r FridgeType)
(receptacleAtLocation ?r ?l) ...
(holds ?o))

:effect (and (isHot ?o)))

(i) Propose symbolic action abstractions

(:action chill-object-2 ...)

(:action heat-object-1 ...)

(ii) Ground with bi-level planning

(pick-up wine)
(chill-object-1 wine fridge) 
...(more steps)
(put wine cabinet)

Abstract 
Planner

Open

Pick

Place

(iii) Verified grounded action library

(:action chill-object-1 ...)

...
...chill-object-1

(:action slice-object-1 ...)

OpenPick Place

(:action slice-object-2 ...)

. . . more grounded actions . . .

ApplyPick PlaceLow-level 
Policy 
Search

Figure 1: We solve complex planning tasks specified in language and grounded in interactive environments by
jointly learning a library of symbolic high-level action abstractions and modular low-level controllers associated
with each abstraction. Our system leverages background information in language as a prior to propose useful
action abstractions, then uses a hierarchical planning framework to verify and ground them.

In this paper, we introduce Action Domain Acquisition (Ada), a framework for using background
knowledge from language (conveyed via language models) as an initial source of task-relevant domain
knowledge. Ada uses language models (LMs) in an interactive planning loop to assemble a library of
composable, hierarchical actions tailored to a given environment and task space. Each action consists
of two components: (1) a high-level abstraction represented as a symbolic planning operator (Fikes &
Nilsson, 1971) that specifies preconditions and action effects as sets of predicates; and (2) a low-level
controller that can achieve the action’s effects by predicting a sequence of low-level actions with a
neural network or local search procedure. We study planning in a multitask reinforcement learning
framework, in which agents interact with their environments to must solve collections of tasks of
varying complexity. Through interaction, Ada incrementally builds a library of actions, ensuring
at each step that learned high-level actions compose to produce valid abstract plans and realizable
low-level trajectories.

We evaluate Ada (Fig. 1) on two benchmarks, Mini Minecraft and ALFRED (Shridhar et al., 2020).
We compare this approach against three baselines that leverage LMs for sequential decision-making
in other ways: to parse linguistic goals into formal specifications that are solved directly by a planner
(as in Liu et al. (2023)), to directly predict sequences of high-level subgoals (as in Ahn et al. (2022)),
and to predict libraries of actions defined in general imperative code (as in Wang et al. (2023a)). In
both domains, we show that Ada learns action abstractions that allow it to solve dramatically more
tasks on each benchmark than these baselines, and that these abstractions compose to enable efficient
and accurate planning in complex, unseen tasks.

2 PROBLEM FORMULATION

We assume access to an environment ⟨X ,U , T ⟩, where X is the (raw) state space, U is the (low-level)
action space (e.g., robot commands), and T is a deterministic transition function T : X × U → X .
We also have a set of features (or “predicates”) P that define an abstract state space S: each abstract
state s ∈ S is composed of a set of objects and their features. For example, a simple scene that
contains bread on a table could be encoded as an abstract state with two objects A and B, and atoms
{bread(A), table(B), on(A,B)}. We assume the mapping from environmental states to abstract states
Φ : X → S is given and fixed (though see Migimatsu & Bohg, 2022 for how it might be learned).

In addition to the environment, we have a collection of tasks t. Each t is described by a natural
language instruction ℓt, corresponding to a goal predicate (which is not directly observed). In this
paper, we assume that predicates may be defined in terms of abstract states, i.e., gt : S → {T, F}.
Our goal is to build an agent that, given the initial state x0 ∈ X and the natural language instruction
ℓt, can generate a sequence of low-level actions {u1, u2, · · · , uH} ∈ UH such that gt(Φ(xH)) is
true (where xH is the terminal state of sequentially applying {ui} on x0). The agent receives reward
signal only upon achieving the goal specified by gt.

Given a very large number of interactions, a sufficiently expressive reflex policy could, in principle,
learn a policy that maps from low-level states to low-level actions conditioned on the language
instruction π(u | x; ℓt). However, for very long horizons H and large state spaces (e.g., composed
of many objects and compositional goals), such algorithms can be highly inefficient or effectively
infeasible. The key idea behind our approach is to use natural language descriptions ℓt to bootstrap a
high-level action space A over the abstract state space S to accelerate learning and planning.
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Bring a hot egg.

Initial state: 𝑥!

Instruction: ℓ"

(c) State and Action Abstraction

Predicates (𝓟):

Operator (𝓐): (:action HeatObject
:parameters (?l ?r ?o)
:precondition (and
(receptacleType ?r MicrowaveType)
(holds ?a ?o) ...)

:effect (and (isHot ?o)) ...)

... (more operators)

(a) Task Input

Controllers: 𝜋 𝑢	 	𝑥	; 𝑎):𝒳×𝒜 → 𝒰

Abstract State High-Level Planner
(e.g., FD)

Φ
Abstract Goal

Abstract Plan {𝒂𝒊}
(pick egg#1, ...)
(moveTo microwave)
... (more actions)

Low-Level Plan {𝒖𝒊}
Move Pick Move ......

(b) Bi-Level Planning and Execution
receptacleType(...)
objectType(...), isHot(...), ...

Figure 2: Representation for our (a) task input, (b) the bi-level planning and execution pipeline for inference
time, and (c) the abstract state and action representation.

Candidate Ops.

{𝑥!, 𝒜"#$

for iteration 𝒊 = 1, 2, 3, ...

ℓ%} 𝒜"′ {𝑎"}Sym. Planner

Symbolic Goal

Abstract State

High-Level Action Low-Level Action

{𝑢"}
Controller

Execute and
Score Operators

𝒜"

Raw State

Figure 3: The overall framework. Given task environment states and descriptions, at each iteration, we first
propose candidate abstract actions (operators) A′

i, then uses bi-level planning and execution to solve tasks. We
add operators to the operator library based on the execution result.

Formally, our approach learns a library of high-level actions (operators) A. As illustrated in Fig. 2b,
each a ∈ A is a tuple of ⟨name, args, pre, eff, controller⟩. name is the name of the action, args
is a list of variables, usually denoted by ?x, ?y, etc., pre is a precondition formula based on the
variables args and the features P , and eff is the effect, which is also defined in terms of args and P .
Finally, controller : X → U is a low-level policy associated with the action. The semantics of the
preconditions and effects is: for any state x such that pre(Φ(x)), executing controller starting in x
(for an indefinite number of steps) will yield a state x′ such that eff(Φ(x′)) (Lifschitz, 1986). In this
framework, A defines a partial, abstract world model of the underlying state space.

As shown in Fig. 2b, given the set of high-level actions and a parse of the instruction ℓt into a
first-order logic formula, we can leverage symbolic planners (e.g., Helmert, 2006) to first compute
a high-level plan {a1, · · · , aK} ∈ AK that achieves the goal ℓt symbolically, and then refine the
high-level plan into a low-level plan with the action controllers. This bi-level planning approach
decomposes long-horizon planning problems into several short-horizon problems. Furthermore, it
can also leverage the compositionality of high-level actions A to generalize to longer plans.

3 ACTION ABSTRACTIONS FROM LANGUAGE

As illustrated in Fig. 3, our framework, Action Domain Acquisition (Ada) learns action abstractions
iteratively as it attempts to solve tasks. Our algorithm is given a dataset of tasks and their corre-
sponding language descriptions, the feature set P , and optionally an initial set of high-level action
operatorsA0. At each iteration i, we first use a large language model (LLM) to propose a set of novel
high-level action definitions A′

i based on the features P and the language goals {ℓt} (Section 3.1).
Next, we use a LLM to also translate each language instruction ℓt into a symbolic goal description Ft,
and use a bi-level planner to compute a low-level plan to accomplish ℓt (Section 3.2). Then, based on
the planning and execution results, we score each operator in Ai and add ones to the verified library
if they have yielded successful execution results (Section 3.4). To accelerate low-level planning,
we simultaneously learn local subgoal-conditioned policies (i.e., the controllers for each operator;
Section 3.3). Algorithm 1 summarizes the overall framework.

A core goal of our approach is to adapt the initial action abstractions proposed from an LLM prior
into a set of useful operators A∗ that permit efficient and accurate planning on a dataset of tasks and
ideally, that generalize to future tasks. While language provides a key initial prior, our formulation
refines and verifies the operator library to adapt to a given planning procedure and environment
(similar to other action-learning formulations like Silver et al., 2021). Our formulation ensures not
only that the learned operators respect the dynamics of the environment, but also fit their grain of
abstraction according to the capacity of the controller, trading off between fast high-level planning
and efficient low-level control conditioned on each abstraction.
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Algorithm 1 Action Abstraction Learning from Language

Input: Dataset of tasks and their language descriptions {ℓt}
Input: Predicate set P
Input: Optionally, an initial set of abstract operators A0, or A0 = ∅
1: Initialize subgoal-conditioned policy πθ .
2: for i = 1, 2, · · · ,M do
3: Ai ← Ai−1 ∪ ProposeOperatorDefinitions(P, {ℓt}) ▷ Section 3.1
4: for each unsolved task j: (x(j)

0 , ℓ
(j)
t ) do

5: ū← BiLevelPlan(Ai, ℓ
(j)
t , π) ▷ Section 3.2

6: result(j) ← Execute(x(j)
0 , ū) ▷ Execute the plan

7: θ ← UpdateSubgoalPolicy(θ, result) ▷ Section 3.3
8: Ai ← ScoreAndFilter(Ai, result) ▷ Section 3.4

return AM

(:action heat-object
:parameters (?l ?r ?o)
:precondition (and
(receptacleType ?r MicrowaveType)
(atLocation ?l)
(receptacleAtLocation ?r ?l)
(holds ?o))

:effect (and (isHot ?o)))

(a) Stage 1: Propose Symbolic Task Decomposition

Prompt

;; Examples
;; Bake a bread and bring it to the table.
(pick-up bread) (place bread oven) (bake bread) 
...
;; Sauté some cabbage.
...... (more language to symbolic plans)

(pick-up egg)
...... (more steps)
(place pot stove)
(heat-object kitchen microwave egg)
...... (more steps)

LLM Generation

(b) Stage 2: Propose Symbolic Operator Definitions

;; Examples
(:action saute ...
:precondition (and (receptacleType ?r Pan) ...
:effect ...)
(:action bake
:precondition (and (receptacleType ?r Oven) ...
:effect ...)
...... (more operator examples)

heat-object ? ? ?

Extract Undefined
Operator Names

Bring a hot egg to the table.

Objects: egg, stove, ......
State: on(egg, table), cold(egg),
open(microwave), ......

Figure 4: Our two-stage prompting method for generating candidate operator definitions. (a) Given a task
instruction, we first prompt an LLM to generate a candidate symbolic task decomposition. (b) We then extract
undefined operator names that appear in the sequences and prompt an LLM to generate symbolic definitions.

