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ABSTRACT

We analyze the universality and generalization of graph neural networks (GNNs)
on attributed graphs, i.e., with node attributes. To this end, we propose pseu-
dometrics over the space of all attributed graphs that describe the fine-grained
expressivity of GNNs. Namely, GNNs are both Lipschitz continuous with re-
spect to our pseudometrics and can separate attributed graphs that are distant in
the metric. Moreover, we prove that the space of all attributed graphs is rela-
tively compact with respect to our metrics. Based on these properties, we prove a
universal approximation theorem for GNNs and generalization bounds for GNNs
on any data distribution of attributed graphs. The proposed metrics compute the
similarity between the structures of attributed graphs via a hierarchical optimal
transport between computation trees. Our work extends and unites previous ap-
proaches which either derived theory only for graphs with no attributes, derived
compact metrics under which GNNs are continuous but without separation power,
or derived metrics under which GNNs are continuous and separate points but the
space of graphs is not relatively compact, which prevents universal approximation
and generalization analysis.

1 INTRODUCTION

Graph neural networks (GNNs) have become a widely used tool in science and industry due to
their ability to capture complex relationships in graph-structured data. This makes them particularly
useful (Zhou et al., 2020) in domains such as computational biology (Stokes et al., 2020; Atz et al.,
2021), molecular chemistry (Wang et al., 2023), network analysis (Yang et al., 2023), recommender
systems (Fan et al., 2019), weather forecasting (Keisler, 2022) and learnable optimization (Qian
et al., 2024; Cappart et al., 2023). As a result, there has been substantial interest in understanding
theoretical properties of GNNs, such as expressivity (Xu et al., 2019), stability (Ruiz et al., 2021)
or robustness (Ruiz et al., 2021), and generalization (Verma & Zhang, 2019; Yehudai et al., 2020;
Oono & Suzuki, 2020; Li et al., 2022; Tang & Liu, 2023; Levie, 2023; Maskey et al., 2022; 2024).

Initial works analyzing expressivity of GNNs focused on the Weisfeiler-Leman (WL) graph isomor-
phism test as a criterion to distinguish graphs (Xu et al., 2019; Morris et al., 2019; Zhang et al.,
2023a; 2024b), others used criteria such as subgraph or homomorphism counts or biconnectivity
(Zhang et al., 2024a; 2023b; Chen et al., 2020; Tahmasebi et al., 2023). However, the WL test
merely considers distinguishability of graphs, while analyses of robustness or generalization need a
metric, i.e., a quantification of similarity. Usually, for graphs, this is a pseudometric, since GNNs
typically cannot distinguish all graphs.

In this paper, we define a pseudometric for attributed graphs which is highly related to the type of
computation message passing GNNs (MPNNs) perform. Our construction enables a unified anal-
ysis of expressivity, universal approximation and generalization of MPNNs on graphs with node
attributes. This work extends and unifies several prior approaches and, to the best of our knowledge,
this is the first work to enable this analysis in such a general setting. Both generalization and expres-
sivity analysis rely on a few prerequisites that we need to attain via an appropriate (pseudo-)metric:
one must identify the finest topology in which (1) MPNNSs separate points, i.e., for any two different
points in space, there exists an MPNN that can distinguish between them; (2) MPNNs are Lipschitz
continuous; (3) the space of inputs, i.e., attributed graphs, is a compact space.
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Given the interest in understanding GNN robustness and generalization, a few recent works studied
pseudometrics on graphs. Most of them reflect the computation structure of MPNNs in defining
the distance, essentially aiming to view graphs from the viewpoint of the GNN. Message passing,
when unrolled, leads to a tree-structured computation tree rooted at each node for computing the
feature of that node. The pseudometrics then define distances between computation trees, often
via optimal transport (Wasserstein distance). Chen et al. (2022; 2023) prove that MPNNs separate
points and are Lipschitz continuous over the Weisfeiler-Lehman (WL) distance between hierarchies
of probability measures. Since the space of graphs is not compact under their metric, they achieve
universal approximation by limiting the analysis to an arbitrary compact subspace. To quantify
stability and domain transfer of GNNs, Chuang & Jegelka (2022) define the Tree Mover’s Distance
between finite attributed graphs. However, the above pseudometrics on finite graphs do not yield
the desired compactness, and hence no universal approximation over the entire space of attributed
graphs. Moreover, a robustness-type generalization theorem over the entire space, which depends
on the space having a finite covering number, is not attainable. To solve this, we focus on graph limit
theories in which the space of graphs is completed to a compact space, i.e., graphon theory. Inspired
by Chen et al. (2022), Boker et al. (2023) took the first steps towards solving the aforementioned
problem, by extending the expressivity analysis to graphons and using iterated degree measures
(Grebik & Rocha, 2021) to represent an analog of computation trees and the 1-WL test on infinite
objects. While this enables proofs that MPNNs separate points and are Lipschitz over a compact
space, and hence have universal approximation, their pseudometric is restricted to graphs without
attributes. In contrast, Levie (2023) defined a limit object of attributed graphs, i.e., graphon-signals.
Their pseudometric, an extension of the cut distance, a common metric between attributed graphs,
allows to analyze generalization via compactness and Lipschitz continuity, but is too fine to allow
MPNN:Ss to separate points, so does not allow universal approximation. The position paper (Morris
et al., 2024) identifies these limitations, posing them as open problems. For additional related work,
see Appendix B.

In this work, we close these gaps via a unified approach that allows for an analysis of expressivity,
universal approximation, and generalization. Inspired by prior works, we too base our pseudometrics
on Wasserstein distance (or Prokhorov metric) between distributions of computation tree analogs.
To accommodate attributed graphs and graphons, we extend the theory of iterated degree measures —
a hierarchy of measures that reflects a computation tree structure — to graphon-signals, and then de-
fine an appropriate extension of MPNN’s and appropriate distance between our continuous analogs of
computation trees. We then prove that our pseudometric leads to a topology with the three desider-
ata above: (1) MPNNs separate points; (2) MPNNs are Lipschitz continuous; and (3) the input
space of attributed graphons is compact. This enables us to invoke the Stone-Weierstrass theorem to
show universal approximation for continuous functions on attributed graphons, and hence, graphs.
Compactness and Lipschitzness enable a uniform Monte Carlo estimate to compute a generalization
bound for MPNNs. Our generalization bound makes no distributional assumptions on the data and
number of parameters of the MPNN. Empirically, our pseudometric correlates with output perturba-
tions of the MPNN, allowing to judge stability.

Contributions. We propose the first metric for attributed graphs under which the space of attributed
graphs is compact and MPNNs are Lipschitz continuous and separate points. Our construction leads
to the first theory of MPNNSs that unifies expressivity, universality, and generalization on any data
distribution of attributed graphs. In detail:

* We show a fine-grained metric version of the separation power of MPNNs, extending the results
of Boker et al. (2023) to attributed graphs: two graph-signals are close in our metric if and only
if the outputs of all MPNNs on the two graphs are close. Hence, the geometry of graphs (with
respect to our metric) is equivalent to the geometry of the graphs’ representations via MPNNs
(with respect to the Euclidean metric).

* We prove that the space of attributed graphs with our metric is compact and MPNNs are Lipschitz
continuous (and separate points). This leads to two theoretical applications: (1) a universal
approximation theorem, i.e., MPNNs can approximate any continuous function over the space
of attributed graphs; (2) a generalization bound for MPNNSs, akin to robustness bounds (Xu &
Mannor, 2012), requiring no assumptions on the data distribution or the number of GNN weights.



Published as a conference paper at ICLR 2025

2 BACKGROUND

We begin with some background and notation, for additional background and fundamental concepts
in topology see Appendix A. An index is available in Appendix N.

Basic Notation. Throughout this text, A denotes the Lebesgue measure on [0, 1], and we consider
measurability with respect to the Borel o-algebra. For any metric space X, we denote by B(X) its
standard Borel o-algebra. Given a measure p on X, we define its rotal mass as ||u|| := p(X). For
a standard Borel space (), B())) and a measurable map f : X — Y, we define the push-forward
fern of pvia f as fou(A) == p(f~1(A)) for any A € B(Y). Inequality between two measures
w1 < v on some space X means that for any set A C X, it holds that ;1(A) < v(.A). Given a vector
Z = (o )aecA, Where A can be any countable set, we denote by x,,, and z(ay) the element at index
ap € A of Z. For a finite set A, |.A| is the cardinality. For K € N, we denote [K] = {0,1,...,K}.

In our notation, a function is denoted by f : A — C. When f is evaluated at a point z € A we
write f(z) or f,. We may also write f(—) or f_, which simply means f. We define ||f||s :=
Supgeoq] |f()|- The covering number of a metric space (X, d) is the smallest number of open
balls of radius € needed to cover X'. The notation /X represents any compact space, i.e., a topological
space X in which every cover that consists only of open sets of X" has a finite subcover. Note that
compact spaces always have finite covering number. We consider throughout the paper the following
fixed compact space: BY := {z € R?: ||z|» < r} C R? for a fixed 7 > 0.

The weak™ Topology. Let .#Z<1(X') and &?(X') denote the space of all nonnegative Borel measures
with total mass at most one, and the space of all Borel probability measures on X, respectively.
We use Cp(X) to denote the set of all bounded continuous real-valued functions on X'. We endow
M<1(X) and P (X) with the topology generated by the maps . — [, fdyp for f € Cy(X), called
the weak™ topology in functional analysis (Kechris, 2012, Section 17.E), (Bogachev, 2007, Chapter
8). Under this topology, both spaces are standard Borel spaces, and if X is a compact metric space,
then .Z<1(K), &(K) are compact metrizable (Kechris, 2012, Theorem 17.22). See Appendix E.2
for more details. Under the weak™ topology, for a sequence of measures (y;); and a measure u, we
have convergence 11; — p if and only if [, fdu; — [, fdu for every f € Cy(X). Similarly, for
measures . and v, we have equality o = v if and only if [, fdu = [, fdv forevery f € Cy(X).

Optimal Transport. We will use Optimal Transport to construct a metric between graphs and be-
tween graph limits. Unbalanced Optimal Transport (Séjourné et al., 2023), also called Unbalanced
Earth Mover’s Distance and Unbalanced Wasserstein Distance, is a distance function defined by
the minimal transportation cost between two distributions. The transport is described by a coupling
~ between two measures 4, ¥ on measure spaces X, ), respectively, i.e., a nonnegative joint mea-
sure on X' x Y such that (px ).y = p, (py)«y < v, given that ||| < ||v||. Here, px and py are
the projections from X x )Y to X and ), i.e., to the first and the second component, respectively,
(px)-7(A) = (A x V) and (py).7(B) = (X x B).

Definition 1 (Unbalanced Optimal Transport/Wasserstein Distance). Let (X, d) be a metric Polish
space. The Unbalanced Earth Mover’s Distance between two measures i, v € M<1(X,d) is

OTu(u,v) = inf (/ d(:c,y)dv(x,y))+llu|IIVIII,
~vET (1,v) XxX

where T'(p, v) is the set of all couplings of i and v.

An intuitive way to think about such couplings is as transportation plans from one distribution of
points in a space to another, where the cost is given by the overall travel distance.

Product Metric. A product metric d is a metric on the Cartesian product of finitely many metric
spaces (X1,dx,), ..., (Xn,dx, ) which metrizes the product topology (see Appendix A.4.5 and Ap-
pendix A.4.2). Here we use product metrics that are defined as the ¢;-norm of the vector of distances
measured in n subspaces: d((21,...,Zn), (Y1,---,Yn)) = [(dx, (®1,91), -, dx, (Tn,Yn))]1-
Graph- and Graphon-Signals. A graph G = (V, E) consists of a set of nodes (vertices) V = V(G)
connected by edges £ = E(G) C V x V. We denote by A/ (v) the set of neighbors of v € V. A
graph-signal (alternatively attributed graph) (G,f) is a graph G with node set V' = {1,..., N},
and a signal f = ()}, € H;V:I B that assigns the value f; € B? to eachnode j € {1,..., N}.
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A graphon (Lovész, 2012) may be viewed as a generalization of a graph, where instead of discrete
sets of nodes and edges, there are an infinite sets indexed by the sets V(W) := [0, 1] for nodes and
E(W) := V(W)? = [0,1]? for edges. A graphon is defined as a measurable symmetric function
W . E(W) — [0,1], i.e., W(z,y) = W (y,z). Each value W (z,y) describes the probability or
intensity of a connection between points x and y. The graphon is used to study limit behavior of
large graphs (Lovasz, 2012). A graphon-signal Levie (2023); Rauchwerger & Levie (2025) is a
pair (W, f) where W is a graphon and f : V(W) + BY is a measurable function with respect
to the Borel o-algebra B(V(W)). Note that any graph/graphon without a signal can be seen as a
graph/graphon-signal by simply setting the signal to the constant map, i.e., Vo € V(W) : f(x) = c.
We denote by Wﬁf the space of all graphon-signals, with signals f : V(W) — B

Any graph-signal can be identified with a corresponding graphon-signal as follows. Let (G, f) be a
graph-signal with node set {1,..., N} and adjacency matrix A = {a;;}; jeq1,.. n}- Let {Ix}n,
with I, = [(k — 1)/N,k/N) be the equipartition of [0, 1] into NV intervals. The graphon-signal
(W, Pcry = (We, fr) induced by (G, £) is defined by We(,y) = X aily, ()1, (y)

and fe(z) = vazl fily, (2), where 1, is the indicator function of the set I; C [0,1]. We write
(W, f)ar) = (Wg, fr) and identify any graph-signal with its induced graphon-signal.

Message Passing Neural Networks. Message Passing Neural Networks (MPNNs) (Gilmer et al.,
2017) are a class of neural networks designed to process graph-structured data, where nodes may
have attributes. Via a message passing process, MPNNS iteratively update each node’s features
by aggregating (processed) features from its neighbors. Various aggregation methods exist, e.g.,
summation, averaging, or coordinate-wise maximum. Our focus is on normalized sum aggregation,
which in practice achieves comparable performance to standard sum aggregation (Levie, 2023).

Computation Trees. Computation trees capture and characterize local structure of graphs by de-
scribing the data propagation through neighboring nodes via MPNNs’ successive layers (Morris
et al., 2019; Arvind et al., 2020; Garg et al., 2020; Xu et al., 2020). Since graphons can be seen as
graphs with uncountable number of nodes, the concept of computation trees can be extended in a
natural way to graphons, by recursively defining computation trees as objects composed of a root
node and a distribution of sub-trees induced by the node adjacency of the graphon. The resulting
hierarchy of probability measures (Chen et al., 2022; Boker et al., 2023) connects to iterated degree
measures. These easily integrate with MPNNs and allow us to identify the finest topology in which
MPNNSs separate points, which is needed to prove a universal approximation theorem for graphons.

Iterated Degree Measures and the 1-WL Test for Graphons. Grebik & Rocha (2021) define
iterated degree measures (IDMs) to generalize the 1-Weisfeiler-Leman graph isomorphism test (1-
WL) (Appendix A.1) and its characterizations to graphons. The 1-WL test performs message passing
to uniquely encode (color) the type of computation tree rooted at each node. The collection of trees
helps determine graph isomorphism for many pairs of graphs. Initially, the unattributed nodes are
indistinguishable, and the test starts with a constant coloring. For graphons, measures replace node
colorings, and iterated measures encode computation trees. Analogous to constant colorings, the

base measure is defined as Mv(] := {x}, where x is any value, e.g., 0. Atlevel L > 0, the tree
is encoded as the product HL = ng I M over levels, and the space of next-level features as
a measure over features of level < L: MEHL = ///Sl(ﬁL ). We endow HE with the product

topology and ME+T with the weak* topology, as these are natural topologies for product spaces
and spaces of measures.

Grebik & Rocha (2021) connect each graphon W with its corresponding node colorings through
the maps Y, : [0,1] — HL, which we call computation iterated degree measures (computation
IDMs). This differs from both Grebik & Rocha (2021) and Boker et al. (2023) use the name IDM for
infinite sequences of Borel measures. These maps send each graphon node z € [0, 1] to its iterated
degree measure, i.e., its coloring. We start with a constant map to a tree that encodes a single color,
w0 @ [0,1] — HO. The “color” Fw, 1 (z) at level L > 0 is a vector, where the j-th entry encodes
the color of node « after j coloring iterations. That is, letting a(2)(j) be the j-th entry of the vector
a(x), we set Yw,(2)(1) = Yw,p),.—1(x)(j), for every j < L. Reflecting the WL-test, the last

entry Yw,¢(x)(L) is a measure recursively defined as 4 (z)(L)(A) = fvfl (A) W (x, —) du for
W,L—1

any subset A C HEL of the (L — 1)-th level colors. Namely, we are aggregating colors over the
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neighborhood of node x, according to the connectivity encoded by W (z, —), obtaining a measure
over level (L — 1) colors, analogous to the discrete 1-WL algorithm. Analogously to computation
trees, computation IDMs capture the graphons’ connectivity. In Section 3, we generalize IDMs to
additionally incorporate signal information, thus moving from graphon analysis to graphon-signal
analysis. We note that this definition is taken from Grebik & Rocha (2021). It differs from the 1-WL
test in Boker et al. (2023), where they do not concatenate all previous colorings.

3 GRAPHON-SIGNAL METRICS THROUGH ITERATED DEGREE MEASURES

To analyze expressivity and generalization, we need to define an appropriate metric between at-
tributed graphons. Hence, in this section, we first extend the IDM definition in Section 2 to capture
both signal values and graphon topology. We then define distributions of iterated degree measures
(DIDMs) and metrics between IDMs and DIDMs. These induce distance measures on the space of
attributed graphs/graphons, which are polynomial time computable. We essentially transition from
our computation trees that capture only graphon structure to computation trees that capture attributes
as well. In Section 4, we will see how this allows us to analyze MPNNSs on attributed graphs.

- transport

Attributed 1 Optimal
Graphs Attributed
- - ( . B
Similarity Graphons | . (W)W Ne ®) petween iterated
. . .. Slmllanty T " degree measure
" - Cl o)W o) -

Figure 1: Measuring similarity between graph-signals on the left is translated into measuring similar-
ity between graphon-signals and, lastly, to computing optimal transport between two IDMs, which
comprise in the figure of a signal value and a distribution over signal values induced by the graphon’s
adjacency. Edges colors depict edge weights and node colors depict signal values.

.®)

Computation IDMs and Distributions of IDMs. We first expand the definitions of IDM and
computation IDM of Section 2 from unattributed to attributed graphons. In hindsight, our approach
is in line with an idea outlined in Section 5 of Boker et al. (2023). We change the IDMs’ base space
from a one point space, {*}, to the space of node attributes B¢ = {z € R? : ||z||s < r} C R? (for
a fixed » > 0). Thus, incorporating signal values inherently into the IDMs’ structure. Explicitly, we
define the space of iterated degree measures of order-L, H*, inductively by first defining M := BZ.
Then, for every L > 0, let HY =[], , M* and ML = 4/ (HF), where the topologies of H
and MLH1 are the product and the weak* topology, respectively. We call Z2(H%) the space of
distributions of iterated degree measures (DIDMs) of order-L. We denote by pr, ; : HE — HI and
pr : HY — MPF the canonical projections where j < L < oo. Recall that a(x)(5), refers to the
j-th entry of the vector «(x). Next, we define a graphon-signal 1-WL analog.