3.1 OPERATOR PROPOSAL: Ai ← Ai−1 ∪ ProposeOperatorDefinitions(P, {ℓt})

At each iteration i, we use a pretrained LLM to extend the previous operator library Ai−1 with
a large set of candidate operator definitions proposed by the LLM based on the task language
descriptions and environment features P . This yields an extended candidate library A′

i where each
a ∈ A′

i = ⟨name, args, pre, eff⟩ where name is a human-readable action name and args, pre, eff are a
PDDL operator definition. We employ a two-stage prompting strategy: symbolic task decomposition
followed by symbolic operator definition.

Example. Fig. 4 shows a concrete example. Given a task instruction (Bring a hot egg to the table)
and the abstract state description, we first prompt the LLM to generate an abstract task decomposition,
which may contain operator names that are undefined in the current operator library. Next, we extract
the names of those undefined operators and prompt LLMs to generate the actual symbolic operator
descriptions, in this case, the new heat-object operator.

Symbolic task decomposition. For a given task ℓt and a initial state x0, we first translate the raw
state x0 into a symbolic description Φ(x0). To constrain the length of the state description, we only
include unary features in the abstract state (i.e., only object categories and properties). Subsequently,
we present a few-shot prompt to the LLM and query it to generate a proposed task decomposition
conditioned on the language description ℓt. It generates a sequence of named high-level actions and
their arguments, which explicitly can include high-level actions that are not yet defined in the current
action library. We then extract all the operator names proposed across tasks as the candidate high-level
operators. Note that while in principle we might use the LLM-proposed task decomposition itself as
a high-level plan, we find empirically that this is less accurate and efficient than a formal planner.

Symbolic operator definition. With the proposed operator names and their usage examples (i.e., the
actions and their arguments in the proposed plans), we then few-shot prompt the LLM to generate
candidate operator definitions in the PDDL format (argument types, and pre/postconditions defined
based on features in P). We also post-process the generated operator definitions to remove feature

4



Published as a conference paper at ICLR 2024

names not present in P and correct syntactic errors. We describe implementation details for our
syntax correction strategy in the appendix.

3.2 GOAL PROPOSAL AND PLANNING: result(j) ← Execute(x(j)
0 ,BiLevelPlan(Ai, ℓ

(j)
t , π))

At each iteration i, we then attempt to BiLevelPlan for unsolved tasks in the dataset. This step
attempts to find and execute a low-level action sequence {u1, u2, · · · , uH} ∈ UH for each task using
the proposed operators in A′

i that satisfies the unknown goal predicate gt for each task. This provides
the environment reward signal for action learning. Our BiLevelPlan has three steps.

Symbolic goal proposal: As defined in Sec. 2, each task is associated with a queryable but unknown
goal predicate gt that can be represented as a first-order logic formula ft over symbolic features in P .
Our agent only has access to a linguistic task description ℓt, so we use a few-shot prompted LLM to
predict candidate goal formulas F ′

t conditioned on ℓt and features P .

High-level planning: Given each candidate goal formula f ′
t ∈ F ′

t , the initial abstract problem
state s0, and the current candidate operator library A′, we search for a high-level plan PA =
{(a1, o1i ...), · · · , (aK , oKi

...)} as a sequence of high-level actions from A′ concretized with object
arguments o, such that executing the action sequence would satisfy f ′

t according to the operator
definitions. This is a standard symbolic PDDL planning formulation; we use an off-the-shelf symbolic
planner, FastDownward (Helmert, 2006) to find high-level plans.

Low-level planning and environment feedback: We then search for a low-level plan as a sequence
of low-level actions {u1, u2, · · · , uH} ∈ UH , conditioned on the high-level plan structure. Each
concretized action tuple (ai, o1i ...) ∈ PA defines a local subgoal sgi, as the operator postcondition
parameterized by the object arguments o. For each (ai, o1i ...) ∈ PA, we therefore search for a
sequence of low-level actions ui1 , ui2 ... that satisfies the local subgoal sgi. We search with a fixed
budget per subgoal, and fail early if we are unable to satisfy the local subgoal sgi. If we successfully
find a complete sequence of low-level actions satisfying all local subgoals sgi in PA, we execute
all low-level actions and query the hidden goal predicate gt to determine environment reward. We
implement a basic learning procedure to simultaneously learn subgoal-conditioned controllers over
time (described in Section 3.3), but our formulation is general and supports many hierarchical
planning schemes (such as sampling-based low-level planners (LaValle, 1998) or RL algorithms).

3.3 LOW-LEVEL LEARNING AND GUIDED SEARCH: θ ← UpdateSubgoalPolicy(θ, result)

The sequence of subgoals sgi corresponding to high-level plans PA already restricts the local low-
level planning horizon. However, we further learn subgoal-conditioned low-level policies π(u|x; sg)
from environment feedback during training to accelerate low-level planning. To exploit shared
structure across subgoals, we learn a shared controller for all operators from x ∈ X and conjunctions
of predicates in sg. To maximize learning during training, we use a hindsight goal relabeling
scheme (Andrychowicz et al., 2017), supervising on all conjunctions of predicates in the state as we
roll out low-level search. While the shared controller could be learned as a supervised neural policy,
we find that our learned operators sufficiently restrict the search to permit learning an even simpler
count-based model from X, sg → u ∈ U . We provide additional details in the Appendix.

3.4 SCORING LLM OPERATOR PROPOSALS: Ai ← ScoreAndFilter(Ai, result)

Finally, we update the learned operator library Ai to retain candidate operators that were useful and
successful in bi-level planning. Concretely, we estimate operator candidate a′i ∈ A′

i accuracy across
the bi-level plan executions as s/b where b counts the total times a′i appeared in a high-level plan and
s counts successful execution of the corresponding low-level action sequence to achieve the subgoal
associated with a′i. We retain operators if b > τb and s/b > τr, where τb, τr are hyperparameters.
Note that this scoring procedure learns whether operators are accurate and support low-level planning
independently of whether the LLM-predicted goals f ′

t matched the true unknown goal predicates gt.

4 EXPERIMENTS

Domains. We evaluate our approach on two-language specified planning-benchmarks: Mini Minecraft
and ALFRED (Shridhar et al., 2020). Mini Minecraft (Fig. 5, top) is a procedurally-generated
Minecraft-like benchmark (Chen et al., 2021; Luo et al., 2023) on a 2D grid world that requires
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Craft a bed.

(:action craft-bed
:parameters (
?i1 - inventory ?i2 - inventory ?ti – inventory
?s - object ?o1 - object ?o2 - object ?t - object ?t - tile)

:precondition (and
(agent-at ?t) (object-at ?s ?t) (obj-type ?s WorkStation)
(inventory ?i1 ?o1)             (obj-type ?i1 WoodPlank)
(inventory ?i2 ?o2)             (obj-type ?i2 Wool)
(inventory-empty ?ti)           (obj-type ?t Hypothetical))

:effect (and
(not (inventory-empty ?ti)) (inventory ?ti ?t)
(not (obj-type ?t Hypothetical)) (obj-type ?t Bed)
(not (inventory ?i1 ?o1))  ;; ... more effects ommited

)
)

(a) Example task. (b) An example operator proposed and verified by our algorithm. (c) Visualization of the crafting actions used.

wool bed

wood plankwoodaxe

shearsiron ingotiron orepickaxe

coal

Mini Minecraft

ALFRED

(a) Example tasks.

Wash the dirty bowl before 
putting the bowl on the counter.

(b) Example operators proposed and verified by our algorithm. 

Put chilled wine in the cabinet.

Warm a plate and place it on 
the table.

Place a cold potato slice in the oven.

(:action CoolObject
:parameters (
?toolreceptacle - receptacle ?a – agent
?l - location ?o - object)

:precondition (and
(receptacleType ?toolreceptacle 
FridgeType)
(atLocation ?a ?l)
(holds ?a ?o)
(receptacleAtLocation ?toolreceptacle ?l))

:effect (and 
(isCool ?o))

)

(:action SliceObject
:parameters (
?toolobject - object ?a – agent
?l - location ?o - object)

:precondition (and
(objectType ?toolobject KnifeType)
(atLocation ?a ?l)
(objectAtLocation ?o ?l)
(sliceable ?o)
(holds ?a ?toolobject))

:effect (and 
(isSliced ?o))

)

Figure 5: Top: (a) The Mini Minecraft environment, showing an intermediate step towards crafting a bed. (b)
Operator proposed by an LLM and verified by our algorithm through planning and execution. (c) Low-level
actions involved in crafting the bed. Bottom: (a) The ALFRED household environment. (b) Example operators
proposed by LLM and verified by our algorithm, which are composed to solve the cold potato slice task.

complex, extended planning. The agent can use tools to mine resources and craft objects. The ability
to create new objects that themselves permit new actions yields an enormous action space at each
time step (>2000 actions) and very long-horizon tasks (26 high-level steps for the most complex
task, without path-planning.) ALFRED (Fig. 5, bottom) is a household planning benchmark of
human-annotated but formally verifiable tasks defined over a simulated Unity environment (Shridhar
et al., 2020). The tasks include object rearrangements and those with object states such as heating
and cleaning. Ground-truth high-level plans in the ALFRED benchmark compose 5-10 high-level
operators, and low-level action trajectories have on average 50 low-level actions. There over 100
objects that the agent can interact with in each interactive environment. See the Appendix for details.

Experimental setup. We evaluate in an iterative continual learning setting; except on the compo-
sitional evaluations, we learn from n=2 iterations through all (randomly ordered) tasks and report
final accuracy on those tasks. All experiments and baselines use GPT-3.5. For each task, at each
iteration, we sample n=4 initial goal proposals and n=4 initial task decompositions, and n=3 operator
definition proposals for each operator name. We report best-of accuracy, scoring a task as solved if
verification passes on at least one of the proposed goals. For Minecraft, we set the motion planning
budget for each subgoal to ≤1000 nodes. For ALFRED, which requires a slow Unity simulation, we
set it to 50 nodes. Additional temperature and sampling details are in the Appendix.

We evaluate on three Mini Minecraft benchmark variations to test how our approach generalizes
to complex, compositional goals. In the simplest Mining benchmark, all goals involve mining a
target item from an appropriate initial resource with an appropriate tool (e.g., Mining iron from
iron ore with an axe). In the harder Crafting benchmark, goals involve crafting a target artifact (e.g.,
a bed), which may require mining a few target resources. The most challenging Compositional
benchmark combines mining and crafting tasks, in environments that only begin with raw resources
and two starting tools (axe and pickaxe). Agents may need to compose multiple skills to obtain other
downstream resources (see Fig. 5 for an example). To test action generalization, we report evaluation
on the Compositional using only actions learned previously in the Mining and Crafting benchmarks.

We similarly evaluate on an ALFRED benchmark of Simple and Compositional tasks drawn from
the original task distribution in Shridhar et al. (2020). This distribution contains simple tasks that
require picking up an object and placing it in a new location, picking up objects, applying a single
household skill to an object and moving them to a new location (e.g., Put a clean apple on the dining
table), and compositional tasks that require multiple skills (e.g., Place a hot sliced potato on the
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Mini Minecraft (n=3) LLM Predicts? Library? Mining Crafting Compositional

Low-level Planning Only Goal ✗ 31% (σ=0.0%) 9% (σ=0.0%) 9% (σ=0.0%)
Subgoal Prediction Sub-goals ✗ 33% (σ=1.6%) 36% (σ=5.6%) 6% (σ=1.7%)
Code Policy Prediction Sub-policies ✓ 15% (σ=1.2%) 39% (σ=3.2%) 10% (σ=1.7%)
Ada (Ours) Goal+Operators ✓ 100% (σ=0.0%) 100% (σ=7.5%) 100% (σ=4.1%)

ALFRED (n=3 replications) LLM Predicts? Library? Original (Simple + Compositional Tasks)

Low-level Planning Only Goal ✗ 21% (σ=1.0%)
Subgoal Prediction Sub-goal ✗ 2% (σ=0.4%)
Code Policy Prediction Sub-policies ✓ 2% (σ=0.9%)
Ada (Ours) Goal+Operators ✓ 79% (σ=0.9%)

Table 1: (Top) Results on Mini Minecraft. Our algorithm successfully recovers all intermediate operators for
mining and crafting, which enable generalization to more compositional tasks (which use up to 26 operators)
without any additional learning. (Bottom) Results on ALFRED. Our algorithm recovers all required household
operators, which generalize to more complex compositional tasks. All results report mean performance and STD
from n=3 random replications for all models.

counter). We use a random subset of n=223 tasks, selected from an initial 250 that we manually filter
to remove completely misspecified goals (which omit any mention of the target object or skill).

Baselines. We compare our method to three baselines of language-guided planning.

Low-level Planning Only uses an LLM to predict only the symbolic goal specification conditioned
on the high-level predicates and linguistic goal, then uses the low-level planner to search directly
for actions that satisfy that goal. This baseline implements a model like LLM+P (Liu et al., 2023),
which uses LLMs to translate linguistic goals into planning-compatible formal specifications, then
attempt to plan directly towards these with no additional representation learning.

Subgoal Prediction uses an LLM to predict a sequence of high-level subgoals (as PDDL pre/postcon-
ditions with object arguments), conditioned on the high-level predicates, and task goal and initial
environment state. This baseline implements a model like SayCan (Ahn et al., 2022), which uses
LLMs to directly predict goal and a sequence of decomposed formal subgoal representations, then
applies low-level planning over these formal subgoals.

Code Policy Prediction uses an LLM to predict the definitions of a library of imperative local
code policies in Python (with cases and control flow) over an imperative API that can query state
and execute low-level actions.) Then, as FastDownward planning is no longer applicable, we also
use the LLM to predict the function call sequences with arguments for each task. This baseline
implements a model like Voyager (Wang et al., 2023a), which uses an LLM to predict a library of
skills implemented as imperative code for solving individual tasks. Like Voyager, we verify the
individual code skills during interactive planning, but do not use a more global learning objective to
attempt to learn a concise or non-redundant library.

4.1 RESULTS

What action libraries do we learn? Fig. 5 shows example operators learned on each domain
(Appendix A.3 contains the full libraries of operators learned on both domains from a randomly
sampled run of the n=3 replications). In Mini Minecraft, we manually inspect the library and find
that we learn operators that correctly specify the appropriate tools, resources, and outputs for all
intermediate mining actions (on Mining) and crafting actions (on Crafting), allowing perfect direct
generalization to the Compositional tasks without any additional training on these complex tasks.
In ALFRED, we compare the learned libraries from all runs to the ground-truth operator library
hand-engineered in Shridhar et al. (2020). The ground-truth operator set contains 8 distinct operators
corresponding to different compositional skills (e.g., Slicing, Heating, Cleaning, Cooling). Across
all replications, model reliably recovers semantically identical (same predicate preconditions and
postconditions) definitions for all of these ground-truth operators, except for a single operator that is
defined disjunctively (the ground-truth Slice skill specifies either of two types of knives), which we
occasionally learn as two distinct operators or only recover with one of these two types.

We also inspect the learning trajectory and find that, through the interactive learning loop, we
successfully reject many initially proposed operator definitions sampled from the language model that
turn out to be redundant (which would make high-level planning inefficient), inaccurate (including
apriori reasonable proposals that do not fit the environment specifications, such as proposing to clean
objects with just a towel, when our goal verifiers require washing them with water in a sink), or
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underspecified (such as those that omit key preconditions, yielding under-decomposed high-level task
plans that make low-level planning difficult).

Do these actions support complex planning and generalization? Table 2 shows quantitative
results from n=3 randomly-initialized replications of all models, to account for random noise in
sampling from the language model and stochasticity in the underlying environment (ALFRED). On
Minecraft, where goal specification is completely clear due to the synthetic language, we solve all
tasks in each evaluation variation, including the challenging Compositional setting — the action
libraries learned from simpler mining/crafting tasks generalize completely to complex tasks that
require crafting all intermediate resources and tools from scratch. On ALFRED, we vastly outperform
all other baselines, demonstrating that the learned operators are much more effective for planning and
compose generalizably to more complex tasks. We qualitatively find that failures on ALFRED occur
for several reasons. One is goal misspecification, when the LLM does not successfully recover the
formal goal predicate (often due to ambiguity in human language), though we find that on average,
92% of the time, the ground truth goal appears as one of the top-4 goals translated by the LLM. We
also find failures due to low-level policy inaccuracy, when the learned policies fail to account for
low-level, often geometric details of the environment (e.g., the learned policies are not sufficiently
precise to place a tall bottle on an appropriately tall shelf). More rarely, we see planning failures
caused by slight operator overspecification (e.g., the Slice case discussed above, in which we do not
recover the specific disjunction over possible knives that can be used to slice.) Both operator and goal
specification errors could be addressed in principal by sampling more (and more diverse) proposals.

How does our approach compare to using the LLM to predict just goals, or predict task se-
quences? As shown in Table 2, our approach vastly outperforms the Low-level Planning Only
baseline on both domains, demonstrating the value of the action library for longer horizon planning.
We also find a substantial improvement over the Subgoal Prediction baseline. While the LLM
frequently predicts important high-level aspects of the task subgoal structure (as it does to propose op-
erator definitions), it frequently struggles to robustly sequence these subgoals and predict appropriate
concrete object groundings that correctly obey the initial problem conditions or changing environment
state. These errors accumulate over the planning horizon, reflected in decreasing accuracy on the
compositional Minecraft tasks (on ALFRED, this baseline struggles to solve any more than the basic
pick-and-place tasks, as the LLM struggles to predict subgoals that accurately track whether objects
are in appliances or whether the agent’s single gripper is full with an existing tool.)

How does our approach compare to using the LLM to learn and predict plans using imperative
code libraries? Somewhat surprisingly, we find that the Code Policy prediction baseline performs
unevenly and often very poorly on our benchmarks. (We include additional results in A.2.1 showing
that our model also dramatically outperforms this baseline using GPT-4 as the base LLM.) We find
several key reasons for the poor performance of this baseline relative to our model, each which
validate the key conceptual contributions of our approach. First, the baseline relies on the LLM as
the planner – as the skills are written as general Python functions, rather than any planner-specific
representation, we do not use an optimized planner like FastDownward. As with Subgoal Prediction,
we find that the LLM is not a consistent or accurate planner. While it retrieves generally relevant skills
from the library for each task, it often struggles to sequence them accurately or predict appropriate
arguments given the initial problem state. Second, we find that imperative code is less suited in
general as a hierarchical planning representation for these domains than the high-level PDDL and
low-level local policy search representation we use in our model. This is because it uses control
flow to account for environment details that would otherwise be handled by local search relative
to a high-level PDDL action. Finally, our model specifically frames the library learning objective
around learning a compact library of skills that enables efficient planning, whereas our Voyager
re-implementation (as in Wang et al. (2023a)) simply grows a library of skills which are individually
executable and can be used to solve individual, shorter tasks. Empirically, as with the original model
in Wang et al. (2023a), this baseline learns hundreds of distinct code definitions on these datasets,
which makes it harder to accurately plan and generalize to more complex tasks. Taken together, these
challenges support our overarching library learning objective for hierarchical planning.

5 RELATED WORK

Planning for language goals. A large body of recent work attempts to use LLMs to solve planning
tasks specified in language. One approach is to directly predict action sequences (Huang et al.,
2022; Valmeekam et al., 2022; Silver et al., 2022; Wang et al., 2023b), but this has yielded mixed
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results as LLMs can struggle to generalize or produce correct plans as problems grow more complex.
To combat this, one line of work has explored structured and iterative prompting regimes (e.g.,
‘chain-of-thought‘ and feedback) (Mu et al., 2023; Silver et al., 2023; Zhu et al., 2023). Increasingly,
other neuro-symbolic work uses LLMs to predict formal goal or action representations that can be
verified or solved with symbolic planners (Song et al., 2023; Ahn et al., 2022; Xie et al., 2023; Arora
& Kambhampati, 2023). These approaches leverage the benefits of a known planning domain model.
Our goal in this paper is to leverage language models to learn this domain model. Another line
of research aims at using LLMs to generate formal planning domain models for specific problems
(Liu et al., 2023) and subsequently uses classical planners to solve the task. However, they are not
considering generating grounded or hierarchical actions in an environment and not learning a library
of operators that can be reused across different tasks. More broadly, we share the broad goal of
building agents that can understand language and execute actions to achieve goals (Tellex et al., 2011;
Misra et al., 2017; Nair et al., 2022). See also Luketina et al. (2019) and Tellex et al. (2020).

Learning planning domain and action representations from language. Another group of work
has been focusing on learning latent action representations from language (Corona et al., 2021;
Andreas et al., 2017; Jiang et al., 2019; Sharma et al., 2022; Luo et al., 2023). Our work differs
from them in that we are learning a planning-compatible action abstraction from LLMs, instead of
relying on human demonstrations and annotated step-by-step instructions. The more recent Wang
et al. (2023a) adopts a similar overall problem specification, to learn libraries of actions as imperative
code-based policies. Our results show that learning planning abstractions enables better integration
with hierarchical planning, and, as a result, better performance and generalization to more complex
problems. Other recent work (Nottingham et al., 2023) learns an environment model from interactive
experience, represented as a task dependency graph; we seek to learn a richer state transition model
(which represents the effects of actions) decomposed as operators that can be formally composed to
verifiably satisfy arbitrarily complex new goals. Guan et al. (2024), published concurrently, seeks to
learn PDDL representations; we show how these can be grounded hierarchically.

Language and code. In addition to Wang et al. (2023a), a growing body of work in program
synthesis, both by learning lifted program abstractions that compress longer existing or synthesized
programs (Bowers et al., 2023; Ellis et al., 2023; Wong et al., 2021; Cao et al., 2023). These
approaches (including Wang et al. (2023a)) generally learn libraries defined over imperative and
functional programming languages, such as LISP and Python. Our work is closely inspired by these
and seeks to learn representations suited specifically to solving long-range planning problems.