Definition 2. Ler [0,1] be the interval with the standard Borel o-algebra B and let (W, f) be a
graphon-signal. We define vy, )0 : [0,1] — HO to be the map Yow,f),0(x) == f(x) for every
x € [0,1]. Inductively, we define v,y 1.4+1 : [0, 1] — HET such that

(@) Yyow,f),L+1(2)(J) = 'Y(W,f),L(x)(j)>f0r every j < L and

(b) Yw,fy,L+1(x) (L +1)( fﬂ/ W (z, —) du, whenever A C H™ is a Borel set.

(W B L(4)

Finally, for every L € No, let I'w, ) 1, be the push-forward of A via ~yw, ). We call yow ¢y 1, a
computation iterated degree measure (computation IDM) of order-L and Ty, ) 1, a distribution of
computation iterated degree measures (computation DIDM) of order-L.

In Appendix E.2 we prove that the spaces of IDMs and DIDMs are compact, which, together with
the continuity of MPNNs (Theorem 13), and the separation power of MPNNs (Theorem 14), allows
us to use the Stone-Weierstrass theorem (Appendix A.5) to show universality and to use uniform
Monte Carlo estimation to compute a generalization bound for MPNNSs.
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Theorem 3. The spaces HY and 2 (H') are compact spaces for any L € Ny,

The proof of Theorem 3 inductively uses the fact that given any compact space /C, the spaces
AM<1(K) and Z(K) endowed with the weak* topology are compact metrizable spaces. Tychonoff’s
theorem, which states that the product of any collection of compact topological spaces is compact
with respect to the product topology, completes the argument.

DIDM Mover’s Distance. Next, we define a distance between graphons, viewed as distributions of
computation IDMs. Inspired by the tree mover’s distance of Chuang & Jegelka (2022), we do this by
optimal transport with a ground metric between IDMs, i.e., trees, as both computational IDMs and
trees can be seen to represent the MPNNs’ computational procees. Thus, we explicitly construct a
metric that metrizes the topology of H%. We define the IDM distance of order-0 on M° = H° = B,
for p € Ny, by dlpy; := ||z — yll,, and denote by OTy  the optimal transport distance on

M = <1 (H°). We define dip,); recursively as the product metric on H* =[], M/ when the
distance on MJ = A< (H/71) for0 < j < L —1is OT 4= Explicitly written,

dEy () = ||/J0—1/0||2+Z] 10Td9 1(uj,uj) rifoo>L >0
oM 1o — vl ;L =0

for i1 = (p;) 50, v = (vj)f—o € H". The next theorem states that, for every L € Ny, both the IDM

distance dILDM and optimal transport distance OTdILDM fit naturally to the topologies of IDMs and
DIDMs defined in Section 2.

Theorem 4. Let L € Ny. The metrics dy; on HL and OT,. on P(HL) and M <1 (HE) are
well-defined. Moreover, OT . metrizes the weak™ topologies of M<i(HY) and 2(HL).

We now use the distance between IDMs to define a distance between graphons, viewed as distribu-
tions of computation IDMs. Specifically, we define the DIDM Mover’s Distance between graphons
as the optimal transport cost between their DIDMs, with ground metric dfyy, (-, ):

Definition 5 (DIDM Mover’s Distance). Given two graphon-signals (W, fa), (Wy, fp) and L > 1,
the DIDM Mover’s Distance between (W, fo) and (W, fb) is defined as
06100 ((Was fa), (We, f3)) = OTyy

DM (P(Wa,,fa),L7 F(Wbyfb),L)'
Intuitively, 655y is the minimum cost required to transport node-wise IDMs from one graphon to
another.

Given two attributed graphs, (G,f) and (H,g), the DIDM mover’s distance,
6L (G ), (H,g)) = 65ipm((Wa, fe), (Wa, fg)) can be computed in polynomial time,
as shown next.

Theorem 6. For any fixed L € Ny, 65,1 between any two graph-signals (G, f) and (H,g) can
be computed in time polynomial in L and the size of G and H, namely O(L - N°log(N)), where
N = max([V(G)[, [V(H)]).

The theorem is proven in Appendix L.2 with the following reasoning. While 65,1, is defined using
the induced graphon, it is computed directly on the graph. Moreover, we do not use a data-structure
for representing IDMs directly. Instead, each time, we compute cost matrices derived from the cost
matrices of the previous layer, avoiding explicit representations of the IDMs. We first compute a
cost matrix Dy, containing the Lo distances between the nodes’ attributes, and then use it as a cost
matrix of an OT problem. We repeatedly solve OT problems based on the previous cost matrix
and the adjacency matrices of the graphs using linear programming and sum the results with the
previous cost matrix to get the next cost matrix. Each OT problem is solved in O(N3log(N)) time
(Flamary et al., 2021; Chapel et al., 2020). At each step we solve N2 problems. This means O(N
N3log(N)) per step. After computing Dy, we use it to solve a s1ngle OT problem between two
uniform distributions, one over V(G) and the other over V(H) to get 6D19M s value, which again
takes O(N3log(NN)). Hence, the total computation time is O(L N?3log(N)). In Section 5,
we evaluate the DIDM Mover’s Distance empirically.

Alternative Approach. For the sake of completeness, we present in Appendix L the Prokhorov
metric, which can be used for defining alternative metrics to optimal transport which metrize HZ,
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similarly to the constuction of Boker et al. (2023). All of our results can be equivalently stated with
the alternative metrics.

4 MPNNS AND THEIR RELATION TO DIDM MOVER’S DISTANCE

We next integrate MPNNs into our framework and define a general message passing scheme for
computing features of attributed graphons, which generalizes standard graph MPNNs. Equivalently,
by defining aggregated features via IDMs and DIDMs, we can define the MPNN directly on IDMs
and DIDMs. In Appendix G, we show the equivalence between MPNNs defined on graphon-signals
and MPNNs defined on IDMs and DIDMs. By analyzing MPNNs on IDMS and DIDMs, we prove
Theorem 13 and Theorem 14, which state that two graphon-signals are close to each other in our
metrics if and only if the two outputs of any MPNN on the two graphon-signals are close-by in Lo
distance.

An MPNN consists of feature initialization, which is a learnable Lipschitz continuous mapping
00 . RP s R%, followed by L layers, each of which consists of two steps: a message passing layer
(MPL) that aggregates neighborhood information, followed by a node-wise update layer. Here, we
assume the MPL to be normalized sum pooling when applied on graph-signals or graphon-signals.
The update layer consists of a learnable Lipschitz continuous mapping ¢® : R2%-1 s R% where
0 <t < L is the layer’s index. Each layer computes a representation of each node. For predictions
on the full graph, a readout layer aggregates the node representations into a single graph feature and
transforms it by a learnable Lipschitz function 1/ : R% +— R? for some d € Ny. For the readout,
with use average pooling.

Definition 7 (MPNN Model). Let L € Ng and p,dy,...,dr,d € Nog. We call any collection
P = (w(t))fzo of Lipschitz continuous functions ¢© : R? — R% and o) : R24-1 s R for
1 <t < L, an L-layer MPNN model, and call go(t) update functions. For Lipschitz continuous
1 R¥ — RY, we call the tuple (o, 1)) an MPNN model with readout, where 1) is called a readout
function. We call L the depth of the MPNN, p the input feature dimension, dy, ..., d the hidden
feature dimensions, and d the output feature dimension.

An MPNN model processes graph-signals as a function as follows.

Definition 8 (MPNNs on graph-signals). Letr (v, %) be an L-layer MPNN model with readout,
and (G,f) be a graph-signal where £ : V(G) — BE. The application of the MPNN on (G, f)

is defined as follows: initialize g(_o) = O (f(—-)) and compute the hidden node representations
g(f) : V(G) — R% at layer t, with 1 <t < L and the graph-level output & € R% by

) . O (g1 L (t-1) L (L)
gy -—W(gJ 1,|V(G)| > el 1) and 05-—11)(“/(0” > gf)

ueN (v) veEV(G)

To clarify the dependence of g and & on ¢ and (G, f), we often denote g(<p)1(,t) or gy, G, f)g),
and & (¢, 1) or &(p, 1, G, ). Here, we use normalized sum aggregation over neighborhoods to be
directly compatible with the graphon version. To extend this MPNN to graphons, we transition from
a discrete set of nodes to a continuous set by converting the normalized sum into an integral.

Definition 9 (MPNNs on Graphon-Signals). Let (p, ) be an L-layer MPNN model with readout,
and (W, f) be a graphon-signal where f : V(W) — BE. The application of the MPNN on (W, f)

is defined as follows: initialize f(_o) = O (f(=)), and compute the hidden node representations
f(f) : V(W) — R% at layer t, with 1 < t < L and the graphon-level output § € R by

(0= O (100, [ Wi aw)  ad §=0( [ foPaw).

[0,1] [0,1]

As before, we often denote f((p)gt) or f(, W, f),(f), and F(¢,v) or F(@, ¥, W, f).

The following definition generalizes MPNNs to IDMs and DIDMs using the canonical projections
prj: HE — HIand pr, : HY — ME, where j < L < oc.

Definition 10 (MPNNs on IDMs and DIDMs). Let (p, %) be an L-layer MPNN model with readout.
The application of the MPNN on IDMs and DIDMs is defined as follows: initialize f)(_o) = 0 (-),
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and compute the hidden IDM representations b(f) : HY — R% on any order-t IDM T € H?, and the
DIDM-level putput § € RY on an order-L DIDM v € 22 (H"), by

0= (0 e [0 Tann) s ([ 0.

We also denote h(gp)(Tt) and 9 (e, ) or H(p, 1, v). We name MPNNs’ hidden representations and
outputs features. MPNNs on IDMs and DIDMs are canonical extensions of MPNNs on graphon-
signals as follows.

Lemma 11. Ler (W, f) be a graphon-signal and (p,v) an L-layer MPNN model with readout.
Then, given the computation IDMs {’y(W’f)’t}tL:O and DIDM T vy, 5) ., we have that §(¢, W, f)gf) =

0(2)), | w foranyt € [L} @ € [0,1]. Similarly, §(,v, W, f) = (2,0, Tw.).1.):

That is, graphon-signals’ hidden representations are computed through their computation IDMs and
DIDMs, i.e., the product of the graphon-signals 1-WL algorithm (Definition 2). Similarly, graph-
signals’ hidden representations are computed through their induced graphon-signal.

Corollary 12 is a consequence of Theorem 15, one of our main results, presented in Section 5. It
reveals a strong connection between MPNN features and the weak* topology of 22(H1).

Corollary 12. Let L € Ny and d > 0 be fixed. Let v € P(HL) and (v;); be a sequence with
v; € P(HL). Then, v; — v if and only if (0,0, v;) — $(p, 1, v) for all L-layer MPNN models
© with a readout function 1) : R — R%,

We now present Theorem 13 and Theorem 14. Together, they establishe a bidirectional fundamental
connection between our metrics and the outputs of all possible MPNNs, where the second direction
is phrased as a delta-epsilon relation. Specifically, Theorem 13 states a Lipschitz bound for MPNNs
with respect to the IDM and DIDM mover’s distance. This quantifies stability as in the finite case in
Chuang & Jegelka (2022).

Theorem 13. Let ¢ be an L-layer MPNN model. Then there exists a constant C, that depends
only on the number of layers L and the Lipschitz constants of the update functions, such that

Ih(, )™ — (e, B) P ||2 < Cy - dfpp(ev, B)

forall o, B € HE. If ¢ has a readout function 1, then, for all p,v € P(HL), there exists a constant
Clp,) that depends only on C, and the Lipschitz constant of the model’s readout function, such that

||ﬁ(§07 ¢7 M) - Sj(@a 1/% V)HQ < C((p;(/}) . OTdILDM (,LL, V).

In our analysis, Theorem 13 is vital for the generalization analysis in Section 5. The following
theorem is roughly the “topological converse” of Theorem 13, and is based on Corollary 12.

Theorem 14. Let d > 0 be fixed. For every € > 0, there are L € Ny, C' > 0, and 6 > 0 such that,
for all DIDMs pi, v € P(HE), if |9(0, %, 1) — H(p, ¥, v)||2 < holds for every L-layer MPNN
model  with readout function 1 : R¥ — R? when Cpp) < C, then OTdILDM (u,v) <e.

Note that the constants L, C, and § are independent of the DIDMs p and v. The combination of
Theorem 13 and Theorem 14 implies that we can not only bound MPNNs’ output perturbations with
OTdILDM, but also estimate closeness in OTdILDM via MPNNs’ output closeness.

Empirical Evaluation. As a proof of concept, we empirically test the correlation between 65,1,
and distance in the output of MPNNs. For the graphs, we use stochastic block models (SBMs), which
are random graph generative models. We generated a sequence of 50 random graphs {G;}#2 , each
with 30 vertices. Each graph is generated from a SBM with two blocks (communities) of size 15
with p = 0.5 and ¢; = 0.1 + 0.47/49 probabilities of having an edge between each pair of nodes
from the same block different blocks, respectively. We denote G := (49, which is an Erd6s—Rényi
model. We plot 02, (Gi, G) against distance in the output of randomly initialized MPNNs. We
conducted the experiment twice, once with a constant feature for all nodes and once with a signal
which has a different constant value on each community of the graph. Each of these two values is
randomly sampled from a uniform distribution over [0, 1]. Figure 2 shows the results when varying
the hidden dimension of the GNN. The results show a strong correlation between input distance and
GNN output distance. More empirical results are presented in Appendix M. The code is available at
https://github.com/levi776/GNN-G-E-U.
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Figure 2: Correlation between 63, and distance in the output of a randomly initialized MPNN.
A convergent sequence of graphs. The graphs are generated by a stochastic block models. In the
six leftmost figures the signal is constant. In the six rightmost figures, the signal values are constant
each graph’s community. Each signal value is sampled from a uniform distribution over [0, 1].

5 THEORETICAL APPLICATIONS

Next, we state the main theoretical applications of the compactness of the space of attributed graphs
and the Lipschitz and separation power of MPNNs with respect to DIDM mover’s distance. First,
we show a universal approximation theorem for MPNNs on IDMs and DIDMs, which means that
MPNNs can approximate any continuous function on IDMs and DIDMs. This entails universal
approximation of MPNNs on attributed graphs/graphons as well, generalizing the results of Boker
et al. (2023) to attributed graphs. Second, we introduce a uniform generalization bound for MPNNSs.

Universal Approximation. We define the set N{X = { h(gp)(_L) o HE =
R | is an L-layer MPNN model} C C(HE,R?2), where C(HL,R9L) is the set of all contin-
uous functions, H% — R%. Similarly we define the set NNG = {H(p, 1, —) : P(HE) —
B?|(¢, ) is an L-layer MPNN model with readout} C C(Z(H%),R9).

Theorem 15 (Universal Approximation). Let L € Ny. Then, the set N} is uniformly dense in
C(HL,R) and the set NN} is uniformly dense in C(2(HL),R).

Combining Theorem 15 with Lemma 11 leads in a very straightforward way to universal approxima-
tion of continuous functions from graph-signals to graph-signals embeddings. Our theory implies
that if we use all MPNNs, we can distinguish between all attributed graphs with positive graph
distance (since they could take different function values). Indeed, Table 1 and 3 in Boker et al.
(2023) illustrate that using sufficiently many MPNNs provides enough discriminative power for
graph classification tasks on both attributed and unattributed graphs. Our results supply the theoret-
ical background for their experiments with attributed graphs.

Note that Theorem 15 states that any continuous function from DIDMs to scalars can be approxi-
mated by an MPNN on DIDMs. To infer a universal approximation result for functions from graph-
signals to vectors we emphasize the following considerations. Define the set N4 (WLY) =
{F(p, 1, —, =) : WLE — R?|(¢, ) is an L-layer MPNN model with readout}. First, note that the
space of computation DIDMs, Iy, 4, (WL, is a strict subset of Z2(H!), which is not dense
(w.r.t §5;p,p) in view of Theorem 64. Indeed, there are DIDMs that do not come from any graphon-
signal, and a closed strict subset cannot be dense. So, the space of DIDMs of graph-signals is also not
dense. Hence, Theorem 15 does not imply that any continuous function (w.r.t §5;1,,) from graph-
signal to vector can be approximated using an MPNN model. Rather, any function on graph-signals
that can be extended to a continuous function on DIDMs can be approximated can be approximated
using an MPNN model, which is a weaker form of universality. Fortunately, we can directly prove a
universal approximation theorem directly for the space W[,;f , which in terms gives a universal ap-
proximation theorem for continuous functions from graph-signals to vectors by a density argument.
For this, in Appendix 1.3 we prove that graph-signals are dense in Wﬁf w.rt. 8500

Theorem 16. Let L € Ny. Then, the set NN} (WLY) is uniformly dense in C(WL?, R).

Generalization Bounds for MPNNs. Consider K -class classification, i.e., the data is drawn from
a distribution (X x {0,1}% %, 7), where X is the Borel o-algebra and 7 is a probability mea-
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sure, where X is either (2 (H"), 0T ) or WLE 65 50)» and & is a Lipschitz loss func-
tion with a Lipschitz constant Cg. Define the formal bias of a function f : R% s R? to be

[I£(0)]l, (Maskey et al., 2022) and denote the smallest Lipschitz constants of f by || f||;, (see Ap-
pendix A.12). Fix L € N and A;,As > 0. Let O be the set of all L-layer MPNN models with

readout ((ga(t))tem ,1/)) such that the Lipschitz constants ||cp(t) HLand ||| are bounded by A,

and the formal biases ||<p(t) (0) ||2 and ||2(0)||,, are bounded by As. Let Lip(X, C, B) be the set of
all continuous functions f : X — R~ with bounded Lipschitz constants || f||; < C and bounded
norms || ]|, < B. In Appendix K.3, we show that there exist Co, Be > 0 that depend on L, A;, A,
such that © C Lip(X,Ce,Bg). As aresult, if we prove a generalization bound for the hypothesis
class Lip(X, Co, Bg), the bound would also be satisfied for the hypothesis class ©. The following
generalization theorem uses techniques from Levie (2023), deriving generalization bounds for Lip-
schitz continuous functions over domains with finite covering. For us, both the spaces of DIDMs
and of graphon-signals have finite covering numbers as they are compact, and MPNNs are Lipschtiz
over these domains. The technique is also similar to robustness-type bounds (Xu & Mannor, 2012).

Theorem 17 (MPNN generalization theorem).  Consider the above classification setting with
X being either (P (HL), OT,. ) or WL 6k oy).  Let C = Cegmax(Ce,1), B :=
Ce(Bo + 1) + £(0,0)|, and {X;}}, be independent random samples from the data distribution
(X x {0,1}5 %, 7). Then, for every p > 0, there exists an event UP C (X x {0, 1})N regarding
the choice of X = (X1,..., Xn), with probability 7™ (UP) > 1 — p, in which for every function
Mx in the hypothesis class Lip(X, Cg, Bg), we have

R(Mx) ~ Rx (Mx)| < €71 (V) (2C+\}§B (1+ \/W)) (1)

where £(e) = w, K is the covering number of the compact space X x {0,1}% and ¢=1
is the inverse function of €.

Theorem 17 means that when minimizing the empirical risk on a training set drawn from the data
distribution, the statistical risk is guaranteed to be close to the empirical risk in high probability,
where no assumptions on the data and number of parameters of the MPNN is required (the only as-
sumption is Lipschitz continuity of the update and readout functions). Indeed, the term £ =1 (N/2C
in Equation (1) approaches zero when we take NV to infinity. Moreover, since the space X’ x {0,1}

is compact (Theorem 26), for X € {2(HY), WL}, its covering number & is finite.

6 DISCUSSION

MPNNSs were historically defined constructively, as specific types of computations on graphs, with-
out a proper theory of MPNN function spaces over properly defined domains. Our work provides a
Sfunctional basis for MPNNs, which leads to machine learning results like universal approximation
and generalization for attributed graphs.