Hierarchical planning abstractions. The hierarchical planning knowledge that we learn from LLMs
and interactions in the environments are related to hierarchical task networks (Erol et al., 1994; Nejati
et al., 2006), hierarchical goal networks (Alford et al., 2016), abstract PDDL domains (Konidaris
et al., 2018; Bonet & Geffner, 2020; Chitnis et al., 2021; Asai & Muise, 2020; Mao et al., 2022;
2023), and domain control knowledge (de la Rosa & McIlraith, 2011). Most of these approaches
require manually specified hierarchical planning abstractions; others learn them from demonstrations
or interactions. By contrast, we leverage human language to guide the learning of such abstractions.

6 DISCUSSION AND FUTURE WORK

Our evaluations suggest a powerful role for language within AI systems that form complex, long-
horizon plans — as a rich source of background knowledge about the right action abstractions for
everyday planning domains, which contains broad human priors about environments, task decomposi-
tions, and potential future goals. A core goal of this paper was to demonstrate how to integrate this
knowledge into the search, grounding, and verification toolkits developed in hierarchical planning.

We leave open many possible extensions towards future work. Key limitations of our current
framework point towards important directions for further integrating LMs and hierarchical planning
to scale our approach: here, we build on an existing set of pre-defined symbolic predicates for initially
representing the environment state; do not yet tackle fine-grained, geometric motor planning; and use
a general LLM (rather than one fine-tuned for extended planning). Future work might generally
tackle these problems by further asking how else linguistic knowledge and increasingly powerful or
multimodal LLMs could be integrated here: to propose useful named predicates over initial perceptual
inputs (e.g., images) (Migimatsu & Bohg, 2022); or to speed planning by bootstrapping hierarchical
planning abstractions using the approach here, but then to progressively transfer planning to another
model, including an LLM, to later compose and use the learned representations.
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A APPENDIX

We will release a complete code repository containing our full algorithm implementation, all baselines,
and benchmark tasks. Here, we provide additional details on our implementational choices.

A.1 BENCHMARKS

Mini Minecraft (Fig. 5, top) is a procedurally-generated Minecraft-like benchmark (Chen et al., 2021;
Luo et al., 2023) that requires complex, extended planning. The environment places an agent on a
2D map containing various resources, tools, and crafting stations. The agent can use appropriate
tools to mine new items from raw resources (e.g. use an axe to obtain wood from trees), or collect
resources into an inventory to craft new objects (e.g. combining sticks and iron ingots to craft a sword,
which itself can be used to obtain feathers from a chicken). The ability to create new objects that
themselves permit new actions yields an enormous action space at each time step (>2000 actions,
considering different combinations of items to use) and very long-horizon tasks (26 steps for the most
complex task, even without path-planning.) The provided environment predicates allow querying
object types and inventory contents. Low-level actions allow the agent to move and apply tools to
specific resources. To focus on complex crafting, we provide a low-level move-to action to move
directly to specified locations. Linguistic goal specifications are synthetically generated from a simple
grammar over craftable objects and resources (e.g. Craft a sword, Mine iron ore).

ALFRED (Fig. 5, bottom) is a household planning benchmark of human-annotated but formally
verifiable tasks defined over a simulated Unity environment (Shridhar et al., 2020). The interactive
environment places an agent in varying 3D layouts, each containing appliances and dozens of
household objects. The provided environment includes predicates for querying object types, object
and agent locations, and classifiers over object states (eg. whether an object is hot or on). Low-level
actions enable the agent to pick up and place objects, apply tools to other objects, and open, close,
and turn on appliances. As specified in Shridhar et al. (2020), ground-truth high-level plans in
the ALFRED benchmark compose 5-10 high-level operators, and low-level action trajectories have
on average 50 low-level actions. There over 100 objects that the agent can interact with in each
interactive environment.

As with Minecraft, we provide a low-level method to move the agent directly to specified locations.
While ALFRED is typically used to evaluate detailed instruction following, we focus on a goal-only
setting that only uses the goal specifications. The human-annotated goals introduce ambiguity,
underspecification, and errors with respect to the ground-truth verifiable tasks (eg. people refer to
tables without specifying if they mean the side table, dining table, or desk; a light when there are
multiple distinct lamps; or a cabbage when they want lettuce).

A.2 ADDITIONAL METHODS IMPLEMENTATION DETAILS

A.2.1 LLM PROMPTING

We use gpt-3.5-turbo-16k for all experiments and baselines. Here, we describe the contents
of the LLM few-shot prompts used in our method in more detail. Symbolic Task Decomposition
For all unsolved tasks, at each iteration, we sample a set of symbolic task descriptions as a sequence
of named high-level actions and their arguments. We construct a few-shot prompt consisting of the
following components:

1. A brief natural language header (;;;; Given natural language goals, predict a sequence of
PDDL actions);

2. A sequence of example (lt, PA) tuples containing linguistic goals and example task de-
compositions. To avoid biasing the language model in advance, we provide example task
decompositions for similar, constructed tasks that do not use any of the skills that need to be
learned in our two domains.
For example, on ALFRED, these example task decompositions are for example tasks (bake
a potato and put it in the fridge, place a baked, grated apple on top of the dining table,
place a plate in a full sink., and pick up a laptop and then carry it over to the desk lamp,
then restart the desk lamp.), and our example task decompositions suggest named operators
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BakeObject, GrateObject, FillObject, and RestartObject, none of which appear in the actual
training set.

3. At iterations > 0, we also provide a sequence of sampled (lt, PA) tuples randomly sampled
from any solved tasks and their discovered high-level plans. This means that few-shot
prompting better represents the true task distribution over successive iterations.

In our experiments, we prompt with temperature=1.0 and draw n=4 task decomposition samples per
unsolved task.

Symbolic Operator Definition For all unsolved tasks, at each iteration, we sample proposed operator
definitions consisting of args, pre, eff conditioned on all undefined operator names that appear in the
proposed task decompositions.

For each operator name, we construct a few-shot prompt consisting of the following components:

1. A brief natural language header (You are a software engineer who will be writing planning
operators in the PDDL planning language. These operators are based on the following
PDDL domain definition.

2. The full set of environment predicates vocabulary of high-level environment predicates P ,
as well as valid named argument values (eg. object types).

3. A sequence of example name, args, pre, eff operator definitions demonstrating the PDDL
definition format. As with task decomposition, of course, we do not provide any example
operator definitions that we wish to learn from our dataset.

4. At iterations > 0, we include as many possible validated name, args, pre, eff operators
defined in the current library (including new learned operators). If there are shared patterns
between operators, this means that few-shot prompting also better represents the true operator
structure over successive iterations.

In our experiments, we prompt with temperature=1.0 and draw n=3 task decomposition samples per
unsolved task. However, in our pilot experiments, we actually find that sampling directly from the
token probabilities defined by this few-shot prompt does not produce sufficiently diverse definitions
for each operator name. We instead directly prompt the LLM to produce up to N distinct operator
definitions sequentially.

We find that GPT 3.5 frequently produces syntactically invalid operator proposals – proposed operators
often include invent predicates and object types that are not defined in the environment vocabulary, do
not obey the predicate typing rules, or do not have the correct number and types of arguments. While
this might improve with finetuned or larger LLMs, we instead implement a simple post-processing
heuristic to correct operators with syntactic errors, or reject operators altogether: as operator pre
and postconditions are represented as conjunctions of predicates, we remove any invalid predicates
(predicates that are invented or that specify invalid arguments); we collect all arguments named across
the predicates and use the ground truth typing to produce the final args, and we reject any operators
that have 0 valid postcondition predicates. This post-processing procedure frequently leaves operators
underspecified (e.g., the resulting operators now are missing necessary preconditions, which were
partially generated but syntactically incorrect in the proposal); we allow our full operator learning
algorithm to verify and reject these operators.

Symbolic Goal Proposal Finally, as described in 3.2, we also use an LLM to propose a set of
candidate goal definitions as FOL formulas F ′

t defined over the environment predicates P for each
task. Our prompting technique is very similar to that used in the rest of our algorithm. For each task,
we we construct a few-shot prompt consisting of the following components:

1. A brief natural language header (You are a software engineer who will be writing goal
definitions for a robot in the PDDL planning language.

2. The full set of environment predicates vocabulary of high-level environment predicates P ,
as well as valid named argument values (eg. object types).

3. A sequence of example lt, ft language and FOL goal formulas. In our experiments, during
training, unlike in the previous prompts (where including ground truth operators would
solve the learning problem), we do sample an initial set of goal definitions from the training
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Mini Minecraft LLM Predicts? Library? Mining Crafting Compositional

Code Policy Prediction Sub-policies ✓ 12% 37% 11%
Ours Goal+Operators ✓ 100% 100% 100%

ALFRED (n=3 replications) LLM Predicts? Library? Original (Simple + Compositional Tasks)

Code Policy Prediction Sub-policies ✓ 11%
Ours Goal+Operators ✓ 70%

Table 2: Results with GPT-4 as the LLM backbone: On both Mini Minecraft (Top) and ALFRED (Bottom),
our algorithm recovers all required operators, which generalize to more complex compositional tasks. Switching
to GPT-4 does not impact performance trends observed across the Code as Policies (Voyager) baseline and our
method.

distribution as our initial example supervision. We set supervision to a randomly sampled
fraction (0.1) of the training distribution.

4. At iterations > 0, we also include lt, ft examples from successfully solved tasks.

In our experiments, we prompt with temperature=1.0 and draw n=4 task decomposition samples per
unsolved task. As with the operator proposal, we also find that sampling directly from the token
probabilities defined by this few-shot prompt does not produce sufficiently diverse definitions for each
linguistic goal to correct for ambiguity in the human language (eg. to define the multiple concrete
Table types that a person might mean when referring to a table). We therefore again instead directly
prompt the LLM to produce up to N distinct operator definitions sequentially.

We also post-process proposed goals using the same syntactic criterion to remove invalid predicates
in the FOL formula, and reject any empty goals.

A.2.2 POLICY LEARNING AND GUIDED LOW-LEVEL SEARCH

Concretely, we implement our policy-guided low-level action search as the following. We maintain
a dictionary D that maps subgoals (a conjunction of atoms) to a set of candidate low-level action
trajectories. When planning for a new subgoal sg, if D contains the trajectory, we prioritize trying
candidate low-level trajectories in D. Otherwise, we fall back to a brute-force breadth-first search
over all possible action trajectories. To populate D, during the BFS, we compute the difference in the
environment state before and after the agent executes any sampled trajectory and the corresponding
trajectory t that caused the state change. Here the state difference can be viewed as a subgoal sg
achieved by executing t. Rather than directly adding the (sg, t) as a key-value pair to D, we lift the
trajectory and environment state change by replacing concrete objects in sg and t by variables. Note
that we update D with each sampled trajectory in the BFS even if it doesn’t achieve the subgoal
specified in the BFS search.

When the low-level search receives a subgoal sg, we again lift it by replacing objects with variables,
and try to match it with entries in D. If D contains multiple trajectories t for a given subgoal sg, we
track how often a given trajectory succeeds for a subgoal and prioritize trajectories with the most
successes.

A.3 EXPERIMENTS

Learned Operator Libraries on Minecraft The following shows the full PDDL domain definition
including the initial provided vocabulary of symbolic environment constants and predicates, initial
pick and place operators and example operator, and all ensuing learned operators combined from the
Mining and Crafting benchmarks.

1 ( de f ine ( domain cra f t ing−wor ld−v20230404−te lepor t )
2 ( : requirements : s t r i p s )
3 ( : types
4 t i l e
5 ob jec t
6 i n ven to ry
7 ob jec t− type
8 )
9 ( : constants

15
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10 Key − ob jec t− type
11 WorkStat ion − ob jec t− type
12 Pickaxe − ob jec t− type
13 I ronOreVein − ob jec t− type
14 I ronOre − ob jec t− type
15 I r o n I n g o t − ob jec t− type
16 CoalOreVein − ob jec t− type
17 Coal − ob jec t− type
18 GoldOreVein − ob jec t− type
19 GoldOre − ob jec t− type
20 GoldIngot − ob jec t− type
21 CobblestoneStash − ob jec t− type
22 Cobblestone − ob jec t− type
23 Axe − ob jec t− type
24 Tree − ob jec t− type
25 Wood − ob jec t− type
26 WoodPlank − ob jec t− type
27 St i c k − ob jec t− type
28 Sword − ob jec t− type
29 Chicken − ob jec t− type
30 Feather − ob jec t− type
31 Arrow − ob jec t− type
32 Shears − ob jec t− type
33 Sheep − ob jec t− type
34 Wool − ob jec t− type
35 Bed − ob jec t− type
36 Boat − ob jec t− type
37 SugarCanePlant − ob jec t− type
38 SugarCane − ob jec t− type
39 Paper − ob jec t− type
40 Bowl − ob jec t− type
41 Pota toP lan t − ob jec t− type
42 Potato − ob jec t− type
43 CookedPotato − ob jec t− type
44 BeetrootCrop − ob jec t− type
45 Beetroot − ob jec t− type
46 BeetrootSoup − ob jec t− type
47

48 Hypo the t i ca l − ob jec t− type
49 Trash − ob jec t− type
50 )
51 ( : p red ica tes
52 ( t i l e − u p ? t1 − t i l e ? t2 − t i l e )
53 ( t i le−down ? t1 − t i l e ? t2 − t i l e )
54 ( t i l e − l e f t ? t1 − t i l e ? t2 − t i l e )
55 ( t i l e − r i g h t ? t1 − t i l e ? t2 − t i l e )
56

57 ( agent−at ? t − t i l e )
58 ( ob jec t−a t ?x − ob jec t ? t − t i l e )
59 ( i nven to ry−ho ld ing ? i − inven to ry ?x − ob jec t )
60 ( inventory−empty ? i − inven to ry )
61

62 ( ob jec t−o f− type ?x − ob jec t ? o t − ob jec t− type )
63 )
64

65 ( : ac t i on move−to
66 : parameters (? t1 − t i l e ? t2 − t i l e )
67 : p recond i t i on ( and ( agent−at ? t1 ) )
68 : e f f e c t ( and ( agent−at ? t2 ) ( not ( agent−at ? t1 ) ) )
69 )
70 ( : ac t i on pick−up
71 : parameters (? i − inven to ry ?x − ob jec t ? t − t i l e )
72 : p recond i t i on ( and ( agent−at ? t ) ( ob jec t−a t ?x ? t ) ( inventory−empty ? i )

)
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73 : e f f e c t ( and ( inven to ry−ho ld ing ? i ?x ) ( not ( ob jec t−a t ?x ? t ) ) ( not (
inventory−empty ? i ) ) )

74 )
75 ( : ac t i on place−down
76 : parameters (? i − inven to ry ?x − ob jec t ? t − t i l e )
77 : p recond i t i on ( and ( agent−at ? t ) ( i nven to ry−ho ld ing ? i ?x ) )
78 : e f f e c t ( and ( ob jec t−a t ?x ? t ) ( not ( i nven to ry−ho ld ing ? i ?x ) ) (

inventory−empty ? i ) )
79 )
80 ( : ac t i on mine−iron−ore
81 : parameters (? t o o l i n v − inven to ry ? t a r g e t i n v − inven to ry ?x − ob jec t ?

t o o l − ob jec t ? t a r g e t − ob jec t ? t − t i l e )
82 : p recond i t i on ( and
83 ( agent−at ? t )
84 ( ob jec t−a t ?x ? t )
85 ( ob jec t−o f− type ?x IronOreVein )
86 ( i nven to ry−ho ld ing ? t o o l i n v ? t o o l )
87 ( ob jec t−o f− type ? t o o l Pickaxe )
88 ( inventory−empty ? t a r g e t i n v )
89 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
90 )
91 : e f f e c t ( and
92 ( not ( inventory−empty ? t a r g e t i n v ) )
93 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
94 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
95 ( ob jec t−o f− type ? t a r g e t I ronOre )
96 )
97 )
98 ( : ac t i on mine−wood 2
99 : parameters (? t − t i l e ?x − ob jec t ? t o o l i n v − inven to ry ? t o o l − ob jec t ?

t a r g e t i n v − inven to ry ? t a r g e t − ob jec t )
100

101 : p recond i t i on ( and
102 ( agent−at ? t )
103 ( ob jec t−a t ?x ? t )
104 ( ob jec t−o f− type ?x Tree )
105 ( i nven to ry−ho ld ing ? t o o l i n v ? t o o l )
106 ( ob jec t−o f− type ? t o o l Axe )
107 ( inventory−empty ? t a r g e t i n v )
108 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
109 )
110 : e f f e c t ( and
111 ( not ( inventory−empty ? t a r g e t i n v ) )
112 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
113 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
114 ( ob jec t−o f− type ? t a r g e t Wood)
115 )
116 )
117 ( : ac t i on mine−wool1 0
118 : parameters (? t − t i l e ?x − ob jec t ? t o o l i n v − inven to ry ? t o o l − ob jec t ?

t a r g e t i n v − inven to ry ? t a r g e t − ob jec t )
119

120 : p recond i t i on ( and
121 ( agent−at ? t )
122 ( ob jec t−a t ?x ? t )
123 ( ob jec t−o f− type ?x Sheep )
124 ( i nven to ry−ho ld ing ? t o o l i n v ? t o o l )
125 ( ob jec t−o f− type ? t o o l Shears )
126 ( inventory−empty ? t a r g e t i n v )
127 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
128 )
129 : e f f e c t ( and
130 ( not ( inventory−empty ? t a r g e t i n v ) )
131 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
132 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
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133 ( ob jec t−o f− type ? t a r g e t Wool )
134 )
135 )
136 ( : ac t i on mine−potato 0
137 : parameters (? t − t i l e ?x − ob jec t ? t a r g e t i n v − inven to ry ? t a r g e t −

ob jec t )
138

139 : p recond i t i on ( and
140 ( agent−at ? t )
141 ( ob jec t−a t ?x ? t )
142 ( ob jec t−o f− type ?x Pota toP lant )
143 ( inventory−empty ? t a r g e t i n v )
144 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
145 )
146 : e f f e c t ( and
147 ( not ( inventory−empty ? t a r g e t i n v ) )
148 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
149 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
150 ( ob jec t−o f− type ? t a r g e t Potato )
151 )
152 )
153 ( : ac t i on mine−sugar−cane 2
154 : parameters (? t − t i l e ?x − ob jec t ? t o o l i n v − inven to ry ? t o o l − ob jec t ?

t a r g e t i n v − inven to ry ? t a r g e t − ob jec t )
155

156 : p recond i t i on ( and
157 ( agent−at ? t )
158 ( ob jec t−a t ?x ? t )
159 ( ob jec t−o f− type ?x SugarCanePlant )
160 ( i nven to ry−ho ld ing ? t o o l i n v ? t o o l )
161 ( ob jec t−o f− type ? t o o l Axe )
162 ( inventory−empty ? t a r g e t i n v )
163 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
164 )
165 : e f f e c t ( and
166 ( not ( inventory−empty ? t a r g e t i n v ) )
167 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
168 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
169 ( ob jec t−o f− type ? t a r g e t SugarCane )
170 )
171 )
172 ( : ac t i on mine−beetroot 1
173 : parameters (? t − t i l e ?x − ob jec t ? t o o l i n v − inven to ry ? t o o l − ob jec t ?

t a r g e t i n v − inven to ry ? t a r g e t − ob jec t )
174

175 : p recond i t i on ( and
176 ( agent−at ? t )
177 ( ob jec t−a t ?x ? t )
178 ( ob jec t−o f− type ?x BeetrootCrop )
179 ( i nven to ry−ho ld ing ? t o o l i n v ? t o o l )
180 ( inventory−empty ? t a r g e t i n v )
181 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
182 )
183 : e f f e c t ( and
184 ( not ( inventory−empty ? t a r g e t i n v ) )
185 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
186 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
187 ( ob jec t−o f− type ? t a r g e t Beet root )
188 )
189 )
190 ( : ac t i on mine−feather 1
191 : parameters (? t − t i l e ?x − ob jec t ? t o o l i n v − inven to ry ? t o o l − ob jec t ?

t a r g e t i n v − inven to ry ? t a r g e t − ob jec t )
192

193 : p recond i t i on ( and
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194 ( agent−at ? t )
195 ( ob jec t−a t ?x ? t )
196 ( ob jec t−o f− type ?x Chicken )
197 ( i nven to ry−ho ld ing ? t o o l i n v ? t o o l )
198 ( ob jec t−o f− type ? t o o l Sword )
199 ( inventory−empty ? t a r g e t i n v )
200 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
201 )
202 : e f f e c t ( and
203 ( not ( inventory−empty ? t a r g e t i n v ) )
204 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
205 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
206 ( ob jec t−o f− type ? t a r g e t Feather )
207 )
208 )
209 ( : ac t i on mine−cobblestone 2
210 : parameters (? t − t i l e ?x − ob jec t ? t o o l i n v − inven to ry ? t o o l − ob jec t ?

t a r g e t i n v − inven to ry ? t a r g e t − ob jec t )
211

212 : p recond i t i on ( and
213 ( agent−at ? t )
214 ( ob jec t−a t ?x ? t )
215 ( ob jec t−o f− type ?x CobblestoneStash )
216 ( i nven to ry−ho ld ing ? t o o l i n v ? t o o l )
217 ( ob jec t−o f− type ? t o o l Pickaxe )
218 ( inventory−empty ? t a r g e t i n v )
219 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
220 )
221 : e f f e c t ( and
222 ( not ( inventory−empty ? t a r g e t i n v ) )
223 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
224 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
225 ( ob jec t−o f− type ? t a r g e t Cobblestone )
226 )
227 )
228 ( : ac t i on mine−gold−ore1 2
229 : parameters (? t − t i l e ?x − ob jec t ? t o o l i n v − inven to ry ? t o o l − ob jec t ?