The only non-standard part of our construction is the choice of normalized sum aggregation in our
MPNN architecture, while most MPNNs use sum, mean, or maximum aggregation. We justify this
choice as follows. First, experimentally, in Boker et al., 2023, Tables 1, 3 and Levie, 2023, Table 2, it
is shown that MPNNs with normalized sum aggregation generalize well, compared to MPNNs with
sum aggregation. We believe that this is the case since in most datasets most graphs have roughly
the same order of vertices. Hence, the normalization by NV 2 is of a constant order of magnitude and
can be swallowed by the weights of the MPNN, mimicking the behavior of an MPNN with sum
aggregation. Future work may explore extensions of our theory to other aggregation schemes (see
Appendix A.3 and Appendix C.2 for more details).

Our theory is meaningful only for dense graphs, as sparse graphs are always considered close to the
empty graph under our metrics (see Appendix C.1). Future work may focus on deriving fine-grained
expressivity analyses for sparse attributed graphs. Moreover, the current theory is designed around
graph level tasks. However, potentially, one can also use IDMs to study node level tasks, as IDMs
represent the computational structure corresponding to each node. For example, one can potentially
use our construction for analyzing the stability of node-level GNN5 to perturbations to the structure
of the graph and its features, where the magnitude of the perturbation is modeled via IDM distance.
Lastly, since our proofs are specific to MPNNs with normalized sum aggregation, future research
could provide extension of our theory to other aggregation functions.
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A ADDITIONAL BACKGROUND
We provide here additional background.

A.1 WEISFEILER LEMAN GRAPH ISOMORPHISM TEST ON GRAPHS

The Weisfeiler-Leman-1 (WL-1) test, which was developed by Boris Weisfeiler and Andrei Leman,
also known as color refinement, is an algorithm which aimed to effectively approximate the solution
of the graph isomorphism problem.As graph isomorphism problem is not known to be solvable in
polynomial time, the algorithm cannot distinguish all non-isomorphic graphs.

Given a graph G = (V, E) with initial labeling Lo : V +— Ny (also referred to as coloring),
composed of V, a the set of nodes and E C V x V, a the set of edges, the WL-1 algorithm
iteratively updates the nodes labels based on the labels of neighboring vertices.

Definition 18 (Weisfeiler-Leman Iteration). Given a graph G = (V, E) with an initial labeling
Ly : V — Ny, each iteration t > 0 of the WL algorithm computes a new labeling L, as follows:

Li(v) = Hash (Ly_1(v), { Li—1(u) :w e N (v)})

where N (v) denotes the neighbors of vertex v, and Hash is an injective function mapping the previ-
ous label and multiset of neighbor labels to a new unique label.

This process runs on two graphs in parallel and continues on until a stable labeling of one of the two
graphs is achieved, meaning that for some ¢ € Ny the label of one of the graphs doesn’t change, or a
discrepancy is found between the label of the two graphs being compared. One of these two events
is always reached.

A.2 MESSAGE PASSING NEURAL NETWORKS ON GRAPHS

Message Passing Neural Networks (MPNNs) Gilmer et al. (2017) are a neural networks class de-
signed to process graph-structured data with and without attributes. Given a graph G = (V, E), and
a signal f : V — R? (in the case of a graph without attributes the signal is the constant function
f(v) = 1, MPNN:S iteratively update node embeddings through the exchange of messages between
nodes through edges. We restate here Definition 7.

Definition 7 (MPNN Model). Let L € Ny and p,dy,...,dr,d € Ng. We call any collection
o = (ML, of Lipschitz continuous functions ¢®) : RP s R%, and o®) : R?¥-1 s R%, for
1 <t < L, an L-layer MPNN model, and call ¢*) update functions. For Lipschitz continuous
¥ R RY, we call the tuple (¢, 1)) an MPNN model with readout, where 1) is called a readout
function. We call L the depth of the MPNN, p the input feature dimension, dy, ..., dr the hidden
feature dimensions, and d the output feature dimension.

Let o be an L-layer MPNN model. We recall that A/ (v) denotes the set of neighbors of node v. Each

node v € V starts with an initial feature vector g(go)go) = f(v), which are updated iteratively through
the the layer of the message passing model. Each layer consists of two main steps: aggregation and
update.

Ateach layer 0 < ¢ < L, each node v aggregates information from its neighbors by:

m(p, G, ) = Agg (G,g(% G, f)(f_l)) ,

where Agg is a differentiable aggregation function that process the graph and its hidden node repre-
sentations on each layer. In this article we focus on normalized sum aggregation, which is defined
as follows.

Definition 19 (Normalized Sum Aggregation on Graph-Signals). Let (G, f) be a graph-signal, then
normalized sum aggregation with respect to the (G, f) and a node v € V(QG) is defined as

1
Agg(G,gw,G,f)(f’)(v):m > 8l G.HY
uweN (v)
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(k)

The node embeddings are then updated based on the message m(y, G, f)y ' and the node feutures

from the privious layer g(p, G, f)q()kfl):
8. GO = ¢® (40, G, DED, mlp, G, HP) )

where ¢(*) is called the update function which is a learnable Lipschitz function like an MLP (Multi-
Layer Perceptron). After L layers, the last layer’s hidden node representations g(¢, G, f) (_L) are

processed by an update layer. This layer is computed by applying a readout function ¢ : R4 — R?
and outputs a single graph-signal-level representation:

O .G = | iz O ale GO )

veV(G)

1) is typically a permutation-invariant function, that ensures the graph features is independent of any
node ordering.

A.2.1 GRAPH ISOMORPHISM NETWORK (GIN)

Graph Isomorphism Network (GIN) Xu et al. (2019) is a popular MPNN model for graphs, which is
as expressive as the Weisfeiler-Lehman graph isomorphism test. GIN is defined with sum aggrega-
tion but we use normalized sum aggregation. As an update function,it uses a multi layer preceptron
(MLP) composed on addition of the massage m(yp, G, f)(f) = m" and 9(p, G, f)(f_l) = g(f_l)
that depends on a contant ¢, that controls the weighting between the node’s own embedding and its
neighbors’ embeddings, as follows:

1
) ._ 3 gl
m’l) M |V| u )

ueN (v)
g .= MLP®) ((1 +e)glt—D 4 mg’f)) .

The readout after L layers (which we also normalize in contrast to the original definition) is:

1
6(@?7/}aG7 f) = 6 = m Z gq(}L)
veV

GIN’s ability to distinguish between non-isomorphic graphs makes it compatible for tasks, such as
graph classification and node-level prediction.

A.3 SUM AND MEAN AGGREGATION

We present here sum and mean aggregation schemes on graph-signals. This allows further discussion
on the different aggregation schemes in Appendix D.

Definition 20 (Sum Aggregation on Graph-Signals). Let ¢ be an L-layer MPNN model, (G, f) be
a graph-signal, and t € [L — 1] then sum aggregation of (G, f)’s t-level features with respect to the
node v € V(QG) is defined as

Agg(G.a(0.G.H)N)(w) = Y (e, G.HP.
wEN (v)

Definition 21 (Mean Aggregation on Graph-Signals). Let ¢ be an L-layer MPNN model, (G, f) be
a graph-signal, and t € [L — 1] then mean aggregation of (G, f)’s t-level features with respect to
the node v € V(G) is defined as

1
Agg(G,g(cp,G,f)(_t))(v):m 3 ale,G.HY.
uwEN (v)
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A.4 TOPOLOGY BASICS

Topology is a fundamental branch of mathematics, in which spatial properties that remain unchanged
under continuous deformations are studied formally. Here, we introduce key concepts of topology.

Definition 22 (Topological Space). A topological space is a pair (X, T), where X is a set and T is
a collection of subsets of X satisfying:

1. Both() and X arein
2. T is closed under finite intersections
3. 7 is closed under arbitrary unions

The elements of T are called open sets.

A.4.1 CONTINUITY

Continuity, in topology, generalizes the notion of continuity from calculus to any arbitrary topolog-
ical space.

Definition 23 (Continuous Function). Given topological spaces (X, 7x) and (¥, 7y ), a function
f : X — Y is continuous if the preimage of every open set in' Y is open in X. Formally, f~*(U) €
Tx forallU € T1y.

A.4.2 THE PRODUCT TOPOLOGY

The product topology is a topology which is naturally defined on a Cartesian product topological
spaces. Although it can be defined for Cartesian products of any number of spaces, in our analysis,
we are only interested in the finite case.

Let {(X;, 7;) }ier be an finite set of topological spaces, then the product space of the set {(X;, 7;) }ier
is denoted by [],.; A; and defined as the set of all vectors (z;);c; where x; € & for eachi € I.
The product topology is then generated by the basis {(U;);cs : U; € 7}

For each i € I, the projection map 7; : [[;c; &; — A is defined by m;((2;)jer) = ;. In the

product topology, all projection maps 7; are continuous. Moreover, a sequence in the product space
converges if and only if its projections onto each factor space converge.

A.4.3 COMPACTNESS AND SEPARABILITY

Compactness and separability are both important properties in topology.
Definition 24. [Compact Space] A topological space (X, T) is compact if every open cover of X
has a finite subcover.

Definition 25 (Separable Space). A ropological space is separable if it contains a countable dense
subset.

Theorem 26 (Tychonoff’s Theorem). Let {X;}ics be a family of compact topological spaces. Then

the product space | [, ; X; is compact in the product topology.

A metric space is a topological space, where the topology is induced by a distance function called a
metric.

A.4.4 NORM SPACES

A normed vector space is a vector space over the real or complex numbers on which a norm is
defined.

Definition 27. A normed vector space is a pair (V, || - ||) where V' is a vector space over R or C and
I - 1] : V= R is a function, called the norm, satisfying for all z,y € V and all scalars o:

1. ||z|| > 0 and ||x|| = 0 if and only if z = 0.
2. x|l = |af|lz]l

3ol +yll < =l + [lyll
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A.4.5 METRIC AND PSEUDOMETRIC SPACES
A pseudometric space is a topological space, where the topology is induced by a distance function
called a pseudometric.
Definition 28 (Pseudometric Space). A metric space is a pair (X,d) where X is a set and d :
X x X — Ris a function satisfying:

1. d(z,y) >0, forall z,y € X.

2. d(z,y) = d(y,x), forall x,y € X.

3. d(z,2) < d(z,y) +d(y,2), forall x,y,z € X.
Notice that it is possible that d(x,y) = 0 for some = # y, meaning distinct points can have zero
distance. A metric is a pseudometric that satisfy the following additional requirement.

Ve,y € X :d(z,y) =0 < z=y.

The pair (X, d), where X isasetand d : X x X — R is a metric is called a metric space. The
topology induced by a metric/pseudometric is generated by a base containing all open balls defined
by B(z,r) ={y € X : d(z,y) <r}.

A.4.6 COVERING NUMBER

Definition 29. A metric space X is said to have a covering number k : (0,00) — Ny if; for any
€ > 0, X can be covered by k(¢) balls of radius € (see Appendix A.4.6).

Note that if a metric space X’ is compact (see Definition 24), then it can be covered by a finite
number of balls of radius ¢, for any ¢ > 0.

A.4.7 METRIC IDENTIFICATION

Let (X, d) be a pseudometric space. Consider the equivalence relation:
Ve,ye X :x~gy if d(z,y)=0.

Any equivalence relation ~ is part of a class of equivalence relations called metric identifications.
A metric identification converts a pseudometric space into a metric space, while preserving the
induced topologies. This identification is captured through the quotient map 7 :~+— X'/ ~ defined
as the map z — [z]. The open sets in the pseudometric space are exactly the sets of the form
7 1(A), where A € X/ ~ is open. Namely, if an open set A € X contains , it has to contain all
of the other elements in [z]. The pseudometric topology is the topology generated by the open balls

By(p) ={z € X :d(p,x) <r},
which form a basis for the topology.

A.4.8 COMPLETE METRIC SPACES

Definition 30 (Complete Metric Space). A metric space (X, d) is called complete if every Cauchy
sequence in X converges to a point in X. A sequence {x,} C X is a Cauchy sequence if for every
€ > 0, there exists an integer N € Ny such that for all m,n > N, the following holds:

d(Zp, Tm) < €. 4)

In other words, if the elements of a sequence get arbitrarily close to each other as the sequence
progresses, then that sequence also converges to a point within the space. If a topological space is
metrizable to a complete metric space, we say that it is completely metrizable.

A.4.9 METRIZABLE SPACES

Definition 31 (Metrizable Space). A fopological space (X, 1) is called metrizable if there exists a
metric d : X x X — R such that the topology induced by the metric d coincides with the topology
Ton X.

In other words, the open sets in the topology T are exactly the open sets with respect to the metric d.
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A.4.10 MEASURE SPACES

Measure theory generalizes and formalizes geometrical measures such as length, area, and volume
as well as other notions, such as magnitude, mass, and probability of events.

Definition 32 (o-algebra). Let X be a set. A collection % of subsets of X is called a o-algebra if the
following properties are satisfied:

1. X el
2. X is closed under complement, i.e., if A € ¥, then X \ A € %,

3. Y is closed under countable unions, i.e., U‘{An}?zl is a countable collection of sets in 3,
then

G A, €. %)
n=1

The pair (X, X) is called a measurable space. A o-algebra provides the foundation for the construc-
tion of measures,

Definition 33 (Measure). Let (X, Y) be a measurable space, where X is a set and ¥ is a o-algebra
on X. A function p : ¥ — [0, 00] is called a measure if it satisfies the following properties:

1. Non-negativity: Forall A € %, u(A) > 0.
2. Null empty set: u()) = 0.

3. Countable additivity (or o-additivity): For any countable collection of pairwise disjoint
sets { A, }52 1 C X, the measure of their union is the sum of their measures:

z (U An> = nl(An). (©6)

A measure p assigns a non-negative extended real number to each set in the o-algebra . The triple
(X, 3, p) is called a measure space.

A.4.11 POLISH SPACES

Polish spaces are topological spaces, that have a “nice” topology in the following way.

Definition 34 (Polish Space). A topological space is Polish if it is separable and completely metriz-
able, i.e., there exists a complete metric that generates its topology.

A.5 STONE-WEIERSTRASS THEOREM

Given a set A, we denote by 14 : A — R a non-zero constant function. We present a variation of
the Stone-Weierstass Theorem (see Rudin, 1976, Theorem 7.32) we use in Appendix I to prove a
universal approximation theorem.

Theorem 35 (Real Stone—Weierstrass). Let K be a compact metric space and A C C(K,R) be a

sub-algebra that contains 1xc and separates points, i.e., for every k # 1 € K there is f € A such
that f(k) # f(l). Then A is uniformly dense in C'(KC,R).

The following corollary (taken from Grebik & Rocha (2021)) is another useful description of the
Stone-Weierstrass theorem, and is used as well in the universal approximation proof in Appendix I.

Corollary 36 (Separating Measures). Let K be a compact metric space and E C C(K,R) be closed
under multiplication, contain 1x, and separate points. Then for every u # v € M<1(K) there is

f € & such that
[ tin# [ sav
K K

i.e., the linear functionals that correspond to elements of € separate points in M<1(K).
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A.6 THE CUT NORM AND THE CUT METRIC

The cut norm was introduced by Frieze & Kannan (1999) and provides the central notion of conver-
gence in the theory of dense graph limits. Levie (2023); Rauchwerger & Levie (2025) extended the
cut norm to graphons with d-channel signals, i.e., graphon-signals in W,Cf.

Definition 37 (Cut Norm and Cut Metric). The cut norm of a measurable W : [0,1]? — R, and the
cut norm of a measurable function f : [0,1] — R? is defined as

1
W(x,y)dxdy| and |fllg:= 5 sup

IWlg:= sup y
AxB Sclo,1]

A,Be€[0,1]

)

1

/S f(@) dA(x)

where the supremum is taken over the measurable subsets A, B C [0,1] and S C [0, 1], respectively.
We define the graphon-signal cut norm, for a graphon signal (W, f) € WL, by

(W, Hlla = Wla +Iflo-

We name the metric induced by the cut norm the cut metric, which is defined to be

do((W, f),(V,9)) =W, f) = (V. 9)llg
for any two graphon-signals (W, f), (V,g) € WL

A.7 THE CUT DISTANCE

Lovész (2012) first defined the cut distance on graphons through the graphon cut norm. The cut
norm was later extended to graphon-signals by Levie (2023); Rauchwerger & Levie (2025) using
the graphon-signal cut norm.

Let S fo 1] be the space of measurable bijections between co-null sets of [0, 1]. Namely,

01 =1¢: A— B| A, Bco-nullin [0,1], and VS € A, u(S) = pu((5))},
where ¢ is a measurable bijection and A, B, S are measurable. Let ¢ be a measurable bijection in
S[/o,us for any graphon, W, and a signal f, we define W¢(xz,y) := W(¢(x),¢(y)) and f¢(z) :=

f(#(2)), respectively. We then define (W, f)? := (V¢ g?). Note that W and f¢ are only define
up to a null-set, therefore, we (arbitrarily) set W, W%, f, ¢ to 0 in this null-set. This does not affect
our analysis, as the cut norm is not affected by changes to the values of functions on a null sets.

Definition 38 (Cut Distance). The cut distance is defined to be
oW, 1), (V,g) = inf do(W, ), (V, 9?).

[0,1]

A.8 THE QUOTIENT METRIC SPACES OF GRAPHON-SIGNALS

The graphon-signal cut distance g is a pseudometric. Consider the equivalence relations: (W, f) ~

(V. g) if (W, f),(V,g)) = 0. For any graphon-signals (W, f) € WL, denote the equivalent
class of (W, f), with respect to ~, as [(W, f)]. Then, the quotient space

wed =we/ ~
of the equivalence classes [(W, f)] is a metric space, with the metric do([(W, f)],[(V,9)]) =

oo((W, f),(V,g)). Notice that the equivalence relation ~ is a metric identification (Ap-
pendix A.4.7).

A.9 THE COMPACTNESS OF THE CUT DISTANCE

The space of graphon-signals is compact w.r.t. the cut distance é (Definition 38), as proven in
Levie (2023); Rauchwerger & Levie (2025).

Theorem 39 (Levie (2023), Theorem 3.6.;Rauchwerger & Levie (2025), Theorem 4.4.). The Pseu-

dometric space (WLY,50) and the metric space (WL®, 60) are compact. Moreover, given r > 0
and c > 1, for every sufficiently small € > 0, they can be covered by

k() = 2F° (7)

balls of radius €, where k = f249%}
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A.10 THE CUT METRIC REGULARITY LEMMA FOR GRAPHON-SIGNALS
To formulate our regularity lemma, we first define spaces of step functions, based on Levie (2023);
Rauchwerger & Levie (2025).

Definition 40 (Levie (2023), Definition 3.3.; Rauchwerger & Levie (2025), Definition 4.1.). Given
a partition Py, and d € Ny, we define the space Sg;:d of step functions R? — R over the partition
Py, to be the space of functions F : [0,1]P — R? of the form

p
F(z1,...,mp) = > ( p, (mﬂ) ¢y (8)
1

3=, dp)€[R]P NI=

for any choice of {c; € R} ;¢

We call any graphon, that also belongs to the set 8723;’1 a step graphon (also called a stochastic block
model (SBM)) with respect to Pj,. We call any signal, that also belongs to the set 8713:"1 a step signal.

We define the space of (graphon-signal) SBMs with respect to Py, as WLI N (S5 x S59). Next,
we define the projection of a graphon-signal upon a partition.