t a r g e t i n v − inven to ry ? t a r g e t − ob jec t )
230

231 : p recond i t i on ( and
232 ( agent−at ? t )
233 ( ob jec t−a t ?x ? t )
234 ( ob jec t−o f− type ?x GoldOreVein )
235 ( i nven to ry−ho ld ing ? t o o l i n v ? t o o l )
236 ( ob jec t−o f− type ? t o o l Pickaxe )
237 ( inventory−empty ? t a r g e t i n v )
238 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
239 )
240 : e f f e c t ( and
241 ( not ( inventory−empty ? t a r g e t i n v ) )
242 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
243 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
244 ( ob jec t−o f− type ? t a r g e t GoldOre )
245 )
246 )
247 ( : ac t i on mine−coal1 0
248 : parameters (? t − t i l e ?x − ob jec t ? t o o l i n v − inven to ry ? t o o l − ob jec t ?

t a r g e t i n v − inven to ry ? t a r g e t − ob jec t )
249

250 : p recond i t i on ( and
251 ( agent−at ? t )
252 ( ob jec t−a t ?x ? t )
253 ( ob jec t−o f− type ?x CoalOreVein )
254 ( i nven to ry−ho ld ing ? t o o l i n v ? t o o l )
255 ( ob jec t−o f− type ? t o o l Pickaxe )
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256 ( inventory−empty ? t a r g e t i n v )
257 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
258 )
259 : e f f e c t ( and
260 ( not ( inventory−empty ? t a r g e t i n v ) )
261 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
262 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
263 ( ob jec t−o f− type ? t a r g e t Coal )
264 )
265 )
266 ( : ac t i on mine−beetroot1 0
267 : parameters (? t − t i l e ?x − ob jec t ? t a r g e t i n v − inven to ry ? t a r g e t −

ob jec t )
268

269 : p recond i t i on ( and
270 ( agent−at ? t )
271 ( ob jec t−a t ?x ? t )
272 ( ob jec t−o f− type ?x BeetrootCrop )
273 ( inventory−empty ? t a r g e t i n v )
274 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
275 )
276 : e f f e c t ( and
277 ( not ( inventory−empty ? t a r g e t i n v ) )
278 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
279 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
280 ( ob jec t−o f− type ? t a r g e t Beet root )
281 )
282 )
283 ( : ac t i on craf t−wood−plank
284 : parameters (? i n g r e d i e n t i n v 1 − inven to ry ? t a r g e t i n v − inven to ry ?

s t a t i o n − ob jec t ? i ng red ien t1 − ob jec t ? t a r g e t − ob jec t ? t − t i l e )
285 : p recond i t i on ( and
286 ( agent−at ? t )
287 ( ob jec t−a t ? s t a t i o n ? t )
288 ( ob jec t−o f− type ? s t a t i o n WorkStat ion )
289 ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 )
290 ( ob jec t−o f− type ? ing red ien t1 Wood)
291 ( inventory−empty ? t a r g e t i n v )
292 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
293 )
294 : e f f e c t ( and
295 ( not ( inventory−empty ? t a r g e t i n v ) )
296 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
297 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
298 ( ob jec t−o f− type ? t a r g e t WoodPlank )
299 ( not ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 ) )
300 ( inventory−empty ? i n g r e d i e n t i n v 1 )
301 ( not ( ob jec t−o f− type ? ing red ien t1 Wood) )
302 ( ob jec t−o f− type ? ing red ien t1 Hypo the t i ca l )
303 )
304 )
305 ( : ac t i on c ra f t−a r row
306 : parameters (? i n g r e d i e n t i n v 1 − inven to ry ? i n g r e d i e n t i n v 2 − inven to ry ?

t a r g e t i n v − inven to ry ? s t a t i o n − ob jec t ? i ng red ien t1 − ob jec t ?
i ng red ien t2 − ob jec t ? t a r g e t − ob jec t ? t − t i l e )

307 : p recond i t i on ( and
308 ( agent−at ? t )
309 ( ob jec t−a t ? s t a t i o n ? t )
310 ( ob jec t−o f− type ? s t a t i o n WorkStat ion )
311 ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 )
312 ( ob jec t−o f− type ? ing red ien t1 S t i c k )
313 ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 2 ? ing red ien t2 )
314 ( ob jec t−o f− type ? ing red ien t2 Feather )
315 ( inventory−empty ? t a r g e t i n v )
316 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
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317 )
318 : e f f e c t ( and
319 ( not ( inventory−empty ? t a r g e t i n v ) )
320 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
321 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
322 ( ob jec t−o f− type ? t a r g e t Arrow )
323 ( not ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 ) )
324 ( inventory−empty ? i n g r e d i e n t i n v 1 )
325 ( not ( ob jec t−o f− type ? ing red ien t1 S t i c k ) )
326 ( ob jec t−o f− type ? ing red ien t1 Hypo the t i ca l )
327 ( not ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 2 ? ing red ien t2 ) )
328 ( inventory−empty ? i n g r e d i e n t i n v 2 )
329 ( not ( ob jec t−o f− type ? ing red ien t2 Feather ) )
330 ( ob jec t−o f− type ? ing red ien t2 Hypo the t i ca l )
331 )
332 )
333 ( : ac t i on cra f t−bee t roo t−soup 0
334 : parameters (? t − t i l e ? s t a t i o n − ob jec t ? i n g r e d i e n t i n v 1 − inven to ry ?

i ng red ien t1 − ob jec t ? i n g r e d i e n t i n v 2 − inven to ry ? i ng red ien t2 −
ob jec t ? t a r g e t i n v − inven to ry ? t a r g e t − ob jec t )

335

336 : p recond i t i on ( and
337 ( agent−at ? t )
338 ( ob jec t−a t ? s t a t i o n ? t )
339 ( ob jec t−o f− type ? s t a t i o n WorkStat ion )
340 ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 )
341 ( ob jec t−o f− type ? ing red ien t1 Beet root )
342 ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 2 ? ing red ien t2 )
343 ( ob jec t−o f− type ? ing red ien t2 Bowl )
344 ( inventory−empty ? t a r g e t i n v )
345 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
346 )
347 : e f f e c t ( and
348 ( not ( inventory−empty ? t a r g e t i n v ) )
349 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
350 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
351 ( ob jec t−o f− type ? t a r g e t BeetrootSoup )
352 ( not ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 ) )
353 ( inventory−empty ? i n g r e d i e n t i n v 1 )
354 ( not ( ob jec t−o f− type ? ing red ien t1 Beet root ) )
355 ( ob jec t−o f− type ? ing red ien t1 Hypo the t i ca l )
356 ( not ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 2 ? ing red ien t2 ) )
357 ( inventory−empty ? i n g r e d i e n t i n v 2 )
358 ( not ( ob jec t−o f− type ? ing red ien t2 Bowl ) )
359 ( ob jec t−o f− type ? ing red ien t2 Hypo the t i ca l )
360 )
361 )
362 ( : ac t i on c ra f t−paper 0
363 : parameters (? t − t i l e ? s t a t i o n − ob jec t ? i n g r e d i e n t i n v 1 − inven to ry ?

i ng red ien t1 − ob jec t ? t a r g e t i n v − inven to ry ? t a r g e t − ob jec t )
364

365 : p recond i t i on ( and
366 ( agent−at ? t )
367 ( ob jec t−a t ? s t a t i o n ? t )
368 ( ob jec t−o f− type ? s t a t i o n WorkStat ion )
369 ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 )
370 ( ob jec t−o f− type ? ing red ien t1 SugarCane )
371 ( inventory−empty ? t a r g e t i n v )
372 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
373 )
374 : e f f e c t ( and
375 ( not ( inventory−empty ? t a r g e t i n v ) )
376 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
377 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
378 ( ob jec t−o f− type ? t a r g e t Paper )
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379 ( not ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 ) )
380 ( inventory−empty ? i n g r e d i e n t i n v 1 )
381 ( not ( ob jec t−o f− type ? ing red ien t1 SugarCane ) )
382 ( ob jec t−o f− type ? ing red ien t1 Hypo the t i ca l )
383 )
384 )
385 ( : ac t i on c ra f t−shears2 2
386 : parameters (? t − t i l e ? s t a t i o n − ob jec t ? i n g r e d i e n t i n v 1 − inven to ry ?

i ng red ien t1 − ob jec t ? t a r g e t i n v − inven to ry ? t a r g e t − ob jec t )
387

388 : p recond i t i on ( and
389 ( agent−at ? t )
390 ( ob jec t−a t ? s t a t i o n ? t )
391 ( ob jec t−o f− type ? s t a t i o n WorkStat ion )
392 ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 )
393 ( ob jec t−o f− type ? ing red ien t1 GoldIngot )
394 ( inventory−empty ? t a r g e t i n v )
395 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
396 )
397 : e f f e c t ( and
398 ( not ( inventory−empty ? t a r g e t i n v ) )
399 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
400 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
401 ( ob jec t−o f− type ? t a r g e t Shears )
402 ( not ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 ) )
403 ( inventory−empty ? i n g r e d i e n t i n v 1 )
404 ( not ( ob jec t−o f− type ? ing red ien t1 GoldIngot ) )
405 ( ob jec t−o f− type ? ing red ien t1 Hypo the t i ca l )
406 )
407 )
408 ( : ac t i on c ra f t−bow l 1
409 : parameters (? t − t i l e ? s t a t i o n − ob jec t ? i n g r e d i e n t i n v 1 − inven to ry ?

i ng red ien t1 − ob jec t ? i n g r e d i e n t i n v 2 − inven to ry ? i ng red ien t2 −
ob jec t ? t a r g e t i n v − inven to ry ? t a r g e t − ob jec t )

410

411 : p recond i t i on ( and
412 ( agent−at ? t )
413 ( ob jec t−a t ? s t a t i o n ? t )
414 ( ob jec t−o f− type ? s t a t i o n WorkStat ion )
415 ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 )
416 ( ob jec t−o f− type ? ing red ien t1 WoodPlank )
417 ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 2 ? ing red ien t2 )
418 ( ob jec t−o f− type ? ing red ien t2 WoodPlank )
419 ( inventory−empty ? t a r g e t i n v )
420 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
421 )
422 : e f f e c t ( and
423 ( not ( inventory−empty ? t a r g e t i n v ) )
424 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
425 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
426 ( ob jec t−o f− type ? t a r g e t Bowl )
427 ( not ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 ) )
428 ( inventory−empty ? i n g r e d i e n t i n v 1 )
429 ( not ( ob jec t−o f− type ? ing red ien t1 WoodPlank ) )
430 ( ob jec t−o f− type ? ing red ien t1 Hypo the t i ca l )
431 ( not ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 2 ? ing red ien t2 ) )
432 ( inventory−empty ? i n g r e d i e n t i n v 2 )
433 ( not ( ob jec t−o f− type ? ing red ien t2 WoodPlank ) )
434 ( ob jec t−o f− type ? ing red ien t2 Hypo the t i ca l )
435 )
436 )
437 ( : ac t i on c ra f t −boa t 0
438 : parameters (? t − t i l e ? s t a t i o n − ob jec t ? i n g r e d i e n t i n v − inven to ry ?