Definition 41 (Levie (2023) Definition B.10; Rauchwerger & Levie (2025), Definition 4.2.). Let
P ={Py,..., P} be a partition of [0, 1], and (W, f) € WL®. We define the projection of (W, f)
upon WL N (8371 x Sp.7%) to be the step graphon-signal (W, f)p, = (Wp,, fp,) that attains
the value

W’Pn (%y) = 0.1] W(xay)ILPiXPj (x,y)dxdy, an (l’) = 0.1] (m)ILPi (Z‘)dl’
0,1]2 0,1

forevery (z,y) € P; x Pjand1 <1i,j < n.

Note that we use the notation (Wp,, fp, ) and the notation ([W]p, ,[f]p, ) interchangeably. The
following version of the regularity lemma states that any graphon-signal can be approximated using
the average values of both the graphon and the signal within some partition.

Theorem 42 (Levie (2023), Theorem 3.4 and Corollary B.11; Rauchwerger & Levie (2025), Theo-
rem 4.3, Regularity Lemma for Graphon-Signals). For any ¢ > 1, v > 0, and any sufficiently small

€ > 0, for every n > 2l ana every (W, f) € WL, we have

oo (W.f), (Wf),, ) <

where Ly, is the equipartition of [0, 1] into n intervals.

A.11 WEIGHED PRODUCT METRIC

We say that a product metric is weighed if there is a vector of weights &/ = (w;)!_, with positive
entries (w; > 0) such that

dl((xla cee 7.’I,'n), (y17 e 7yn)) = H(wl : Xm(:Elayl)a vy, Wy oo dX”(mn7yn))||1~

A.12 THE BOUNDED-LIPSCHITZ DISTANCE

Definition 43. Let X, Y be two metric spaces. Let f € Lip(X,Y), where Lip(X, D) is the space
of Lipschitz continuous mappings X +— ). We define the function ||-||;, : Lip(X,Y) — Ry by

Il = iIﬁf{L : L is a Lipschitz constant of f}.

Note that ||-||;, is a seminorm over Lip(X’, ). Moreover, notice that || f||;, can also be expressed as

@)~ )
”fHL - m;éI; d(x,y) .
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Since the set of all valid Lipschitz constants is closed from below in R and non-empty (for a Lips-
chitz function), the infimum is attainable in the sense that it still satisfies the Lipschitz condition:

[f(@) = f()l < [Iflly, dlz, y)-

Thus, || f||;, is indeed a Lipschitz constant - it is the smallest one, also known as the optimal Lipschitz
constant or the best Lipschitz constant of f.

Definition 44. Let (X, %, 1) be a measure space and (Y, ||-||y,) be a complete normed vector space
and let f : X — Y be a measurable function. The {.-norm of f is defined as

[1f |l = ess sup [ f()]|y-
reX

Definition 45 (The Bounded-Lipschitz Function). Let (X, X, i, d) be a measure space, with a met-
ric d and (Y, ||||y)) be complete normed space. Let Lip(X, Y) be the space of Lipschitz continuous
mappings X — ). We define the Bounded-Lipschitz function over Lip(X,)) as

I IBL = [l + [l

when ||-||;, and ||-|| . are defined in Definition 43 and Definition 44, respectively.

Note that as ||-|| , is a norm and ||-||;, is a semi norm then |[|-|| gy, is a seminorm as well.

Definition 46 (The Bounded-Lipschitz Distance). Let X’ be a measurable metric space, ) be a
metric space, p,v € M1 (X). and f : S — R be a pu-measurable and v-mesurable function. Let

[ tan- [ sav

be the Bounded-Lipschitz distance of v and v, respectively, where || f||BL is the Bounded-Lipschitz
function.

BL(u,v):= sup

IfllBL<1

A.13 THE KANTOROVICH-RUBINSHTEIN DISTANCE

Definition 47 (The Kantorovich-Rubinshtein Distance). Let X' be a measurable metric space, ) be
a metric space, i, v € My(X). and f : S — R be a p-measurable and v-mesurable function. Let

[ san [ sav

be the Kantorovich-Rubinshtein distance of u and v, respectively.

K(i,v) = sup
Iflln<1

A.14 THE PROKHOROV METRIC

Definition 48 (The Prokhorov Metric). Let (X, B(X) be a measurable metric space with Borel o-
algebra. We define A€ :={y € S | d(z,y) < € for some x € A} for a subset A C X and e > 0.
Then, the Prokhorov metric P on .#<1(X, B) is given by

P(p,v) :=1inf{e > 0 | u(A) < v(A°) + eand v(A) < u(A°) + ¢ for every A € B}.

B ADDITIONAL RELATED WORK

We provide here an extended discussion on related work. Several recent works consider pseudo met-
rics on graphs, aiming to capture structural properties of the graph and the computational procedure
of message passing. The latter is often described by computation trees, hierarchical structures result-
ing from unrolling message passing (Morris et al., 2019; Arvind et al., 2020; Garg et al., 2020; Xu
et al., 2020; Chuang & Jegelka, 2022; Jegelka, 2022). Similarly, hierarchical structures of measures
have been used for the analysis of MPNNs (Chen et al., 2022; 2023; Boker et al., 2023; Maskey
et al., 2022). Although these structures may look different at first glance, they can describe the same
iterative message passing mechanism. Other approaches include Titouan et al. (2019) graph metric
defined a using both Wasserstein distance and Gromov-Wasserstein distance Mémoli (2011). This

23



Published as a conference paper at ICLR 2025

approach, just like classic graph metrics Bunke & Shearer (1998); Sanfeliu & Fu (1983) requires
using approximation. In addition, several graph kernels have been proposed Vishwanathan et al.
(2010); Borgwardt et al. (2020). Here, we focus on the viewpoint of computation trees, as they
closely align with MPNNs. A number of existing works study generalization for GNNs, e.g., via
VC dimension, Rademacher complexity or PAC-Bayesian analysis (Oono & Suzuki, 2020; Tang &
Liu, 2023; Li et al., 2022; Garg et al., 2020; Maskey et al., 2022; Morris et al., 2023; Maskey et al.,
2022; Liao et al., 2021b). Most need assumptions on the data distribution, and often on the MPNN
model too. Levie (2023); Rauchwerger & Levie (2025) use covering number (Definition 29), for a
wide range of data distributions. We expand this result to a more general setting.

C ADDITIONAL DISCUSSION

Here, we provide additional high level discussion on different aspects of our construction.

C.1 THE LIMITATION OF OUR CONSTRUCTION TO DENSE GRAPHS

For sparse graphs, the number E of edges is much smaller than the number N2 of vertices squared.
As a result, the induced graphon is supported on a set of small measure. Since graphon are bounded
by 1, this means that induced graphons from sparse graphs are close in L1 ([0, 1]2) to the 0 graphon.
DIDM mover’s distance gives a courser topology than cut distance, which is courser than L1 ([0, 1]2).
Hence, since all sparse graph sequences converge to 0 in Ly ([0, 1]?), they also converge to 0 in
DIDM distance.

Therefore, we can only use our theory for datasets of graphs that roughly have the same sparsity
level S € Ny, i.e., N2 /E is on the order of some constant .S for most graphs in the dataset. For
this, one can scale our distance by S, making it appropriate to graphs with £ < N? edges, in the
sense that the graphs will not all be trivially close to 0. Our theory does not solve the problem of
sequences of graph asymptotically converging to 0.

In future work, one may develop a fine-grained expressivity theory based sparse graph limit theo-
ries. There are several graph limit theories that apply to sparse graphs, including Graphing theory
Lovasz (2020), Benjamini—Schramm limits Abért et al. (2014); Béla & Riordan (2011); Hatami et al.
(2014), stretched graphons Jian et al. (2023); Ji et al. (2024), LP graphons Borgs et al. (2014a;b),
and graphop theory Agnes Backhausz & Szegedy (2020), which extends all of the aforementioned
approaches . Future work may extend our theory to sparse graph limits.

C.2 COMPARISON OF SUM MEAN, AND NORMALIZED SUM AGGREGATIONS

See Appendix A.3 for the definition of sum and mean aggregation on attributed graphs. First, (un-
normalized) sum aggregation (Definition 20) does not work in the context of our analysis. Indeed,
given an MPNN that simply sums the features of the neighbors and given the sequence of complete
graphs of size N € Ny, then, the output of the MPNN on these graphs diverges to infinity as n — oc.
As a result, equivalency of the metric at the output space of MPNNs with a compact metric on the
space of graphs is not possible.

Another popular aggregation scheme is mean aggregation, defined canonically on graphon-signal as
follows (Maskey et al., 2022; 2024).

Definition 49 (Mean Aggregation on Graphon-Signals). Let o be an L-layer MPNN model, (W, f)
be a graph-signal, and t € [L — 1]. Then mean aggregation of (W, f)’s t-level features with respect
to the node © € V(W) is defined as

Ago(W. T, W, 1))(e) = £ ! Wz, 9)f(e. W, NP dA(y).

[0,1] W(l‘, y)d/\(y) [0,1]

The theory could potentially extend to mean aggregation using two avenues. One approach is to
do this under a limiting assumption: restricting the space to graphs/graphons with minimum node
degree bounded from below by a constant. This is like an idea outlined in Maskey et al. (2024).

A second option is to redefine dprpy using balanced OT. In this paper, dprpy highly relates to the
type of computation MPNNs with normalized sum aggregation perform. We used unbalanced OT
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(Definition 1) as the basis of dpipy due to the fact that MPNNs with normalized sum aggregation
do not average incoming messages, which means they can separate nodes of different degrees within
a graph. MPNNs with mean aggregation, in contrast, do average incoming messages. Hence, an ap-
propriate version of optimal transport, in this case, could be based on averaging. I.e., using balanced
OT on normalized measures could serve as a base for defining metrics in the analysis of MPNNs
with mean aggregation.

C.3 CONPARISON OF OUR GENERALIZATION BOUND TO RELATED WORKS

Both our work and Levie (2023); Rauchwerger & Levie (2025) do not make any assumptions on
the graphs and allow a general MPL scheme. Our classification learning setting generalizes that of
Levie (2023), which assumes a ground truth deterministic class per input, while we consider a joint
distribution over the input and label as Rauchwerger & Levie (2025).

In comparison to other recent works on generalization, Garg et al. (2020); Liao et al. (2021a) as-
sume bounded degree graphs, Morris et al. (2023) assumes graphs with bounded color complexity,
and Maskey et al. (2022; 2024) assume the graphs are sampled from a small set of graphons. More-
over, Garg et al. (2020); Liao et al. (2021a); Morris et al. (2023) do not allow a general MPL s
presented in this paper, so their dependence on N is N ~'/2. This means their generalization bound
decays faster as a function of the training set size N. Li et al. (2022) analysis is restricted to graph
convolution networks which are a special case of MPNNs. Tang & Liu (2023) does not focus on
graph classification tasks but on node classification. Oono & Suzuki (2020) focus on transductive
learning in contrast to our inductive learning analysis.

D MPNN ARCHITECTURES: STANDARD AND ALTERNATIVE
FORMULATIONS

Levie (2023) suggest a different MPNN definition for the analysis of MPNNs on graphon-signals.
This definition includes, in addition to update and readout functions, functions called message func-
tions. In this section we show that, although our MPNNs definition is, in it essence, a simplified
version of the MPNNs in Levie (2023), the two definition are equivalent in terms of expressivity.
We start with a recap on our standard MPNNs definition.

D.1 STANDARD MPNNSs

An MPNN as defined in Definition 7 consists of an initial layer which updates the features, via a
learnable Lipschitz continuous mapping ¢(?) : R? — R%, followed by L layers, each of which con-
sists of two steps: a message passing layer (MPL) that aggregates neighborhood information, fol-
lowed by a node-wise update layer. Here, when we apply the MPNN on graph-signals or graphon-
signals, we assume the MPL to be normalized sum pooling or integration pooling, respectively. The
normalized sum we use can be defined for graphon-signals as follows.

Definition 50 (Normalized Sum Aggregation on Graphon-Signals). Let ¢ be an L-layer MPNN
model, (W, f) be a graph-signal, and t € [L — 1] then normalized sum aggregation of (W, f)’s
t-level features with respect to the node x € V(W) is defined as

Agg(W, i, W, ) () = o W (z, y)f(0, W, )P ().

The update layer consists of a learnable Lipschitz continuous mapping ¢® : R2%-1 s R% where
1 <t < Lis the layer’s index. Each layer computes a representation for each node. For predictions
on the full graph, a readout layer aggregates the node representations into a single graph feature
and transforms it by a learnable Lipschitz function ¢ : R% — R¢ for some d € Ny. For the
readout on graph-signals and graphon-signals, we use average pooling. The readout layer aggre-
gates representations across all nodes when a single graph representation is required (e.g. for graph
classification).
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D.2 ALTERNATIVE MPNNSs

We next show how to extend our normalized sum aggregation, used in this paper, to an aggregation
scheme with a function called message function. This aggregation scheme is used in Levie (2023),
for the analysis of MPNNs on graphon-signals. The idea is that general message functions ¢ depend
both and the feature b at the transmitting node and the feature a at the receiving node of the message,
i.e., ¢(a,b). In Levie (2023), such a general ¢(a, b) was approximated by a linear combination of
simple tensors of the form &;ec(@)&srans(a) to accommodate the analysis.

Definition 51 (Message Function). Let K € N. For every 1 < k < K, let &k, rec, Ek trans RY¢ —
RP be Lipschitz continuous functions that we call the receiver and transmitter message functions,
respectively. The corresponding message function ¢ : R2? — RP is the function

K
= Z gk,rec (a)fk,trans (b) )

k=1

where the multiplication is element-wise along the feature dimension.

Given some signal f over the domain X, we see the point z € X as the receiver of the message
&(f(z), f(y)), and y as the transmitter, and call ¢(f(—), f(—)) : X? — RP the message kernel.

Just like with MPNN models, for predictions on the full graph, a readout layer aggregates the
node representations into a single graph feature and transforms it by a learnable Lipschitz function
¥ : R — RY for some d € Ny. For the readout, we use average pooling. We now define the
alternative MPNN model.

Definition 52 (Alternative MPNN Model). Let L € Ny and p,dy,...,dr,po,--.,PL-1,d €
No. We call the tuple (¢, $) such that ¢ is any collection p = (@™M)E_ of Lipschitz continuous
functions o0 : RP — R% and ) : Rd—1xPe—1 R, for 1 <t < L, and ¢ is any collection
¢ = (ML, of (Lipschitz continuous) message functions o) : cR2-1 s RP-1 for 1 < t < I,
an L-layer alternative MPNN model, and call o) update functions. For Lipschitz continuous 1) :
Rz s R, we call the tuple (o, ¢,1) an alternative MPNN model with readout, where v is called
a readout function. We call L the depth of the MPNN, p the input feature dimension, dy, . .., dr, the
hidden node feature dimensions, py, . . ., pr,—1 the hidden edge feature dimensions, and d the output
feature dimension.

It is possible to define the application of alternative MPNN models not only on graphon-signals,
but on graph-signals, IDMs and DIDMs as well. In this discussion our purpose is to show that our
aggregation schemes are equivalent on graph-signals and graphon-signals.

For our purpose, the application of the alternative MPNN model on graph-signals and graphon-
signals is enough.

Definition 53 (Alternative MPNNs on Graph-Signals). Let (@, ¢,%) be an L-layer alternative
MPNN model with readout, and (G, f) be a graphon-signal where f : V(G) — RP. The appli-

cation of the MPNN on (G, f) is defined as follows: initialize g0 = 0O (£(=)), and compute the
hidden node representations g( ) : V(G) — R® at layer t, with 1 < t < L and the graphon-level
output § € R by

B0 1= o (50 Z POEE60)) and &= ( o E

ue./\/'(w) veV(G)

Definition 54 (Alternative MPNNs on Graphon-Signals). Let (¢, ¢, ) be an L-layer alternative
MPNN model with readout, and (W, f) be a graphon-signal where f : V(W) — RP. The applica-
tion of the MPNN on (W, f) is defined as follows: initialize f(_o) = O (f(=)), and compute the
hidden node representations f(_t) : V(W) — R% at layer t, with 1 < t < L and the graphon-level
output § € R by

0= O (10 [ Waae G0 W) and §i= ol [

[0,1]

fHdA()).

[0,1]
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As with the standard MPNN features, to clarify the dependence of f and § on (¢, ¢) and (w, f), we

often denote (0, 8)$” or (0, &, W, £). and (0, 6, 1) or F (0, &, 1, W, f).

Definition 55 (Alternative Normalized Sum Aggregation on Graphon-Signals). Let @ be an L-layer
MPNN model, (W, f) be a graph-signal, and t € [L — 1] then normalized sum aggregation of
(W, f)’s t-level features with respect to the node = € V(W) is defined as

Agg(W, i, W, ) () = - W (z, )6 GEY 50 dA(y).

Many well-known MPNNs architectures can be easily expressed as alternative MPNNs. We now
present an examples taken from Levie (2023) of a spectral convolutional network.

Definition 56 (Vector Concatenation). Let a € R™ and b € R™ be two vectors. The concatenation
of a and b, denoted as [a; b, is a vector in R™*™ defined as:

ai
ag

Given a graph-signal (G, f), with f € R"*¢ with adjacency matrix A € R™"*", a spectral convolu-
tional layer based on a polynomial filter filter(\) = Z.j]:O N C;, where C; € R?*P, is defined to
be

J
1 .
=0

followed by a pointwise non-linearity like ReLU. Such a convolutional layer can be seen as J + 1
MPLs, where each MPL is of the form

£ [f: L Af].
n

Notice that the action f — %Af is simply the action of a normalized sum aggregation. We first define
©(©) as the identity function, and then, we define ) = [-;-] and ¢(t)(a,b) = bfor 0 < t < J, to
get the desired action. Lastly, we define

©® (f) = ReLu(fC)

for some C' € R(ZFDxP wwhere ReLu(x) = max(z, 0) is a pointwise non-linearity.

D.3 AGGREGATION SCHEMES EXPRESSIVITY EQUIVALENCY

We now show that alternative MPNN models have the same expressive power as
MPNNs with our normalized sum aggregation. Denote A%L = {f(e, qb)(,L)

HY  —  RI|(p,o)is an L-layer MPNN model} and S§* = {f(gp)(_L) o HE -
R? | is an L-layer MPNN model}. It is clear that the alternative MPNN models are as expressive

as our standard MPNN models. If we set the message function to be ¢(a, b) := b, the alternative nor-
malized sum aggregation (Definition 55) is equal to the one in Definition 50. This means that A% C
S%r . We now prove Proposition 58, that shows S C A$-. It follows immediately that the sets
{§(p, 0,0, —, =) : P(HE) — BY|(g, ¢, 1) is an L-layer alternative MPNN model with readout }
and {F(p, v, —, —) : HL +— R2|(p, 1)) is an L-layer MPNN model} are equal. We start by defin-
ing function concatenation and function Cartesian product, which we use in the proof of Proposi-
tion 58.
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Definition 57 (Function Concatenation). Let f : X — Y and g : X — Z be two functions. We
define function concatenation as the function f || g : X — Y x Z such that py o (f || g) = f and
pzo (f |l g) = f where py, pz are the canonical projections from ) X Z to Y and Z, respectively.

Given { fi }1_, a set of functions f : Xj; — Vi, we shortly denote f1]|... || fx as Hszlfk-

Proposition 58. Ler (o, ¢) be an L-layer alternative MPNN model. Then, there exists an MPNN
model ' such that,

2 L L
i 0= ) = (e, = ).
Proof. The proof is by induction.

Induction Base. For L = 0, (p,1)) = (¢(©), that is, the feature do not depend of the aggregation
and therefore, the statement is trivial and we can jsut define ¢’ = (¢'(*)) such that ¢’(®) = ©(©),

Induction Assumption. Presume that for any L-layer alternative MPNN model (¢, ¢) there exists an
L-layer MPNN model ¢’ such that f(¢, ¢, —, —)(_L) =f(¢', —, —)(L).

Induction Step. Let (¢, ¢) = ((¢)se(z41), (¢9){77") be an L+1-layers alternative MPNN model.
Then, ((¢®)e(z), (¢)E ;) is an L-layer MPNN model. By the induction assumption, there ex-
ists an L-layer MPNN model ¢’ such that (0, ¢, —, —)™ = (¢’, —, =)™ Following the message
function definition, we can write ¢(")(a, b) = Zszl &k rec(@)&k trans (b) for some Lipschitz contin-
uous functions {& rec He_ | and {&x trans H ;-

Define ¢”, an L+1-layers MPNN model, as follows: for 0 < t < L set ¢""(!) := /() and set
@"F) = (o '), when ((z) = (2) || ( H;{ 18k rec()) 1] ( H? 1€k trans (7)) € REEHDP, Define
//(L+1) = o) 5 o, where o : R22K+DP y R2P is defines as follows; let v = (v;)25 TVP ¢

R2(2K+1)p be a vector, then o (v) = ((v;)?_,, ijl Vpt 5 VBK+2)p+7))-

Let (W, f) be a graphon-signal. In the following equations we use a shorten notation and do not

write explicitly the dependence of the features on the graphon-signal, as all features depend on
(W, f). Then,

D = G (5P, | W) P dAw))

[0,1]

=" o g (CH)T), [ Wi, y)(CH@)))dy))

[0,1]

= E oo (¢, o)), [ W, )¢ 6){))dy))

[0,1]

= (e, 9) >Zam f(e,8)") / W (@, y)En trans(F(, 0)Fddy))

k=1

= " (e, 0) M, , }W(w,y)ka,mc(?(sa,¢)§L))£k,trans(f(<ﬁ,¢)( N)dy))
1 k=1

= =1 (j(p, ) / W (w, )0 (5, ), (e, 6) )y )
= (e, ¢)

D.4 LipsCcHITZ CONTINUITY WITH RESPECT TO THE CUT NORM

Levie, 2023, Theorem 4.1 (also Rauchwerger & Levie, 2025, Theorem 5.1.) states that alternative
MPNNS5s (Definition 52) over the space of graphon-signal with respect to the cut distance d (Defi-
nition 38), without the Lipschitz continuous function ¢(°), are Lipschitz continuous. Definition 52
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without the first update function () is equivalent to the definition of MPNNSs in Levie (2023);
Rauchwerger & Levie (2025). The existence of the Lipschitz continuous function ¢(°) in the model
does affect the Lipschitz constant value, but does not affect its existence, since a composition of two
Lipschitz continuous functions is a Lipschitz continuous function.

Since any standard MPNN (Definition 7) can be easily formulated as an alternative MPNN (Def-
inition 52), Rauchwerger & Levie, 2025, Theorem 5.1 holds for standard MPNNs. Therefore, we
rephrase Rauchwerger & Levie, 2025, Theorem 5.1 in terms of our definition of standard MPNNs.
We slightly adjust the notations to be consistent with our own notations.

Theorem 59 (MPNN Lipschitz Continuity with Respect to the Cut Distance). Let (¢, ) be an L-
Layer MPNN with readout. Then, there exists a constant C, y, that depends only on L, the number
of layers, and the Lipschitz constants of model’s update functions, such that

HS(Sﬁﬂdja W’ f) - S(QD, 1/}3 ‘/;g)||2 < C(gp,’([}) ! 55((‘/[/7 f)7 (V7 g))
forall (W, ), (V,g) € WL

E BASIC METRIC PROPERTIES

E.1 THE WEAK* TOPOLOGY

Let L € Ny. we motivate the need to prove that df,,; and OT dx,, are well-defined, by the fact that
the measures in ML = . #<;(HY) = A<1(HY, B(HY)) (and 2(HE) = P(HE, B(HTD))) are
defined as functions p : B(#*) — R. But for any topological space X, its -algebra B(X') depends
on the topology of X. In the case of H”, the topology is the product topology, when M, for
1 € [L] has the weak™* topology, which makes it crucial for OTd%DM to metrize the weak™ topology
on <1 (HL) and 2(HL); otherwise the sets .#<1(HE, B(HE)) and .#<1(HL, dk),;) might be
two different sets.

The well definiteness of the metric dff,,; on #* and OTyr. on P (H") follow similar arguments

used in Boker et al. (2023). Let (X, d) be a complete separable metric space. Boker et al. (2023)
showed that the unbalaced optimal transport, as we define it (see Definition 1) is indead a metric on
M <1(S) by following the proof of Pele & Werman (2008).

Lemma 60 (Boker et al. (2023), Corollary 21.). Let (S, d) be a separable metric space. Then, OT
is a metric on M<1(S,d).

Moreover, they show that this metric metrizes the weak™ topology of .#<1(.S) by proving inequali-
ties, that are known to hold for probability measures, for measures with total mass smaller then one.

Lemma 61 (Boker et al. (2023), Lemma 22.). Let (X, d) be a complete separable metric space.
Then, for all p,v € M<1(X),

BL(N?”) < K(,u,ﬂ/) < OTd(M7V) < 2P(/J'7V) <4y BL([L, V)'

Here K is the Kantorovich-Rubinshtein distance (Definition 47, BL is the Bounded-Lipschitz dis-
tance (Definition 46), P the Prokhorov metric (Definition 48). To prove Lemma 61 they follow
proofs outlined in Schay (1974) and Garcia-Palomares & Giné (1977), which use the duality of
linear programming.

A direct result of Bogachev, 2007, Theorem 8.3.2 and Prokhorov, 1956, Theorem 1.11 is that if
(X,d) is a complete separable space, then K and P metrize the weak™* topology on .#<1 (X)) and
P(X). These facts together with Lemma 61 entail the following. If (X, d) is separable, then OTy4
metrize the weak™ topology on .#<1(X’) and &7(X). We summarize this result in Lemma 62.

Lemma 62. Let (X, d) be a complete separable metric space with Borel o-algebra B. Then OT
is well defined and metrizes the weak* topology of #M<1(X) and P (X).

We can now follow the proof of Lemma 24. in Boker et al. (2023) and prove Theorem 4.
Theorem 4. Let L. € Ny. The metrics di\; on HY and OT, on P(HL) and M <1 (HF) are
well-defined. Moreover, OT 4. metrizes the weak™ topologies of M1 (HE) and P (HE).
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Proof. We start with the fact that (%%, d%,;) = (B2, ||-||,) and therefore d{p,, is well defined. As
BP is a complete separable metric space (a compact sub space of RP), by Lemma 62, convergence in
OT,o_  is equivalent to weak* convergence on .#Z<1(H’, dipy) and 2(H°, i) which is just
weak* convergence on .#<1(H%, B(H®)) and Z2(H°, B(H")), respectively. Hence, the topology
induced by OT g9 is equal to the weak* topology on .#Z<1(H°, B(1°)) and 2 (H°, B(H")) as
both spaces are metrizable. The induction step follows the same arguments with the additional claim
that dILDM is a product metric, which metrizes the product topology. O

E.2 THE COMPACTNESS OF THE SPACES OF IDMS AND DIDMs

Let K be a compact space. A well-established result (Kechris, 2012, Section 17) in measure theory
states that the space, .#<1(K), is equivalent to the set of non-negative Radon measures of total mass
at most 1. The Riesz Representation Theorem (Rudin, 1986, Theorem 6.19) establishes that these
measures correspond precisely to the non-negative linear functionals with norm at most 1 in the
dual space of continuous real-valued functions on K, C'(K, R). The weak™* topology on .#<1(K) is
defined as the minimal topology that ensures continuity of the mappings:

/ICden'_)/ICde

for all continuous real-valued functions f on K. A fundamental result asserts that .#Z< (KC), when
endowed with the weak™ topology, forms a compact metrizable space. Moreover, the Borel o-
algebra generated by this weak™* topology is identical to the conventional Borel structure on .#<1 (K)
induced by the mappings:

A—v(A), AeB(K)
where B(KC) denotes the Borel sets of K (Kechris, 2012, Section 17).
Theorem 3. The spaces HY and 2 (H*) are compact spaces for any L € N.

Proof. The proof is done using induction.

Induction Base. Recall that H° = (BE, ||-||) is a compact metric space. As unbalanced optimal
transport metrizes the weak* topology on .Z<1(H°) and Z(H"), they both form compact metriz-
able spaces.

Induction Assumption. Presume that for any 0 < L, the spaces H', .#<1(H?), and P (H') are
compact spaces for i € [L — 1].

Induction Step. Let 0 < L. Tychonoff’s theorem (see Theorem 26) states that the product of any
collection of compact topological spaces is compact with respect to the product topology. As dILDM
metrize the product topology, we can combine Tychonoff’s theorem with the induction assumption
and conclude that H* = [] ., #<1(H") is compact. We can now use the same argument as

in the induction base, i.e., unbalanced optimal transport metrizes the weak* topology on .#Z<1(H")
and Z(H"), to conclude that both .#<1(H*) and 2?(H*) with the topology induced by OTy
form compact spaces.

E.3 THE COMPACTNESS OF THE SPACE OF GRAPHON-SIGNALS

We now show that the space of graphon-signals is compact under the DIDM mover’s distance. The
compactness of the graphon-signal space makes it possible to rephrase our generalization analy-
sis directly on the graphon-signal space. More importantly, it allows us to approximate any real
continuous function over the space of graphon-signals, rather than only functions over the space
of graphon-signals that can be extended as real continuous functions over a space of DIDMs (see
Appendix I).

To do so, we use results from Levie (2023); Rauchwerger & Levie (2025). Note that in our setting,
signals are functions that map the interval [0, 1] to a general compact subset of R? rather than a
sphere around 0, as in Levie (2023); Rauchwerger & Levie (2025). Nevertheless, their results are
not affected by this change.
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The DIDM mover’s distance 05,1, is a pseudometric on WL, Consider the equivalence relation:
(W, f) ~1 (V,g) if 65150 (W, £), (V. g)) = 0. Then, the quotient space

WE /5L —Wﬁ/ ~L

DIDM

of the equivalence classes [(W, )], is a metric space, with the metric 55,5\ ([(W, £)], [(V;, 9)]) :=
5L iom (W, £),(V,g)). Notice that the equivalence relation ~ is a metric identification (Ap-
pendix A.4.7). Notice that the equivalence relation ~, is a metric identification (Appendix A.4.7).

—~—

Recall that we similarly denote by Wﬁf the graphon-signal space under metric identification ~
(Appendix A.8) of the graphon-signal cut distance d (Definition 38).

The following theorem relates the convergence in (WL, 55,1, to the convergence in (WL, 5).

Theorem 63. For any fixed L € Ny, a sequence of graphon-signals {(W5, f;) }ien, C Wﬁf, and a
graphon-signal (W, ) the following holds,

(Wi, f3) 2o, W, f) = Wi, fi) m (W, f)
(3 (3
(Wi, £)] 225 (W, )] = (Wi, £)li KN (W, D]r-

Proof. Let (W, fz) (W, f), then, it follows from Theorem 59 that fyw, 7,y — fw,s) for all

MPNN model ¢ with readout ¥ : R% +— R? where d > 0, which entails, using Lemma 11, that
brow, ;0 — B . for all MPNN model ¢ with readout ¢ : R% +— R?, where d > 0.
By Corollary 12, we have that 'y, ¢y, — I'(w,p),z (in the weak* topology). According to

Theorem 4, OT g (Cew, 1), Dw,p),) — 0. By Definition 5, (Wi, f;) % (W, f). The
other implications are straightforward, O

Theorem 64. The pseudometric space (WL, 55,p\) and the metric space (WL T 5L o)
are compact.

Proof. For any L € Ny, Theorem 63 implies that the pseudometric topology of (Wﬁ -
is cooraser than pseudometric topology of (WL?, 8n). Thus, since WLY, 65) is compact (Theo-
rem 39), WL, 65,5,) must be compact.

Let {U, }, be an open cover of Wﬁf / L The open sets in the pseudometric space are exactly
the sets of the form 71 (A), where A € X'/ ~ is open, thus {7~ (U, )} is an open cover of WL
and thus has a finite cover {71 (U,, ) };. Since the quotient map is surjective,

WL s =a(m tWLY) = n(n"H(U;U,,)) C UiU,, .

DIDM

. . d d
This means {U,, }; is a finite cover of WLy /5c . Thus, the quotient space (WL; /st 6L o)
is also compact. O

Corollary 65. The space of computation DIDMs Ty, 5) 1. LWL C P(HL) is compact.

Proof. By Theorem 64, the space of graphon signals, WE is compact. By the definition of 5D1DM

(Definition 5) the mapping Iy, f), 1. WLl - QZ(HL) is continuous. Thus T'(yy, 5, (WL is
compact, since a continuous functlon between two metric spaces sends compact sets to compact
sets. O

F COMPUTABILITY OF OUR METRICS

First, we extend Schmitzer & Schnorr, 2013, Proposition 4.5 for couplings between measures with
unequal mass, by follows the steps in the original proof. We emphasize that in Proposition 66, I"
and v do not refer to Definition 2.
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Proposition 66. For two discrete sets A, C and two measurable maps ¢, : X — A, ¢p : Y — C
denote by ¢ the product map ¢(x,y) = (¢o (), dp(y)). Then one finds

¢*F(H7 V) = F(¢a*ﬂv ¢b*y)

when ¢.T(p,v) = {y: 7= ¢ 17 € T(1,v)}.

Proof. Assume < ||v||. Forany v € I'(u, ) we get
M yy K g

(@:7)(S) =~(671(5)) > 0.

when S C A x C a measurable subset, and

(0):7(8a % C) =7(d,1(Sa) x X) = (p1)+7(¢5 ' (Sa))
= (951 (SA)) = (Ga)t(Sa)

when S4 C A a measurable subset and analogous for S¢ C C a measurable subset

(0)x7(A x S¢) = (X x ¢u(Sc) = (p1)«¥(0, ' (Se))
< V(¢;1(SC)) = (¢a)*V(SC)’

Thus (¢)«I'(4,v) € T((¢a)wpts (é1)41).

We now show by construction for any p € T'(¢q, 1, ¢p. V) the existence of some v € T'(u, v) such
that p = (¢).~y. For any element (a, ¢) € A x C construct the pre-image measure

0 if p(a,c) =0V (a,¢) # ¢z, y)

Via,e) (T, ) = { p(@)v(y)
@@ (@) Pla¢)  else

where this element wise definition for each (x, y) is extended to all subsets of X’ x ) by

V(a,c) (8) = Z Y(a,e) (SE, y)

(z,y)€eS

when S is any measurable subset of X x ). Now consider v = Z(a eyeAxc Vaye)- First verify that
it is indeed contained in T'(, v):

v(8) > 0: V measurable S C X' x ).

since v(x,y) > 0 for all (x, y). Furthermore
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() ()
M= 2 D Gam@en " @

z€ESx (a,c)EAXC:

YEY p(x,y)=(ac),
p(a, c)>0

= ’U(Z)(z Py (y)= (y)) e
=2 2 GG @@

p(¢a(x),c)>0
= p(z)v(dy *(c)) o
gs:x 62: ((Pa)st)(Palz ))((%)*y)(C)P(%( ), ¢)
p(¢a(x),c)>0
B Y C) B o
_IEXS: ((¢a)«p)(Pa(z)) CZC: p(pa(z), )
p(da(z),c)>0
p(z)

= 3 Gy P0a@)

=S W(%MW)) = 3 u(@) = plSw)

TESx

for all measurable subsets Sy C X and likewise

Y(X x Sy) < v(Sy).

e pu(z)v(y) ac
TSy yEZSy (a,c)gélxc; <( ) )(a)((% *V)( )p( -
e

—_ (Zw:¢b($):a u(x))l/(y)
"2 2 ((@a)«rt)(@)((d6)+)(d5(y))

yESy acA:
pa,¢s(y))>0

p(¢a(), )

2 G @(@)e) @)

p(axzb(y§)>0

N vy "
=2 e > eab)

a€A:
pa,dp(y))>0

N )
- Z ((¢b)*y> ¢b(y))(p2)*p(¢a(y))

<Y ol (@) = L vla) = v(Sa)

yESy

for all measurable subsets Sy C ). Now check whether ¢.y = p:
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(@):(S) =20 S) = > Ay

(z,y)ep=1(S)
_ ,u(as)y(y) i
) (x v)eg‘l(sy ((%)*“)wa(ﬂc))((¢b)*v)(¢b(y))p(¢( 'Y))
P(6(2.))>0
n(z)v(y)
((Ez%):e)s (z,y)eq;((avc)) ((%)*u)(a)((%)*y)(c)p(a,c)
p((a,c))>0
(Em€¢;1({1) M(x))(zye¢b—1(c) y(y))
> (B @G o)

(a,c)eS
p((a,c))>0

= )= ulS)
(a,c)€S
p((a,c))>0

when S is a measurable subset of X x ). Consequently any p € T'((¢q ) /s, (¢p)«V) is also contained
in ¢,.I'(p, v) and the two sets are equal. O

Chen et al., 2022, Lemma A.1 is now easily extended to measures with unequal mass. Although the
proof is equivalent to the one in Chen et al. (2022), we will add it here for completeness.

Lemma 67. Ler X, be finite metric spaces and let (£, dz) be a complete and separable metric
space. Let px : X — Z and ¢y : Y — Z be measurable maps. Consider any pux € M<1(X) and
puy € M<1(Y). Then, we have that

OTu((bx)upizes (By)eiy) = in /X | 0 (a), oyl dy).

vET (nx,py)

Proof. Since X and ) are finite, ¢ x (X') and ¢ () are discrete sets. Then, if we let ¢ := ¢px X dy,
(@)L (1, py) = T((y)sprx (D) py)
follows directly from Proposition 66.

Hence,

OT((px)spix; (dy)spy) = dz(z1, z2)y(dzy X dz)

inf /
YET((Px)sppxs (D)) Jzx 2

inf / dg(zl, Zz)(/j)*’y(dzl X dZQ)
vel(wv) Jzx 2

N veirr(l;ft,u) /Xxy dz(px(x), oy (y))y(de x dy).

O

Now, following the constraction of the algorithms used to compute the Weisfeiler-Lehman metric
in Chen et al. (2022) and the metrics presented in Grebik & Rocha (2021), we phrase an algorithm
for computing 65, for L € Ny. We note that instead of using a min-cost-flow algorithm Pele
& Werman (2009) to solve the unbalanced optimal transport problem, we use linear programming
Flamary et al. (2021) as it is more convenient when working with real values (instead of integers).
The unbalaced optimal transport problem can casted into a regular optimal transport problem by
adding reservoir points in which the surplus mass is sent Chapel et al. (2020).