i n g r e d i e n t − ob jec t ? t a r g e t i n v − inven to ry ? t a r g e t − ob jec t )
439
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440 : p recond i t i on ( and
441 ( agent−at ? t )
442 ( ob jec t−a t ? s t a t i o n ? t )
443 ( ob jec t−o f− type ? s t a t i o n WorkStat ion )
444 ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v ? i n g r e d i e n t )
445 ( ob jec t−o f− type ? i n g r e d i e n t WoodPlank )
446 ( inventory−empty ? t a r g e t i n v )
447 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
448 )
449 : e f f e c t ( and
450 ( not ( inventory−empty ? t a r g e t i n v ) )
451 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
452 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
453 ( ob jec t−o f− type ? t a r g e t Boat )
454 ( not ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v ? i n g r e d i e n t ) )
455 ( inventory−empty ? i n g r e d i e n t i n v )
456 ( not ( ob jec t−o f− type ? i n g r e d i e n t WoodPlank ) )
457 ( ob jec t−o f− type ? i n g r e d i e n t Hypo the t i ca l )
458 )
459 )
460 ( : ac t i on cra f t−cooked−pota to 1
461 : parameters (? t − t i l e ? s t a t i o n − ob jec t ? i n g r e d i e n t i n v 1 − inven to ry ?

i ng red ien t1 − ob jec t ? i n g r e d i e n t i n v 2 − inven to ry ? i ng red ien t2 −
ob jec t ? t a r g e t i n v − inven to ry ? t a r g e t − ob jec t )

462

463 : p recond i t i on ( and
464 ( agent−at ? t )
465 ( ob jec t−a t ? s t a t i o n ? t )
466 ( ob jec t−o f− type ? s t a t i o n WorkStat ion )
467 ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 )
468 ( ob jec t−o f− type ? ing red ien t1 Potato )
469 ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 2 ? ing red ien t2 )
470 ( ob jec t−o f− type ? ing red ien t2 Coal )
471 ( inventory−empty ? t a r g e t i n v )
472 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
473 )
474 : e f f e c t ( and
475 ( not ( inventory−empty ? t a r g e t i n v ) )
476 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
477 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
478 ( ob jec t−o f− type ? t a r g e t CookedPotato )
479 ( not ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 ) )
480 ( inventory−empty ? i n g r e d i e n t i n v 1 )
481 ( not ( ob jec t−o f− type ? ing red ien t1 Potato ) )
482 ( ob jec t−o f− type ? ing red ien t1 Hypo the t i ca l )
483 ( not ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 2 ? ing red ien t2 ) )
484 ( inventory−empty ? i n g r e d i e n t i n v 2 )
485 ( not ( ob jec t−o f− type ? ing red ien t2 Coal ) )
486 ( ob jec t−o f− type ? ing red ien t2 Hypo the t i ca l )
487 )
488 )
489 ( : ac t i on c r a f t − g o l d − i n g o t 1
490 : parameters (? t − t i l e ? s t a t i o n − ob jec t ? i n g r e d i e n t i n v 1 − inven to ry ?

i ng red ien t1 − ob jec t ? i n g r e d i e n t i n v 2 − inven to ry ? i ng red ien t2 −
ob jec t ? t a r g e t i n v − inven to ry ? t a r g e t − ob jec t )

491

492 : p recond i t i on ( and
493 ( agent−at ? t )
494 ( ob jec t−a t ? s t a t i o n ? t )
495 ( ob jec t−o f− type ? s t a t i o n WorkStat ion )
496 ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 )
497 ( ob jec t−o f− type ? ing red ien t1 GoldOre )
498 ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 2 ? ing red ien t2 )
499 ( ob jec t−o f− type ? ing red ien t2 Coal )
500 ( inventory−empty ? t a r g e t i n v )
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501 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
502 )
503 : e f f e c t ( and
504 ( not ( inventory−empty ? t a r g e t i n v ) )
505 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
506 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
507 ( ob jec t−o f− type ? t a r g e t GoldIngot )
508 ( not ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 ) )
509 ( inventory−empty ? i n g r e d i e n t i n v 1 )
510 ( not ( ob jec t−o f− type ? ing red ien t1 GoldOre ) )
511 ( ob jec t−o f− type ? ing red ien t1 Hypo the t i ca l )
512 ( not ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 2 ? ing red ien t2 ) )
513 ( inventory−empty ? i n g r e d i e n t i n v 2 )
514 ( not ( ob jec t−o f− type ? ing red ien t2 Coal ) )
515 ( ob jec t−o f− type ? ing red ien t2 Hypo the t i ca l )
516 )
517 )
518 ( : ac t i on c r a f t − s t i c k 0
519 : parameters (? t − t i l e ? s t a t i o n − ob jec t ? i n g r e d i e n t i n v 1 − inven to ry ?

i ng red ien t1 − ob jec t ? t a r g e t i n v − inven to ry ? t a r g e t − ob jec t )
520

521 : p recond i t i on ( and
522 ( agent−at ? t )
523 ( ob jec t−a t ? s t a t i o n ? t )
524 ( ob jec t−o f− type ? s t a t i o n WorkStat ion )
525 ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 )
526 ( ob jec t−o f− type ? ing red ien t1 WoodPlank )
527 ( inventory−empty ? t a r g e t i n v )
528 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
529 )
530 : e f f e c t ( and
531 ( not ( inventory−empty ? t a r g e t i n v ) )
532 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
533 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
534 ( ob jec t−o f− type ? t a r g e t S t i c k )
535 ( not ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 ) )
536 ( inventory−empty ? i n g r e d i e n t i n v 1 )
537 ( not ( ob jec t−o f− type ? ing red ien t1 WoodPlank ) )
538 ( ob jec t−o f− type ? ing red ien t1 Hypo the t i ca l )
539 )
540 )
541 ( : ac t i on cra f t−sword 0
542 : parameters (? t − t i l e ? s t a t i o n − ob jec t ? i n g r e d i e n t i n v 1 − inven to ry ?

i ng red ien t1 − ob jec t ? i n g r e d i e n t i n v 2 − inven to ry ? i ng red ien t2 −
ob jec t ? t a r g e t i n v − inven to ry ? t a r g e t − ob jec t )

543

544 : p recond i t i on ( and
545 ( agent−at ? t )
546 ( ob jec t−a t ? s t a t i o n ? t )
547 ( ob jec t−o f− type ? s t a t i o n WorkStat ion )
548 ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 )
549 ( ob jec t−o f− type ? ing red ien t1 S t i c k )
550 ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 2 ? ing red ien t2 )
551 ( ob jec t−o f− type ? ing red ien t2 I r o n I n g o t )
552 ( inventory−empty ? t a r g e t i n v )
553 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
554 )
555 : e f f e c t ( and
556 ( not ( inventory−empty ? t a r g e t i n v ) )
557 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
558 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
559 ( ob jec t−o f− type ? t a r g e t Sword )
560 ( not ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 ) )
561 ( inventory−empty ? i n g r e d i e n t i n v 1 )
562 ( not ( ob jec t−o f− type ? ing red ien t1 S t i c k ) )
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563 ( ob jec t−o f− type ? ing red ien t1 Hypo the t i ca l )
564 ( not ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 2 ? ing red ien t2 ) )
565 ( inventory−empty ? i n g r e d i e n t i n v 2 )
566 ( not ( ob jec t−o f− type ? ing red ien t2 I r o n I n g o t ) )
567 ( ob jec t−o f− type ? ing red ien t2 Hypo the t i ca l )
568 )
569 )
570 ( : ac t i on cra f t−bed 1
571 : parameters (? t − t i l e ? s t a t i o n − ob jec t ? i n g r e d i e n t i n v 1 − inven to ry ?

i ng red ien t1 − ob jec t ? i n g r e d i e n t i n v 2 − inven to ry ? i ng red ien t2 −
ob jec t ? t a r g e t i n v − inven to ry ? t a r g e t − ob jec t )

572

573 : p recond i t i on ( and
574 ( agent−at ? t )
575 ( ob jec t−a t ? s t a t i o n ? t )
576 ( ob jec t−o f− type ? s t a t i o n WorkStat ion )
577 ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 )
578 ( ob jec t−o f− type ? ing red ien t1 WoodPlank )
579 ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 2 ? ing red ien t2 )
580 ( ob jec t−o f− type ? ing red ien t2 Wool )
581 ( inventory−empty ? t a r g e t i n v )
582 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
583 )
584 : e f f e c t ( and
585 ( not ( inventory−empty ? t a r g e t i n v ) )
586 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
587 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
588 ( ob jec t−o f− type ? t a r g e t Bed )
589 ( not ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 ) )
590 ( inventory−empty ? i n g r e d i e n t i n v 1 )
591 ( not ( ob jec t−o f− type ? ing red ien t1 WoodPlank ) )
592 ( ob jec t−o f− type ? ing red ien t1 Hypo the t i ca l )
593 ( not ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 2 ? ing red ien t2 ) )
594 ( inventory−empty ? i n g r e d i e n t i n v 2 )
595 ( not ( ob jec t−o f− type ? ing red ien t2 Wool ) )
596 ( ob jec t−o f− type ? ing red ien t2 Hypo the t i ca l )
597 )
598 )
599 ( : ac t i on c r a f t − i r o n − i n g o t 2
600 : parameters (? t − t i l e ? s t a t i o n − ob jec t ? i n g r e d i e n t i n v 1 − inven to ry ?

i ng red ien t1 − ob jec t ? i n g r e d i e n t i n v 2 − inven to ry ? i ng red ien t2 −
ob jec t ? t a r g e t i n v − inven to ry ? t a r g e t − ob jec t )

601

602 : p recond i t i on ( and
603 ( agent−at ? t )
604 ( ob jec t−a t ? s t a t i o n ? t )
605 ( ob jec t−o f− type ? s t a t i o n WorkStat ion )
606 ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 )
607 ( ob jec t−o f− type ? ing red ien t1 IronOre )
608 ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 2 ? ing red ien t2 )
609 ( ob jec t−o f− type ? ing red ien t2 Coal )
610 ( inventory−empty ? t a r g e t i n v )
611 ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l )
612 )
613 : e f f e c t ( and
614 ( not ( inventory−empty ? t a r g e t i n v ) )
615 ( i nven to ry−ho ld ing ? t a r g e t i n v ? t a r g e t )
616 ( not ( ob jec t−o f− type ? t a r g e t Hypo the t i ca l ) )
617 ( ob jec t−o f− type ? t a r g e t I r o n I n g o t )
618 ( not ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 1 ? ing red ien t1 ) )
619 ( inventory−empty ? i n g r e d i e n t i n v 1 )
620 ( not ( ob jec t−o f− type ? ing red ien t1 IronOre ) )
621 ( ob jec t−o f− type ? ing red ien t1 Hypo the t i ca l )
622 ( not ( i nven to ry−ho ld ing ? i n g r e d i e n t i n v 2 ? ing red ien t2 ) )
623 ( inventory−empty ? i n g r e d i e n t i n v 2 )
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624 ( not ( ob jec t−o f− type ? ing red ien t2 Coal ) )
625 ( ob jec t−o f− type ? ing red ien t2 Hypo the t i ca l )
626 )
627 )
628 )

Learned Operator Libraries on ALFRED The following shows the full PDDL domain definition
including the initial provided vocabulary of symbolic environment constants and predicates, initial
pick and place operators, and all ensuing learned operators.