Theorem 6. For any fixed L € Ny, 65,1\, between any two graph-signals (G, f) and (H,g) can
be computed in time polynomial in L and the size of G and H, namely O(L - N°log(N)), where
N =max(|V(G)|, |V (H)]).
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Proof. From Lemma 67 we have that
5biom (G- £), (H,8)) = OT (T ce).0. Dmg).z) = OT ((vc.n).), Ave) (Vrg).L), Avim)

= inf / dion (V6,0 (@), Yrg) L (Y)) v(dz x dy).
’YGF(AWG) Avn) Jv(@)xv(H)

In order to compute 055, ((G, ), (H, g)), we must first compute dityy; (Y(a.£),0(2), Vi), ()
foreach x € V(G) and y € V(H). To do this, we introduce some notation. Foreachi =1,..., L,
we let C;, D; denote the |V(G)| x |V (H)| matrices such that for each z € V(G) and y € V(H),

Ci(z,y) = d%DM (’Y(G,f),z‘(x)aW(H,g),qi(y)) yDi(z,y) == oT" (’Y(G,f),z‘(w)(i)»’Y(H,g),i(y)(i)) .

We also let Cy denote the matrix such that Cy(x,y) := ||f(x) — g(y)||2 for each z € V(G) and
y € V(H). Then, our task is to compute the matrix C. For this purpose, we consecutively
compute the matrices C; and D; for i = 1,..., L. Given matrix C;_1, since vq,¢):(2)(i) =

(VG.0),i-1(2)), V(6.0 ad Y(ar,g),i(¥) (D) = (V(ar,g),i-1(Y)), V(51,g)> computing

oT! (’Y(G,f),i(x)(i)7 V(H,g),i(y)(i))

= inf / dioy (VG0),i-1(@), Vi g).im1 (y)) Y(dz x dy).
(G)xV(H)

YT (v(a,6):V(H,g)) JV

is reduced to solving the optimal transport problem with C;_; as the cost matrix and v(¢ ¢) and

V(H,g) as the source and target distributions, which can be done in O(N?log(N)) time (Flamary
et al., 2021; Chapel et al., 2020). Thus, for each ¢, computing D; given that we know C;_; requires
O(N?% . N3log(N)). To get C;, all that remains is to compute the sum D; + C;_;. Finally, we
need O(N3log(N)) time to compute 5515, ((G, ), (H, g)) based on solving an optimal transport
problem with cost matrix C'z, and with Ay () and Ay (p) being the source and target distributions.

Therefore, the total time needed to compute 65,1, ((G, ), (H,g)) is

L-O(N®log(N)) 4+ O(N®log(N)) = O(L - N°log(N)).

For any N € Ny, 05, generates a distance between two graph-signls with number of vertices
bounded by V. O

G EQUIVALENCY OF MPNNS ON GRAPHS, GRAPHONS, AND DIDMS

Here, we show that, first, for a graph-signal (G, f), the output of an MPNN on G is equal to the
output of the MPNN on the corresponding induced graphon-signal (W, f), similarly to of Boker
et al., 2023, Appendix C.1.

Lemma 68. Let (G, f) be a graph-signal and o be an L-layer MPNN model. Let (I,,),cv (c) be the
partition of [0, 1] used in the construction of (W, f¢) from (G, f). Then, for all t € [L],v € V(G),
andx € I,

0= f(p, We, fo)) = g(p, G, £)) =: g1,

Proof. We prove the claim by induction on ¢.

Base of the induction. For allv € V(G) and z € I,,,

O =@ o fe(z) = ! o f(v) = g
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Induction step. The induction assumption is that fgfl = gq(f b forallv € V(G) and z € I,.
Then, for all v € V(G) and x € I, we have

i) = (f;f—”,

[ ]Wc(x )i 1dy> =™ | i1, / We (z,y)if Dy
0,1

ueV(QG)

= [ gn, 3 /WGJU:U (t=1) g,

ueV (G

— o® (t=1) __ - Z (t=1) | — 4@
=@ gv ’ gu - gv :
IV(G)\ N (o)

O

Lemma 69. Let (G,f) be a graph, let (p,) be an L-layer MPNN model with readout. Let
(We, f¢) be the induced graphon of (G, f). Then,

& :=6(p,v,G, 1) =F(p, v, W, fr) = F

Proof. Let (I,),cv (¢ be the partition of [0, 1] used in the construction (Wg, f¢) from (G, f). With

Lemma 68, we get
F = </ fiL)dA(m)> [ 2 / RN
[0,1]

veV(G)
=1 Z /gv d\(z

veV(G)
oY ) -
V(@) !
veV(G)

O

Theorem 70 (Change of Variable Formula). Let Xy, X5 be two measurable spaces and 1 a mea-
sure on X1. A measurable function g on X is integrable with respect to the pushforward measure
F(u)(A) = u(f~*(A) if and only if the composition g o f is integrable with respect to the measure
w. In that case, the integrals coincide, i.e.,

/ngd(f*u)=/xlg<>fdu-

Note that in the previous formula X, = f~1(Xs).

The following lemma is related to the absolute continuity of weighted Lebesgue measures with
respect to the Lebesgue measure.

Lemma 71 (Billingsley (1995), Theorem 16.11.). Let § : [0,1] — R be a nonnegative measurable
function and A C [0,1] be any measurable set. Denote the measure vs(A) = [, dd\. Then, a

measurable function f : [0, 1] — R is integrable with respect to vs(A) if and only if f§ is integrable
with respect to ), in which case [ , fdvs = [, fod\.

Now, we use Lemma 71 to show that the output of an MPNN without readout on a graphon-signal
(W, f) equals the output of the MPNN on the corresponding distribution of computation IDMs
F(W,f) of (W, f)

Lemma 72. Let (W, f) € Wﬁf a graphon-signal and ¢ be a L-layer MPNN model. Then, for
every t € [L] and almost every z € [0, 1],

D =50, W, N =D (@), ) = b

Yw, 5y, ()
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Proof. We prove by induction on t.

Induction Base. We have by definition

i =0 fla) = b},

YW, f), o(z)

Induction Assumption. Let 1 <t < L. We assume that

(t 1 _—
b'Y(Wf) t—1()

for almost every z € [0, 1].
Induction Step. We have

f?:wm<w*% W@yﬂt%M>>
[0.1]

Then, by Lemma 71 Vz € [0,1] : f(_t_l) is integrable with respect to vy (,_)(A) =
J4 W (z,y)d\(y) if and only if ftil)W(a:,y) is integrable with respect to ), in which case
Jafy (¢=1) duw(z () = [ 4Ty Uy (2, y)dM(y). So

fO = o (f(t Y /[0 : fg(f‘”duwu,)(y)) = (%)

(t 1 _ h(t 1)

Yw, ), t—1(x)’

(t) (t-1) (t=1)
( ) (hv(w,f),t—l(w)’/[o 1 h”f(w,,f),t_l(y)dyw(x7)(y)>

— (t=1) -1
—‘P(t)(hww,n,t_l(w)’ o 1]*’“ )°7<w,f>7t71(y)dWW,f)(m.,—)(y))

Hence, by the induction assumption, i.e., Vz € [0,1] : we have

—_ @O (pt-1) (t—1) B
a )<hv<w,f),t_1<m>vAt_l h- d(ww,f),t—l)*'/(w,fxx,—)) = (x)
Once again, by Lemma 71 Vx € [0, 1] : 2 > x is integrable with respect to vy (,,, ) (A) if and only

if W (z, y) is integrable with respect to A, in which case [, dvy (»,—y = [, W (z,y)dA(y). So, for
allC € B(H!™Y)

(w2 ©) = | W (2, y)dA(y)
.
B / . dvw @,y = (YW, ), t=1) VW (2, (C)-
Yo 1 (€

where C € M1 2 (Y, p)0-1)=¥ W) (©)(w.-) = Y. —) (Vw1 (C)) s the push forward
measure of v(yy, ry(z,—)- The third equality result from the change of variable formula (Theorem 70).
Therefore,

_ ) (-1 (t-1)
()= (05,0 o [0 (o))

_ ) (1) (t—1) _ ()
= (bptytl(ﬂ/(w_’f)’t(x))a[{tl h dpt('Y(W,f),t($))> = h'V(W,f),t(x)

Hence, all in all, we have

t) — h(t)

Yw, 1)t ()
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Next, we use Lemma 72 to show that the output of an MPNN with readout on a graphon-signal
(W, f) equals the output of the MPNN on the corresponding distribution of computation IDMs

F(W,f) of (W, f)
Lemma 73. Let (W, f) € WL, let (p,v) be an L-layer MPNN model with readout, then

§ = 3(%% VV) f) = 53(90, ZZ% F(W,f),L) =9
Proof. Recall that for any A € B(.#;—1),
Lw.p).L(4) = /7 Y.
g

w. ), (A)
So,
Cow.py.L = (Yw,p),0) A
Equality follows from the above remark and Lemma 72.

H=1 (/ h(L)dF(W,f),L)

=1 fJ( Jd( ’Y(Wf)L)*)‘)

- ( [0,1] ”f(w . L(w)d)\(l‘)>

f(L)d/\ >>

O

Hence, it suffices to consider MPNNs on DIDMs. We can summerazie the results of this section in
the following lemma.

Lemma 11. Ler (W, f) be a graphon-signal and (p,v) an L-layer MPNN model with readout.
Then, given the computation IDMs {'y(W’f),t}tho and DIDM T vy, 5) 1., we have that §(¢, W, f)gf) =

h()\" foranyt € [L), & € [0,1]. Similarly, §(p,1, W, f) = (¢, %, Tiw.p).1)

Y(W, f),t 93)
H LipSCcHITZ CONTINUITY OF MPNNS

In this section, we prove that MPNNs are Lipschitz continuous. Note that here ||f|| :=
esssup, ¢y || f(z)|ly, for a function f : X — R? (see Definition 44 in Appendix A.12 for a more
general definition).

H.1 UPPER BOUNDS OF HIDDEN REPRESENTATIONS AND OUTPUTS OF MPNNS

We start by showing that the features of MPNNs are bounded. A fact we relay on, in the prof of
Theorem 13. Recall that we deﬁned the formal bias of a function f : R% — R% to be || £(0)],.

Here, we use the notation B = Hgo(t) )H , to denote the formal bias of any update function o®
of an MPNN model ¢ = (¢<t>) Lo

Theorem 74. Let o = (o)L, be an L-layer MPNN model. Then there exists a constant B, that

depends only on L, the number of layers, ||<p(t) ||L the Lipschitz constants of the update functions
and B, the formal bias of the update functions, such that

t
15) ] < B,
If © has a readout function 1, then, there exists a constant B, that depends only on B, and
|¥]|},, the Lipschitz constant of the model’s readout function, such that

||57J((p7 wv _) ”OO S B(S"ﬂP)'
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For an L-layer MPNN model ¢ = (¢®))E _o, we define a constant, which (we later show) bounds
b(2)'", by B,, := BL, when B!, > 0 is inductively defined for ¢ € {0,..., L} by

B! =

{T' 9], + By tift =0,
%)

2||90(t)“LBL(pt_1)+BLP(t) (if0 <t < L,
when || - || is defined in Appendix A.12 (Definition 43) and » > 0 is the radius of HZ = BY

(see Section 2). If additionally the MPNN model has a readout function v/, then we define another
constant, which (we later show) bounds $(¢, 1, —)(L), by

B(ey) = [¥[l, BE + By.

Proof. Let us now prove the first inequality of Theorem 13 by induction. Let L € Ny and ¢ =
(¢)tefr) L-layer MPNN model.

Induction Base. Fort = 0, let 7 € H° = B¢, the statement holds since

0], - [P, - #2100, ol

L L e e T

[)(0)

T

‘ 2 2

Induction Assumption. We assume
(t=1) t—1
s, = B¢

forsome 0 < t < L.
Induction Step. Let 7 € H!, we have

— |o® (=D (t-1)
2 ® (hpt,t_l(T)’/Htl b dpt(T)) ,
< |le® h(tfl) 7 h(_t’l)dpt(T) — o®(0,0)
pt,t—1(T) ggt—1
< |l H ‘ / b Dap, ()| ) + B
’}.[tfl 2

B A Y P Vi Y
L vEHI1 2 Jue-r ventt 2

<], o]+ 2], B+ =

o

)
2

p(t—D

Pt t— 1(7)

As this is true for any 7, we have
1580 < B

Notice that, for t = L, we get
L
165 )l < By

The second part then follows from the first by a similar reasoning.

() ol

L L
[ o By <l [0+ By <, BE + By

el = o ([ 0%a) + 1 O,

<l
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H.2 LipscHITZ CONTINUITY OF MPNNS WITH RESPECT TO OUR METRICS

To prove that MPNNs are Lipschitz continuous, we follow the proofs of Grebik & Rocha, 2021,
Appendix C.2.5.. The next claim is a trivial result of Claim 23. in Boker et al. (2023).

Lemma 75. Let f : S — R" be Lipschitz. Then,

[orau= [ gar] < isi (= + [ _dwnarien)

Sor every v € T'(u,v), where 7y is a coupling as defined in Section 2 and || - ||BL is the Bounded-
Lipschitz seminorm defined in Appendix A.12 (Definition 45) over Lip(S,R™), when Lip(S,R"™) is
the space of Lipschitz continuous mappings S — R™.

Theorem 13. Let ¢ be an L-layer MPNN model. Then there exists a constant C, that depends
only on the number of layers L and the Lipschitz constants of the update functions, such that

100, )" =10, B) P2 < Cp - dip (e, )

forall o, 3 € HE. If ¢ has a readout function 1, then, for all p,v € P (HL), there exists a constant
Clp,) that depends only on C, and the Lipschitz constant of the model’s readout function, such that

””6(307 wv p,) - 55(90; 7;/}’ V)”Q < C(ga,w) : OTdILDM (:U" l/)'

For an L-layer MPNN model ¢ = () )L, we define a constant, which we later show is a Lipschitz
constant of h(np)(_L), by C, := C’é, when Cf, > 0 is inductively defined for t € {0,..., L} by

ot el Lift =0,
220 (0 Ve +C5Y it <t <L,

when || - ||1, is defined in Appendix A.12 (Definition 43). If additionally the MPNN model has a
readout function 1, then we define another constant, which we later show is a Lipschitz constant of

(SO 1/}7 )(L by
Clow = Il ([0 + o).

Since the features of MPNNs are bounded (Theorem 74), these constants are well defined. We
now use Lemma 75 to prove the MPNN’s Lipschitz property. We show that, given an L-layer
MPNN model ¢ and a readout function ¢, C,, and C{,, 4 are Lipschitz constants of h(cp)SL) and
$H(p, ¥, —), respectively.

Proof. Let us now prove the first inequality of Theorem 13 by induction. Let L € Ny and ¢ =
(¢)teqr) L-layer MPNN model.

Induction Base. Fort = 0, p = (¢(©), the statement holds trivially since ¢(*) is Lipschitz and
0

b = ¢©(a).

Induction Assumption. We assume that the statement hold for ¢t — 1 for 0 < ¢ < L.

Induction Step. For the inductive step, we have, by Lemma 75 and the induction hypothesis, for all
a, B € H.

155 — 5512

iy e (h;i:iiw [ ane)) = (000 [0 Vi)
t—1 -1 2

<Hbl(7ttt11(04)_hpu 1(5)H H/H‘ . t K dpt o) — /Htilh(—til)dpt(/@)

(0 dingy (pre—1 (@), pea—1.(8)) + 107V | BLOT gy (pe(@), p2(5))

IDM

<

)

—1 —
ngwHLub, lpedipa(a. ) =2 ||| (6% oo + 167V L) - dipar(a, 8)

= 2| (16% Ve + CE) - dhpaa(, B) = Chilipa (e, B)

<
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The second inequality results from combining induction with Lemma 75. Hence, we get the first
part of Theorem 13. Notice that, for t = L, we get

L
1655 — 55 [l2 < Codipy(a, B).

The second part then follows from the first by a similar reasoning. For all y, v € 2 (H¥) we have

o) = ite ol = o ([ @) <u ([ o)

<ol [ o@an— [ o®a

L
<l [0 0Ty

2

2

(1, v)

IDM
=l (o] + 6%, ) 0T, (1)
= Il (||o)_ + %) OTug,,, 11)

= el ([|o™] _ + . ) 0Ty, (0.0
=Clp)OT gz (1, v).

IDM

O

The second inequality is a result of Lemma 75 and the Lipschitzness from the first part of Theo-
rem 13. For the sake of completeness, we state Theorem 13 as an epsilon-delta statement.

Theorem 76. Let d > 0 be fixed. For every L € Ny, C > 0, and ¢ > 0, there is a § > 0 such
that, for all order-t DIDMs p and v, if OT g (p,v) < 0, then [[(, 9, 1) — H(p, 9, v)|2 < €
for every L-layer MPNN model o with readout function 1 : R4 — R® with Clop) < C.

Proof. Follows immediately from Theorem 13. O

I UNIVERSALITY AND FINE-GRAINED EXPRESSIVITY OF
MESSAGE-PASSING NEURAL NETWORKS

In this section we first prove our universal approximation theorem for MPNNs on IDMs and DIDMs,
showing the sets N} and NN are dense in C(H!,R) and C(Z(H!),R), respectively. We then
conclude universal approximation theorems for MPNNs on graph-signals and graphon-signals.

I.1 UNIVERSALITY OF MPNNS OVER THE SPACES OF IDMS AND DIDMSs

The proofs of Lemma 78, Theorem 15, follow the proofs of Lemma 25, Theorem 4, and Theo-
rem 6 in Boker et al. (2023), respectively. This follows by inductively applying Stone—Weierstrass
theorem, cf. Appendix A.5, to the set /\/'tl. Given that Ml satisfies all requirements of the
Stone—Weierstrass theorem, Corollary 12 yields that J\/;}Jrl separates points, which allows us to show
that N;l_H again satisfies all requirements of the Stone-Weierstrass theorem. We recall the canonical
projections were denoted by pr, ; : HY +— H7 and pr, : HY — MPE, when j < L < co. We first
introduce function Cartesian product.

Definition 77 (Function Cartesian Product). Let f : Xy — Y and g : Xy — Z be two functions.

We define function Cartesian product as the function f X g : X1 X Xo — Y X Z such that (f x
9)((w1,72)) = (f(w1), 9(x2)) for (z1,72) € X1 X X

Given a set A, recall that we denote by 14 : A — R a non-zero constant function. Let ¢, ¢’ be
two L-layer MPNN models. Define Zpu1((z,)7) := 2 - y and Zpqq((z,y)T) := 2 + ¢ - y for all
z,y € R, where ¢ € R is fixed. Then, define

(t),E (p(tJrl) « QD/(t+1)))

mulo(

Gl 1= (SD(O) « wl(o),'..’w(t) x o
and define @,qq analogously via Z,44.
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Lemma 78. Let 0 <t < oco. The set ./\ft1 are closed under multiplication and linear combinations,
contains 14 and separates points of H'.

Proof. We will now prove the lemma inductively.

Induction Base. For t = 0, the claim trivially holds as /i contains precisely the functions f : H°
R that are Lipschitz continuous which contains 140, and closed to multiplication and addition.

Induction Assumption. We assume the sets AV} is closed under multiplication and linear combina-
tions, contains 14+ and separates points of 7.
Induction Step. Let t + 1. Clearly N} ;11 contains the all-one function 15;:+1 since we can always

choose p(**1) in an MPNN model to be the all-one function on any of the two inputs. Let ¢,
¢’ be two (t 4+ 1)-layer MPNN models. Note that ¢y, and @,qq are in fact MPNN models since
multiplication and addition on a compact, and hence, a bounded subset of R2is Lipschitz continuous.

Let o, 8 € H!T! with a # 3. We consider two cases: either p;1(a) # piy1(B) or pir14() #
piy1,.(B). We start with the first case, i.e., py1(a) # pi+1(8). By the induction hypothesis, the
set NV} is closed under multiplication and linear combinations, contains 13, and separates points
of H!. Hence, it is a sub-algebra of C'(#!,R) that separates points and contains the constants. By
the Stone-Weierstrass theorem, N is dense in C(H*,R). Corollary 36 then entails that there is a
t-layer MPNN model ¢ with output dimension one such that

/ b(o) Vdpea(@) £ | 5(0)Ddper(B).
Ht HE

Define the (¢ + 1)-layer MPNN model ¢’ := (¢'@)!t0, where ¢V = ¢ for i € [t] and

i=0"

@'t () := y for every (x,y) € R2. Then, ¢’ € N}, separates o and 3 since

H+ (o / b() D dpes(a)
=h(p ) dpt+1 7’5/ h(e dptﬂ(ﬂ)

/ 0(") Y dpesa(8) = H4HV (Y, B).

In the second case, where p;y1 ¢ () # pi41,:(5), we have that, from the induction assumption, there
exists a t-layer MPNN model ¢ such that f)(ga)pt+1 () T h(p )thrl () Define the (t + 1)-layer

MPNN model ¢/ := ($'@)iE5, where ') = ¢ for i € [t] and 3’V (z,y) :=  for every
(x,y) € R2. Then, ¢’ € N}! separates o and /3 since

(@) =B,
h( );E;?_H () 7& h( )pf+1 +(8)
= b)Y =05,

pe+1,¢(8

O

With Lemma 78, we immediately obtain Theorem 15, which we restate here for better readability.

Theorem 15 (Universal Approximation). Let L € Ny. Then, the set N} is uniformly dense in
C(HL,R) and the set NN} is uniformly dense in C(2(HL),R).

Proof. By Lemma 78, the Stone-Weierstrass theorem is applicable to A/}, and hence, N} is dense
in C(HY,R). We can then use this to show that NA} is dense in C(Z(H%),R). By the same
arguments as in the first case of the inductive step in the proof of Lemma 78, NN} is closed
under multiplication and linear combinations, contains the all-one function, and separates points of
P (HY). Hence, an application Corollary 36 yields that VA7 is dense in C(Z2(HL),R). O

Theorem 15 then yields Corollary 12. To prove Corollary 12, we follow the proof of Corollary 5. in
Boker et al. (2023).
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Corollary 12. Let L € Ny and d > 0 be fixed. Let v € P (HY) and (v;); be a sequence with
v; € P(HE). Then, v; — v if and only if $H(p, ¥, v;) — H(p, v, v) for all L-layer MPNN models
© with a readout function 1) : R4 — R%,

Proof. First, let n = 1. When restricted to functions (¢, 1, —) € NN} of the form $H(p, ¥, v) =
fML b(,L)dz/, i.e., the readout ¢ is the identity, the claim follows since N/} is dense in C' (M, R) by

Theorem 15 and the definition of the weak™ topology on &2 (M},), cf. Section 2. Since the readout
function 1) is continuous, the equivalence also holds when considering all functions in the set N’A/ g
Finally, since one can always consider the projection to a single component and conversely map a
single real number to a vector of these numbers, the equivalence also holds in the case n > 1. [

1.2 PROOF OF FINE-GRAINED EXPRESSIVITY OF MPNNS

Here, we present the proof of Theorem 14, which we copy here for the convenience of the reader.

Theorem 14. Let d > 0 be fixed. For every € > 0, there are L € Ny, C > 0, and 6 > 0 such that,
for all DIDMs 1, v € P(HE), if |9(p, 0, 1) — H(p,0,v)||2 < & holds for every L-layer MPNN
model o with readout function 1 : R — R when C, ) < C, then OTu (uv)<e

Proof. Assume that there is an € > 0 such that such L € Ny, C > 0, and § > 0 do not exist.
Then, for every L € N and C' > 0y := 1/k > 0, there are L-layer DIDMs i, and v such that
15 (p, ¥, ) — H (@, ¥, vi)||2 < O for every L-layer MPNN model (¢, ¢») with readout and output
dimension d, and C(,,4) < C but also OT . (uk,vx) > €. By the compactness of P(HD),

there are subsequences (1%, ); and (v, ); converging to DIDMs [z and 7, respectively, in the weak*
topology. Let ¢ be an L-layer MPNN model and a readout fucntion ¢» : R% — R? Then,
by Corollary 12, also ('6(957 '(/}7 /j’kl))l and (‘6(@7 1/)7 Vki))l converge to ”6(957 ¢7 ﬁ) and ﬁ(@ﬂ ZZ% FVV)’
respectively. Hence,
||‘FJ(¢’ 1;’ 17) - ﬁ(@v '(/37 lj)HQ S"ﬁ(@, QL) D') - ‘6(@’ &a Vki)”Q
+ ||*6(52)a 1% Vki) - g)(@a wa Mk?,)
+ ||f.)(¢77 7&7 ,U/krl) - ﬁ((ﬁ? ’(2}7 /7)||2 H—OO> 0

by the assumption, i.e., $(, v, 1) = $(,v, 7). Since this holds for every MPNN model and
Lipschitz ¢, we have OT g (11,) = 0 by Corollary 12 and Theorem 4 with the fact that P(HE)

is Hausdorff. Then, however

2

~ ~ o~ ~ k— oo
OTdI"DM (:uki’ Vki) < OTdIDM (/‘Lki7 :u) + OTdILDM (/u‘v V) + OTdILDM (Vv sz‘) —>—> 0

since (vk, ); and (pk, )i converge to v and /i, respectively, also in OT 4z by by Corollary 12 and
Theorem 4. This contradicts the assumption that OT'yz (pk;, vi;) > € for every k > 0. O

1.3 UNIVERSALITY OF MPNNS OVER THE SPACES OF GRAPH-SIGNALS AND
GRAPHON-SIGNALS

Note that Theorem 15 states that any continuous function from DIDMs to scalars can be ap-
proximated by an MPNN on DIDMs. To infer a universal approximation result for functions
from graph-signals to vector we emphasize the following considerations. Recall we define the set

NNEOWLE) = {F(p, 0, —, —) : WLE — R¥ (¢, ) is an L-layer MPNN model with readout}.
First, note that the space of computation DIDMs, Ty, 5y, L(WLY), is a strict subset of P2(HL),

which is not dense (w.r.t 65;5,,) in view of Theorem 64. Indeed, there are DIDMs that do not come
from any graphon-signal, and a closed strict subset cannot be dense. Hence, the space of DIDMs
of graph-signals is also not dense. Hence, Theorem 15 does not imply that any continuous function

(wrt 5{51DM) from graph-signal to vector can be approximated by N A/ dL. Rather, any function on
graph-signals that can be extended to a continuous function on DIDMs can be approximated by

NN?, which is a weaker form of universality. Fortunately, we can directly prove a universal ap-
proximation theorem directly for the space Wﬁf, which in terms gives a universal approximation
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theorem for continuous functions from graph-signals to vectors by a density argument. For this, we
prove Theorem 79 stating that graph-signals are dense in Wﬁf W.IL.t. 5[L)IDM.

Theorem 16. Let L € Ny. Then, the set NN} (WLE) is uniformly dense in C(WL?, R).

Proof. By Theorem 64, the space of graphon-signals is compact. With similar arguments presented
in the proof of Lemma 78, NN} (WLY) is a subalgebra of C(WLZ, R). Lemma 11 together with
the fact that A"V} separate points (see the proof of Theorem 15) yields that NN} (WL?) separate
points. We can thus apply the Stone—Weierstrass theorem to N'A; (WLY), hence, NNV L(WLE) is
uniformly dense in C(WL?, R). O

Theorem 79. Let L € Ny. Graph-signals are dense in Wﬁff w.rt. 650

Proof. A direct conclusion of the graphon-signals regularity lemma (Theorem 42) w.r.t. the cut dis-
tance, d0, is that graph-signals are dense in the space of graphon-signals w.r.t. i, i.e. (Wﬁf, o).
For any L € Ny, Theorem 63 implies that the pseudometric topology of (Wﬁf, (%IDM) is cooraser

than pseudometric topology of (Wﬁf ,00). Thus, since graph-signals are dense in (Wﬁf, dn),
graph-signals are dense in raph-signals are dense in the space of graphon-signals w.r.t. 05y, i-€.,

(W£g7 (sélDM)' 0

J PROXIMITY RELATIONS OF MPNNS

Here, we summarize how proximity of any MPNN’s outputs on any two different DIDMs is related
to the proximity of the two DIDMs.

Theorem 80. Let L € Ny and (1;); be a sequence of order-L DIDMs, and let i € P (H™) be a
DIDM. Then, the following are equivalent:

1. OTye  (pi, ) — 0.

2. h,, — hy, for any MPNN model @ with readout 1 : R — RY, where d > 0.

3. g =

Proof. The implication (1) = (2) is just a result of Theorem 13, and its converse is Theorem 14.
Properties (1) and (2) are equivalent to (3) by Theorem 4 and Corollary 12. O

We further note that the following variant of Theorem 80 holds as well.
Theorem 81. Let yi, v € P(HL). Then, the following are equivalent:

]. OTdL

IDM

(1,v) =0.
2. b, = b, for every MPNN model ¢ and a readout function 1) : R? — R™, where n > 0.

3. u=w.
Proof. The equivalences follow as in Theorem 80 since & (H¥) is Hausdorff. O

K GENERALIZATION THEOREM FOR MPNNs

We expand the generalization analysis in Levie (2023) to a more general setting as done in Rauch-
werger & Levie (2025) and adjust it to meet our definitions.
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K.1 STATISTICAL LEARNING AND GENERALIZATION ANALYSIS

In statistical learning theory, usually we consider a product probability space P = X x ), which
represents all possible data. We call any arbitrary probability measure on (P, B(P)) a data dis-
tribution. We presume we have a fixed and unknown data distribution 7. As the completeness of
our measure space does not affect our construction, we may assume that we complete B(P) with
respect to 7 to a complete o-algebra ¥ or just denote ¥ = B(P). Additionally, let X C P be a
dataset of independent random samples from (P, 7). Additionally, we presume ) contains values
that relate to every point in X, according to a fixed and unknown conditional distribution function
Tylx € Z(Y). Inits essence, the problem of learning is choosing from some set of function, the
one that best approximate the relation between the points in ) and the points in X.

Let &£ be a Lipschitz loss function with a Lipschitz constant denote by C¢. Note that the loss £ can
have a learnable component that depends on the dataset X as long as it is Lipschitz with a constant
Cg. Our objective is to find the optimal model 9t from some hypothesis space Z that has a low
statistical risk

R(M) = Eqypr [EOR(W), y)] = / EOMW),y)dr(v.y), MeZ

However, as stated before, the true distribution 7 is not directly observable. Instead, we have access
to a set of independent, identically distributed (i.i.d) samples X = (Xi,...,Xy) from the data
distribution (P, 7). Instead of minimizing the statistical risk with an unknown data distribution 7,
we try to approximation the optimal model by minimizing the empirical risk:

N
Rx(x) = - 3 £ (), V),
i=1

where 0 < i < N : X; = (1,Y;) and Mx is a model with some possible dependence on the
sampled data, e.g., through training.

Generalization analysis goal is to show that low empirical risk of a a network entails low statistical
risk as well. One approach to bounding the statistical risk involves using the inequality:

RN < R(M) + E

where F is called the generalization error, defined as:

E = sup [R(O) — R(O)|
OcH

It is important to note that the trained network 91 := x depends on the dataset X. This essantially
means that the empirical risk is not truly a Monte Carlo approximation of the statistical risk in the
learning context, as the network is not constant when varying the dataset. If the model 91 was
fixed, Monte Carlo theory would provide us an order O(1/((p)/N) bound for E with probability
1 — p, where ((p) depends on the specific inequality used (e.g., {(p) = log(2/p) in Hoeffding’s
inequality).

Such events are called good sampling events and depend on the model 9t. This dependence, result
in the requirement of intersecting all good sampling events in Z, in order to compute a naive bound
to the generalization error.

Uniform convergence bounds are employed to intersect appropriate sampling events, allowing for
more efficient bounding of the generalization error. This intersection introduces a term in the gener-
alization bound called the complexity or capacity.This concept describes the richness of the hypothe-
sis space Z and underlies approaches such as VC-dimension, Rademacher dimension, fat-shattering
dimension, pseudo-dimension, and uniform covering number (see, e.g., Shalev-Shwartz & Ben-
David (2014)).

K.2 UNIFORM MONTE CARLO ESTIMATION FOR LIPSCHITZ CONTINUOUS FUNCTIONS

Recall that the covering number of a metric space (X, d) is the smallest number of open balls of
radius € needed to cover X (see Appendix A.4.6). We call any metric space with a probability Borel
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measure (where we either take the completion of the measure space with respect to p, i.e. we add
all subsets of null-sets to the o-lgebra, or not) a probability metric spaces. The proof of Theorem 17
relies on Theorem 82, which examines uniform Monte Carlo estimations of Lipschitz continuous
functions over probability metric spaces with finite covering. Theorem 82 is an extended version of
Maskey et al., 2022, Lemma B.3 taken from Levie (2023).

Theorem 82 (Levie (2023), Theorem G.3, Uniform Monte Carlo Estimation for Lipschitz Con-
tinuous Functions). Let P be a probability metric space with probability measure p and covering

number k(€). Let X1,...,Xn be drawn i.i.d. from P. Then, for any p > 0, there exists an event
Efip C P+ (regarding the choice of (X1, ..., Xn)), with probability
,MN(‘C"Eip) =21-p

such that for every (X1,..., Xn) € 5£ipr

R with Lipschitz constant L g, we have

for every bounded Lipschitz continuous function f : P —

1 N
[ f@dut) - 5 3560
i=1

<267 Ny + € ()l (14 V0B 2T0))

where &(r) = M, &~V is the inverse function of £ and k(€) is the covering number of P.

oo

K.3 A GLOBAL LIPSCHITZ CONSTANT AND UPPER BOUND OF FEATURES OF MPNNS

Recall that we consider the space of IDMs of order-0 to be H? = B¢ = {z € R¢ : ||z|]y < r} C RY
(for a fixed » > 0). Moreover, recall that we defined the formal bias of a function f : R% — R%
to be || f(0)||, (Maskey et al., 2022; Levie, 2023) and the smallest Lipschitz constants of f as || f|;,
(see Appendix A.12). To apply Theorem 82 in our setting, we phrase the following theorems,
which show that, under some assumptions, features of MPNNs are bounded Lipschitz Continuous
Functions with a bound and Lipschitz constant that do not depend on the specific MPNN model.
Theorem 74 and Theorem 13 straightforwardly lead to Corollary 83 and Corollary 84, respectively.
Corollary 83. Let v > 0 (such that H° = Bf ). Assume there exist constants A1 > 0 and Ay >
0, such that the Lipschitz constants ||¢™® HL of o) satisfy || ") HL < A, and the formal biases

||<p(t) (2)”2 of o satisfy ||<p(t) (O)H2 < Ay, forany t € [L] and any L-layer MPNN model ¢ =
(go(t))t:(). Then there exists a constant By that depends only on L, A1 and As, such that

15(2) |00 < B

If, in addition, the Lipschitz constant ||1||;, of ¢ satisfies |||} < A1 and the formal bias ||1(0)||, of
W satisfies ||1(0) ||y < Ao, for any readout function ), then, there exists a constant By that depends
only on L, Ay and Ao, such that

||‘6(507{¢)7 _)”oo é B2~

Let A;, A,. Define by B; := BZ and B, := A;B; + A,, when B? > 0 is inductively defined for
te{0,...,L} by
Bt L {TA1+A2 lft:O7

2ABG-D A, :if0<t<L, ©)

Based on Theorem 74, it easily follows that B; and By provide upper bounds for h(gp)(_L) and
H(p, 1, —) for all (v, 1)) that satisfy the above assumptions, respectively.

Corollary 84. Assume there exist constants A1 > 0 and As > 0, such that the Lipschitz constants
[|® HL of o) satisfy || (") HL < A; and the formal biases || (O)H2 of o) satisfy || (") (O)H2 <

As, for any t € [L] and any L-layer MPNN model ¢ = (ap(t))tLZO. Then there exists a constant Cq
that depends only on L and A1 and As, such that

16(p. )™ = b(p. 8) P2 < C1 - i, B),
for all o, 3 € HL. If, in addition, the Lipschitz constant |||, of 1 satisfies |||, < Ay and
the formal bias ||1(0)|, of ¢ satisfies ||1(0)||, < As, for any readout function 1), then, for all
p,v € P(HE), there exists a constant Cy that depends only on L, A and B, such that

||~VJ(<P7¢7M)—55(%¢’V)H2 SCQ'OTdL (U7V)'

IDM
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Let Ay, Ay > 0. Define by C; := C¥ and Cy := A (B + Cy), when C* > 0 is inductively defined

fort € {0,...,L} by
ot [M Lift =0,
Tl2A (BT Y if0<t < L,

B! is defined for ¢t € {0,-, L} in Equation (9), and By := B%. Based on Theorem 13, it easily

follows that C; and Cy are Lipschitz constants of h((p)(_L) and 9 (p, ¢, —) for all (¢, 1) that satisfy
the above assumptions, respectively.

K.4 A GENERALIZATION THEOREM FOR MPNNSs

In classification tasks our goal is to classify the input space into K classes. We look at the product
probability metric space P = X x R¥, when the metric space (X, d) is either (2 (HL), OT. )

or (WL, 65,150), and use L-layer MPNNs with readout. Our loss £ is a Lipschitz loss function
with a L1psch1tz constant C¢ and our output vectors are vectors o € R¥. Each entry (¥); of an
output vector ¥, depicts the probability that the input belongs to class 0 < k£ < K. Although loss
functions like cross-entropy are not Lipschitz continuous, composing cross-entropy on softmax is
Lipschitz continuous, which is usually how cross-entropy is being used. Recall that we defined the
formal bias of a function f : R% s R to be || f(0)]|, (Maskey et al., 2022; Levie, 2023) and the
smallest Lipschitz constants of f as || f||;, (see Appendix A.12).

Fix L € Nand A, A; > 0. Let O be the set of all L-layer MPNN models with readout
((cp(t))tem ,w) such that the Lipschitz constants Hgo(t) HLand |l1||; are bounded by A; and the

formal biases ng (0 0)||, and [|2(0)||, are bounded by A,. Consider a Lipschtiz continuous loss £
with Lipschtiz constant %‘ In Appendix K.3, We show that there exist Cg, Bg > 0 that depend on
L, Ay, As such that © C Lip(X,Ce, Be). Here, Lip(X, Co,Be) is the set of all bounded Lips-
chitz continuous functions f : X +— R with bounded Lipschitz constants || f||;, < Ce and with
bounded norms || f|| ., < Be. As aresult, if we prove a generalization bound using Lip(&X', Ce, Be)
as the hypothesis class, the bound would also be satisfied for the hypothesis class O.

Lemma 85. Ler M € Lip(X, Co,Bo) and £ a loss function with a Lipschitz constant Cg. Then
JEON(), )l < Ce(Bo+1)+|£(0.0)] and  [€@(), )], < Ce max(Co,1).