1 ( de f ine ( domain a l f r e d )
2 ( : requirements : ad l
3 )
4 ( : types
5 agent l o c a t i o n recep tac le ob jec t r t ype otype
6 )
7 ( : constants
8 CandleType − otype
9 ShowerGlassType − otype

10 CDType − otype
11 TomatoType − otype
12 MirrorType − otype
13 ScrubBrushType − otype
14 MugType − otype
15 ToasterType − otype
16 Paint ingType − otype
17 CellPhoneType − otype
18 LadleType − otype
19 BreadType − otype
20 PotType − otype
21 BookType − otype
22 TennisRacketType − otype
23 But terKni feType − otype
24 ShowerDoorType − otype
25 KeyChainType − otype
26 BaseballBatType − otype
27 EggType − otype
28 PenType − otype
29 ForkType − otype
30 VaseType − otype
31 ClothType − otype
32 WindowType − otype
33 Penci lType − otype
34 StatueType − otype
35 LightSwitchType − otype
36 WatchType − otype
37 SpatulaType − otype
38 PaperTowelRollType − otype
39 FloorLampType − otype
40 Ket t leType − otype
41 SoapBottleType − otype
42 BootsType − otype
43 TowelType − otype
44 Pi l lowType − otype
45 AlarmClockType − otype
46 PotatoType − otype
47 ChairType − otype
48 PlungerType − otype
49 SprayBott leType − otype
50 HandTowelType − otype
51 BathtubType − otype
52 RemoteControlType − otype
53 PepperShakerType − otype
54 PlateType − otype
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55 BasketBal lType − otype
56 DeskLampType − otype
57 FootstoolType − otype
58 Glassbot t leType − otype
59 PaperTowelType − otype
60 CreditCardType − otype
61 PanType − otype
62 Toi letPaperType − otype
63 SaltShakerType − otype
64 PosterType − otype
65 Toi le tPaperRol lType − otype
66 LettuceType − otype
67 WineBott leType − otype
68 KnifeType − otype
69 LaundryHamperLidType − otype
70 SpoonType − otype
71 TissueBoxType − otype
72 BowlType − otype
73 BoxType − otype
74 SoapBarType − otype
75 HousePlantType − otype
76 NewspaperType − otype
77 CupType − otype
78 DishSpongeType − otype
79 LaptopType − otype
80 Telev is ionType − otype
81 StoveKnobType − otype
82 CurtainsType − otype
83 BlindsType − otype
84 TeddyBearType − otype
85 AppleType − otype
86 WateringCanType − otype
87 SinkType − otype
88

89 ArmChairType − r t ype
90 BedType − r t ype
91 BathtubBasinType − r t ype
92 DresserType − r type
93 SafeType − r t ype
94 DiningTableType − r t ype
95 SofaType − r t ype
96 HandTowelHolderType − r t ype
97 StoveBurnerType − r type
98 CartType − r type
99 DeskType − r type

100 CoffeeMachineType − r type
101 MicrowaveType − r t ype
102 To i le tType − r type
103 CounterTopType − r t ype
104 GarbageCanType − r t ype
105 CoffeeTableType − r type
106 CabinetType − r t ype
107 SinkBasinType − r t ype
108 OttomanType − r type
109 ToiletPaperHangerType − r type
110 TowelHolderType − r t ype
111 FridgeType − r t ype
112 DrawerType − r type
113 SideTableType − r t ype
114 ShelfType − r t ype
115 LaundryHamperType − r t ype
116

117 )
118 ; ; Pred icates def ined on t h i s domain . Note the types f o r each

pred ica te .
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119 ( : p red ica tes
120 ( a tLoca t ion ?a − agent ? l − l o c a t i o n )
121 ( recep tac leA tLoca t ion ? r − recep tac le ? l − l o c a t i o n )
122 ( ob jec tA tLoca t ion ?o − ob jec t ? l − l o c a t i o n )
123 ( inReceptac le ?o − ob jec t ? r − recep tac le )
124 ( receptacleType ? r − recep tac le ? t − r t ype )
125 ( objectType ?o − ob jec t ? t − otype )
126 ( holds ?a − agent ?o − ob jec t )
127 ( holdsAny ?a − agent )
128 ( holdsAnyReceptacleObject ?a − agent )
129

130 ( openable ? r − recep tac le )
131 ( opened ? r − recep tac le )
132 ( isClean ?o − ob jec t )
133 ( c leanable ?o − ob jec t )
134 ( i sHot ?o − ob jec t )
135 ( heatable ?o − ob jec t )
136 ( i sCoo l ?o − ob jec t )
137 ( coo lab le ?o − ob jec t )
138 ( togg leab le ?o − ob jec t )
139 ( isToggled ?o − ob jec t )
140 ( s l i c e a b l e ?o − ob jec t )
141 ( i s S l i c e d ?o − ob jec t )
142 )
143 ( : ac t i on PickupObjectNotInReceptacle
144 : parameters (?a − agent ? l − l o c a t i o n ?o − ob jec t )
145 : p recond i t i on ( and
146 ( a tLoca t ion ?a ? l )
147 ( ob jec tA tLoca t ion ?o ? l )
148 ( not ( holdsAny ?a ) )
149 ( f o r a l l
150 (? re − recep tac le )
151 ( not ( inReceptac le ?o ?re ) )
152 )
153 )
154 : e f f e c t ( and
155 ( not ( ob jec tA tLoca t ion ?o ? l ) )
156 ( holds ?a ?o )
157 ( holdsAny ?a )
158 )
159 )
160

161 ( : ac t i on PutObject InReceptac le
162 : parameters (?a − agent ? l − l o c a t i o n ? ot − otype ?o − ob jec t ? r

− recep tac le )
163 : p recond i t i on ( and
164 ( a tLoca t ion ?a ? l )
165 ( recep tac leA tLoca t ion ? r ? l )
166 ( objectType ?o ? ot )
167 ( holds ?a ?o )
168 ( not ( holdsAnyReceptacleObject ?a ) )
169 )
170 : e f f e c t ( and
171 ( inReceptac le ?o ? r )
172 ( not ( holds ?a ?o ) )
173 ( not ( holdsAny ?a ) )
174 ( ob jec tA tLoca t ion ?o ? l )
175 )
176 )
177

178 ( : ac t i on PickupObject InReceptacle
179 : parameters (?a − agent ? l − l o c a t i o n ?o − ob jec t ? r − recep tac le

)
180 : p recond i t i on ( and
181 ( a tLoca t ion ?a ? l )
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182 ( ob jec tA tLoca t ion ?o ? l )
183 ( inReceptac le ?o ? r )
184 ( not ( holdsAny ?a ) )
185 )
186 : e f f e c t ( and
187 ( not ( ob jec tA tLoca t ion ?o ? l ) )
188 ( not ( inReceptac le ?o ? r ) )
189 ( holds ?a ?o )
190 ( holdsAny ?a )
191 )
192 )
193

194 ( : ac t i on RinseObject 2
195 : parameters (? t o o l r e c e p t a c l e − recep tac le ?a − agent ? l −

l o c a t i o n ?o − ob jec t )
196

197 : p recond i t i on ( and
198 ( receptacleType ? t o o l r e c e p t a c l e SinkBasinType )
199 ( a tLoca t ion ?a ? l )
200 ( recep tac leA tLoca t ion ? t o o l r e c e p t a c l e ? l )
201 ( ob jec tA tLoca t ion ?o ? l )
202 ( c leanable ?o )
203 )
204 : e f f e c t ( and
205 ( isClean ?o )
206 )
207 )
208

209 ( : ac t i on TurnOnObject 2
210 : parameters (?a − agent ? l − l o c a t i o n ?o − ob jec t )
211

212 : p recond i t i on ( and
213 ( a tLoca t ion ?a ? l )
214 ( ob jec tA tLoca t ion ?o ? l )
215 ( togg leab le ?o )
216 )
217 : e f f e c t ( and
218 ( isToggled ?o )
219 )
220 )
221

222 ( : ac t i on CoolObject 0
223 : parameters (? t o o l r e c e p t a c l e − recep tac le ?a − agent ? l −

l o c a t i o n ?o − ob jec t )
224

225 : p recond i t i on ( and
226 ( receptacleType ? t o o l r e c e p t a c l e FridgeType )
227 ( a tLoca t ion ?a ? l )
228 ( recep tac leA tLoca t ion ? t o o l r e c e p t a c l e ? l )
229 ( holds ?a ?o )
230 )
231 : e f f e c t ( and
232 ( i sCoo l ?o )
233 )
234 )
235 ( : ac t i on S l i ceOb jec t 1
236 : parameters (? t o o l o b j e c t − ob jec t ?a − agent ? l − l o c a t i o n ?o −

ob jec t )
237

238 : p recond i t i on ( and
239 ( objectType ? t o o l o b j e c t But terKni feType )
240 ( a tLoca t ion ?a ? l )
241 ( ob jec tA tLoca t ion ?o ? l )
242 ( s l i c e a b l e ?o )
243 ( holds ?a ? t o o l o b j e c t )
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244 )
245 : e f f e c t ( and
246 ( i s S l i c e d ?o )
247 )
248 )
249 ( : ac t i on S l i ceOb jec t 0
250 : parameters (? t o o l o b j e c t − ob jec t ?a − agent ? l − l o c a t i o n ?o −

ob jec t )
251

252 : p recond i t i on ( and
253 ( objectType ? t o o l o b j e c t KnifeType )
254 ( a tLoca t ion ?a ? l )
255 ( ob jec tA tLoca t ion ?o ? l )
256 ( s l i c e a b l e ?o )
257 ( holds ?a ? t o o l o b j e c t )
258 )
259 : e f f e c t ( and
260 ( i s S l i c e d ?o )
261 )
262 )
263 ( : ac t i on MicrowaveObject 0
264 : parameters (? t o o l r e c e p t a c l e − recep tac le ?a − agent ? l −

l o c a t i o n ?o − ob jec t )
265

266 : p recond i t i on ( and
267 ( receptacleType ? t o o l r e c e p t a c l e MicrowaveType )
268 ( a tLoca t ion ?a ? l )
269 ( recep tac leA tLoca t ion ? t o o l r e c e p t a c l e ? l )
270 ( holds ?a ?o )
271 )
272 : e f f e c t ( and
273 ( i sHot ?o )
274 )
275 )
276

277 )
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