Proof. For the first inequality,

[EON(2), y)| < [E(M(z),y) — £(0,0)] +[£(0,0)]
< Ce ([P ()l + [lyll2) + 1€(0,0)]
< Ce([Mm(2)l, +1) +[€(0,0)]-

Thus,
IEEM(), oo < Ce(IME)lloe +1) +1€(0,0)] < Ce(Be + 1) +[£(0,0)] .
For the second inequality,
£ (x),y) — E@M(a"),y)] < Ce([M(z) — M)y + ly — ¥'ll,)
< Ce(Cod(z,2) + [ly — ¥/'lly)
< Cg max(Ce, 1)(d(z,2') + [ly = ¢/[l).
O

Although the covering numbers of the DIDMs’ spaces and the graphon-signals space are currently
unknown, the graphon-signal space might have a smaller covering number. This can potentially
improve the generalization bound, thus stating the theorem for the graphon-signal space is indeed
a meaningful fact. Thus, we express our generalization bounds on the space of DIDMs, which is
mathematically more general than a formulation on the space of graphon-signals and on the space of
graphon-signals. Following the proof of Theorem G.4 in Levie (2023), we prove the next theorem
via Theorem 82.
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Theorem 17 (MPNN generalization theorem).  Consider the above classification setting with
X being either (P (HL), OT,. ) or WL 65 on)-  Let C = Cgmax(Ce,1), B :=
Ce(Be + 1) + £(0,0)|, and {X;}Y., be independent random samples from the data distribution
(X x {0,1}5 5, 7). Then, for every p > 0, there exists an event UP C (X x {0,1})N regarding
the choice of X = (X1, ..., Xy), with probability TN (UP) > 1 — p, in which for every function
Mx in the hypothesis class Lip(X,Co,Be), we have

RO) ~ Rx ()| <€) (20 -+ 728 (14 VIoR/m)) ). m

where £(€) = M, K is the covering number of the compact space X x {0,1}% and ¢=1
is the inverse function of £.

Proof. From Theorem 82 we get the following. For every p > 0, there exists an event &’ C X N
regarding the choice of (X1,...,Xn) C (X x {O,l}K)N, where X; = (v;,Y;) for v; € X,
Y; € {0,1}%,and 0 < i < N, with probability

(&L, =
such that for every function 91 in the hypothesis class Lip(X, Cgo, Bg), we have

’/5 y)dr(v,y) ZS
<10 (2Ol + S UE O (14 Vis@m) ) an

<) (20 + %B (1+ \/log(2/p)>> , (12)

(10)

where £(N) = W, #(€) is the covering number of X' x {0, 1}%, and ¢~ is the inverse
function of £. In the last inequality, we used Lemma 85.

Since Equation (10) is true for any 9t € Lip(X, Co, Be), it is also true for Mx for any realization
of X, so we have

RO~ Rox ()| <€) (20 -+ =B (1-+ VIoR2/))

L  PROKHOROV’S DISTANCE FOR DIDM METRICS

For completeness, we show an alternative approach to define a metric on graphons through IDMs
and DIDMs using Prokhorv metric.

L.1 DEFINITION AND BASIC PROPERTIES OF PROKHOROV’S DISTANCE

Let X be a complete separable metric space with Borel o-algebra 5. We define A€ := {y € S |
d(xz,y) < eforsomex € A} for a subset A C X and € > 0. Then, the Prokhorov metric P on
AM<1(X, B) is given by

Pu(u,v) :==inf{e > 0| u(4) <v(A) + cand v(A) < u(A€) + ¢ for every A € B}.
The following theorem shows that Prokhorov metric is topologically equivalent to OT,; on any
complete separable metric space (X, d).

Lemma 86 ( Prokhorov (1956), Theorem 1.11). Let (X, d) be a complete separable metric space.
Then, (# (X),Pgq) is a complete separable metric space, and convergence in P g is equivalent to
weak™ convergence of measures.

48



Published as a conference paper at ICLR 2025

The following definition presents an alternative metric to 05, (see Section 3).

Definition 87 (DIDM Prokhorov’s Distance). Given two graphon-signals (Wq, f,), (Wb, fb) and
L > 1, the tree prokhorov’s distance between (W, fo) and (W, fy) is defined as

Pt (Was fa)y Wos 1)) = Ppr. (Dw, 1),05 L (Wi f),1)5

By following the proof of Theorem 4, with Lemma 86, the following result is obtained.
Theorem 88. Let L € Ny. The metrics piyy; on HE, P,. on P(HE) and M <1 (H") are well-
defined. Moreover, P metrizes the weak™ topology of M<1(HY) and 2 (HE).

Except for the computability (Theorem 6), all the results in this paper, can be rephrased using pILDM,
L . L L . . .
P,z . and pppy instead of dipy, OTyz . and 65y The only that remains, is to discuss

p5 1oy compatibility.

L.2 COMPUTABILITY

The metric p&;py is polynomial-time computable. Boker et al. (2023) prove the Lemma 89 by
generalizing an observation in Theorem 1 Schay (1974) and Lemma Garcia-Palomares & Giné
(1977) to finite measures to finite measures and show that value of p(g) := inf{n > 0 | p(A4) <
v(A®) + n for every A C S} can be computed through a linear program. Additionally, they based
their conclusions on Garel & Massé (2009), which deals with the computation of P4 on (possibly
non-discrete) probability distributions.

Lemma 89 (Boker et al. (2023), Theorem 16.). Let u,v € #(X), where (X, d) is a finite metric
space with X = {x1,...,2,}. Then, the Prokhorov metric P4(u,v) can be computed in time
polynomial in n and the number of bits needed to encode d, 1, and v.

By following Theorem 6, with Lemma 89, the following result is obtained.

Theorem 90. For any fixed L € Ny, 65, between any two graph-signals (G,f) and (H,g)

can be computed in time polynomial in h and the size of G and H, namely O(L - N7) where
N = max([V(G)[, [V(H)]).

The computational advantage of using unbalanced optimal transport, tipped the scales in favor it,
making it the main focus of this paper.

M ADDITIONAL EXPERIMENTS AND DETAILS

We present here additional experimental results. We evaluate 03, in graph classification tasks,
i.e., graphs separation tasks. We follow the same set up in Chen et al. (2022); Boker et al. (2023)
for comparison. The goal of our experiments is to support the theoretical results which formulate
a form of equivalence between GNN outputs and DIDM mover’s distance. We emphasize that our
proposed DIDM mover’s distance metric is mainly a tool for theoretical analysis and the proposed
experiments are not designed to compete with state-of-the-art methods. Although our metric is
not intended to be used directly as a computational tool, our results suggest that we can roughly
approximate the DIDM mover’s distance between two graphs by the Euclidean distance between
their outputs under random MPNNSs. This Euclidean distance can be used in practice as it is less
computationally expensive than DIDM mover’s distance.

M.1 1-NEAREST-NEIGHBOR CLASSIFIER

The goal of the experiment in this section is to show that the geometry underlying the metric dprpym
captures in some sense the underlying data-driven similarity related to the classification task. We
consider the problem of classifying attributed graphs, and a solution based on the 1-nearest neigh-
bor.

The I-Nearest Neighbor (1-NN) classifier is a non-parametric, instance-based machine learning
method. Given adataset D = {((G, f;), v:) } 71, where (G;, f;) represents graph-signals and y; € C
denotes class labels from a finite set C, the goal is to classify a new input (G;, f;). The classification
process of classifying the input (G, f) involves:
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1. Computing the distance between the input (G, f) and every point (G, f;) in the dataset
using a distance metric d.

2. Identifying the nearest neighbor (G, i) such that:
(G, fi) = arg min d((G,1),(Gi, 1i)).

3. Assigning the label y;, of the nearest neighbor as the label y of (G, f):
Y <~ Yk-

Here we chose to compare 3, With other optimal-transport-based iteratively defined metrics.

Tree Mover’s Distance TMD® from Chuang & Jegelka (2022) is defined via optimal transport
between finite attributed graphs through so called computation trees. The Weisfeiler-Lehman (WL)

distance dé&]_) and its lower bound distance d&ﬁELB? 1, from Chen et al. (2022; 2023) are defined via
optimal transport between finite attributed graphs through hierarchies of probability measures. The
metric oy, ;, from Boker et al. (2023) is define via optimal transport on a variant of IDMs and DIDMs
where the IDMs are not concatenated. The metric dyy,> 1, from Boker et al. (2023), is a variation of
Ow, where the maximum number of iterations performed after having obtained a stable coloring is
bounded by 3. Unlike dpipn, all the above metrics cannot be used to unify expressivity, uniform
approximation and generalization for attributed graphs. Namely, the above pseudometrics are either
restricted to graphs without attributes or are not compact.

Table 1 compares the mean classification accuracy of dw 3, dw, >3 (Boker et al., 2023), d&n}ﬁ,

d$aLB7>3 (Chen et al., 2022; 2023), TMD? (Chuang & Jegelka, 2022), and 5]23IDM in a 1-NN
classification task using node degrees as initial labels. We used the MUTAG dataset (Morris et al.,
2020) and followed the same random data split as in Chen et al. (2022); Boker et al. (2023): 90
percent of the data for training and 10 percent of the data for testing. We repeat the random split
ten times. We started by computing the pairwise distances for all the graphs in the dataset. We
continued by performing graph classification using a 1-nearest-neighbor classifier (1-NN).

We note that the 1-NN classification experiment “softly”” supports our theory, in the sense that this
experiment shows that our metric clusters the graphs quite well with respect to their task-driven
classes. We stress that this experiment does not directly evaluates any rigorous theoretical claim. We
moreover note that while the metric in Chen et al. (2022) achieves better accuracy, the space of all
graphs under their metric is not compact, so this metric does not satisfy our theoretical requirements:
a compact metric which clusters graphs well.

M.2 MPNNS’ INPUT AND OUTPUT DISTANCE CORRELATION

As a proof of concept, we empirically test the correlation between d5; 1y, and distance in the output
of MPNNs. We hence chose well-known and simple MPNN architectures, varying the hidden di-
mensions and number of layers. We do not claim that GIN Xu et al. (2019) and GraphConv Morris
et al. (2019) are representative of the variety of all types of MPNNs. Nevertheless, they are proper
choices for demonstrating our theory in practice.

M.2.1 MPNN ARCHITECTURES

The GIN.meanpool model is a variant of the Graph Isomorphism Network (GIN) (see Ap-
pendix A.2.1) designed for graph-level representation learning. Each layer consists of normalized
sum aggregation and a multi layer perceptron (MLP). The first MLP consists of two linear transfor-
mations, ReLLU activations, and batch normalization. Each MLP that follows has additionally a skip
connection and summation of the input features and output features. The readout after L layers is
mean pooling (with no readout function).

The GC_meanpool model is a realization of graph convolution network (GCN) for graph-level
representation learning. Each layer consists of normalized sum aggregation with a linear message
and update functions (see Appendix D for the definition of message function and for the equivalency
between MPNNSs that use message functions and MPNNs with no message functions). All layers
except the first layer have additionally a skip connection and a summation of the input features and
output features. The readout after L layers is mean pooling (with no readout function).
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M.2.2 CORRELATION EXPERIMENTS ON GRAPHS GENERATED FROM A STOCHASTIC
BLOCK MODEL

We extend here the experiments presented in Section 4, with the same experimental proce-
dure and also offer an extended discussion and description of the experiments. We empiri-
cally test the correlation between 05, and the distance in the output distance of an MPNN.
We use stochastic block models (SBMs), which are generative models for graphs, to generate
random graph sequences. We generated a sequence of 50 random graphs {G;}12,, each with
30 vertices. Each graph is generated from an SBM with two blocks (communities) of size 15
with p = 0.5 and ¢; = 0.1 4 0.4i/49 probabilities of having an edge between each pair of
nodes from the same block different blocks, respectively. We denote G := (49, Which is an
Erd6s—Rényi model. We plot 635, (Gi, G) against distance in the output of randomly initialized
MPNNG, i.e., once against ||[$)(GIN.meanpool, G;) — $H(GCmeanpool, G)||, and once against
[|9(GIN.meanpool, G;) — H(GCmeanpool, G)||,. Note that in each experiment, we initialize
GIN.meanpool and GC_meanpool only once with random weights and then compute the hidden
representations of all graphs.

We conducted the entire procedure twice, once with a constant feature attached to all nodes and once
with a signal which has a different constant value on each community of the graph. Each value is
randomly sampled from a uniform distribution over [0, 1]. In Section 4 We present the results of the
experiments when varying hidden dimension (see Figure 2). Figure 6 and Figure 7 show the results
when varying the number of layers when the signal is constant and when the signal has a different
randomly generated constant value on each community, respectively. The results still show a strong
correlation between input distance and GNN outputs. When increasing the number of layer, the
correlation slightly weakens.

We conducted the experiment one more time with signal values sampled from a normal distribution
N (u,0;) with mean p = 1 and variance o; = 4231. Figure 8 and Figure 9 show the results
when varying the number of dimensions and the number of layers, respectively. The results still
show a correlation between input distance and MPNN outputs, but with a higher variance. As we
interpret this result, the increased variance could be an artifact of using random noise as signal in
our experiments. The specific MPNNs we used, have either a linear activation or a ReLU activation
function. Thus, they have a “linear” averaging effect on the signal, which cancels in a sense the
contribution of the noise signal to the output of the MPNN, while the metric takes the signal into
full consideration. This leads to a noisy correlation.

M.2.3 REAL DATASETS CORRELATION EXPERIMENTS

We empirically test the correlation between 65, and distance in the output of MPNNs on MUTAG
and PROTEINS databases. In the following, we present the results that showcase insightful relations.

Correlation experiments using a single randomized MPNN. Denote by D a generic dataset.
For the entire dataset we randomly initialized one MPNN with random weights. We randomly

picked an attributed graph from the dataset (G,f) € D. For each (G,f) € D we computed
62150 (G, ), (G, £)). We plotted the distance in the output of the randomly initialized MPNNs
on each (G, f) € D against 631, ((G, f), (G,f)). We conducted the experiment multiple times.
Figure 4 and Figure 5 show the results on MUTAG when varying the number of dimensions and
the number of layers, respectively. Figure 11 and Figure 12 show the results on PROTEINS when
varying the number of dimensions and the number of layers, respectively.

Correlation between DIDM model’s distance and maximal MPNN distance.

Corollary 12 states that “convergence in DIDM mover’s distance” is equivalent to ‘“‘conver-
gence in the MPNN’s output for all MPNNs”. The previous experiment depicts Corollary 12
only vaguely, since the experiment uses a single MPNN, and does not check the output dis-
tance for all MPNNs. Instead, in this experiment we would like to depict the “for all”
part of Corollary 12 more closely. Since one cannot experimentally apply all MPNNs on a
graph, we instead randomly choose 100 MPNNs for the whole dataset. Denote the set con-
taining the 100 MPNNs by A’. To verify the “for all” part, given each pair of graphs,
we evaluate the distance between the MPNN’s outputs on the two graphs for each MPNN
and return the maximal distance. We plot this maximal distance against the DIDM mover’s
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distance. Namely, we plot maxgen ||[$(GIN.meanpool,G;) — H(GCmeanpool, G)||, and
maxgaen |9(GINmeanpool, G;) — H(GCmeanpool, G)|, against 635\ (Gs, G). Note that
in each experiment, we initialize GIN_.meanpool and GC_meanpool only once with random
weights and then compute the hidden representations of all graphs.

In more details, we checked the extent to which 631, correlates with the maximal distance of
100 MPNNs’ vectorial representation distances on MUTAG dataset and marked the Lipschitz rela-
tion. Here, we randomly generated 100 MPNNss for the entire dataset. Figure 3 showcase different
Lipschitz relation. Note that the results are normalized.

From this, one can estimate a bound on the Lipschitz constants of all MPNNs from the family.

The Random MPNN Distance conjecture. Observe that in our experiments we plotted the
MPNN’s output distance for random MPNNSs, not for “all MPNNSs,” and still got a nice correla-
tion akin to Corollary 12. This leads us to the hypothesis that randomly initialized MPNNs have a
fine-grained expressivity property: for some distribution over the space of MPNNSs, a sequence of
graph-signals converges in DIDM mover’s distance if and only if the output of the sequence under a
random MPNN converges in high probability. See Figure 10 for a comparison of d2 s correlation
with the maximal distance of 100 MPNNs’ vectorial representation distances, with 07y;py,,’s corre-
lation with the mean distance of 100 MPNNs’ vectorial representation distances, and with 63 ;p,;’s
correlation with a single MPNN’s vectorial representation distances on MUTAG dataset.
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Table 1: Graph distances classification accuracy of 1-NN. dw 3 and dw, >3 results are taken from

Boker et al. (2023). di,i’ﬁ and d@ﬁwm results are taken from Chen et al. (2022) using node degrees
as initial labels. The table shows the mean classification accuracy of 1-NN using different graph
distances using node degrees as initial labels.
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Figure 9: Correlation between 63y, and distance in the output of a randomly initialized MPNN
with a varying number of layers. A convergent sequence of graphs with a signal, such that the signal
values are sampled from a normal distribution A'(u, ;) with mean p = 1 and linearly decreasing
variance. The graphs are generated by a stochastic block models.
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between 631, and the mean over distances in the outputs of 100 randomly initialized MPNN is

presented.
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N LIST OF NOTATIONS

Sets and Graphs

The cartesian product of two sets A and C
The set of natural numbers including 0.
The set of real numbers

The set of real vectors of length d

A fixed compact sub-set of R%, (Page 3)

The set of all bounded continuous real-valued functions on
X, (Page 3)

The set of all continuous functions from X to )

A compact space

The set containing 0 and 1

The set of all integers between (and including) 0 and n
The set of all integers between (and including) 0 and n
The real interval including @ and b

A real interval

The real interval excluding a but including b

A graph-signal (Page 4)

A graph-signal

A graphon-signal (Page 4)

A graphon-signal

The set of nodes of the graph G

The set of nodes of the graphon W

The set of edges of the graphon W

The set of all neighboring nodes of a graph node v

Calculus

Definite integral over the entire domain of

Definite integral with respect to o over the set S

Numbers and Arrays

Element of a set, can be both a scalar or a vector

Element ¢ of vector or a sequence
A matrix
A matrix

A random (either multi or single) variable

Measure Theory and Iterated degree Measures
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YW, f),L
L),z

Jet

PiDM

PDIDM

N(p, =)

Computation iterated degree measure (Page 5)

Computation distribution of iterated degree measure
(Page 5)

the push-forward of a measure ¢4 € .#(X') via a measur-
ablemap f: X — )V

The ¢’th element of an IDM

The ¢’th element of an IDM

A o-algebra

A o-algebra

The standard Borel o-algebra of a measurable space X’
a mesurable space

a measure space

The space of all non negative Borel measures with total
mass at most one on (X, B(X)) (Page 3)

The space of all Borel probability measures on (X, B(X))
(Page 3)

The space of iterated degree measures (IDMs) of order d
(Page 5)

The space of distributions of iterated degree measures
(DIDMs) of order d (Page 5)

Metrics

A metric
£, norm of x
the infinity norm of x

Optimal transport with respect to the distance function d
(Page 3)

IDM distance (Page 6)
DIDM mover’s distance (Page 6)

Prokhorov metric with respect to the distance function d
(Page 48)

IDM Prokhorov distance (Page 48)
DIDM Prokhorov’s distance (Page 48)

Probability and Information Theory
Gaussian distribution with mean p and covariance 3

Functions
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foyg
log

11condition

R

The function f with domain A and range C
The function f evaluated at a point

The function f evaluated at some point
The function f evaluated at some point
Composition of the functions f and g
Natural logarithm of x

is 1 if the condition is true, O otherwise

the empirical risk (Page 9)

the statistical risk (Page 9)
Message Passing Neural Networks (Page 7)

A L-layer MPNN model

A L-layer MPNN model with 1 a readout function

An update function

An readout function

L-layer MPNN model graph-signal feutures for ¢ € [L]
L-layer MPNN model with readout graph-signal feutures
L-layer MPNN model graphon-signal feutures for ¢ € [L]

L-layer MPNN model with readout graphon-signal feu-
tures

L-layer MPNN model IDM feutures for ¢ € [L)]
L-layer MPNN model with readout DIDM feutures
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