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ABSTRACT

Data augmentation, a cornerstone technique in deep learning, is crucial in enhanc-
ing model performance, especially with scarce labeled data. While traditional
methods, such as hand-crafted augmentations, are effective but limited in scope,
modern, adaptable techniques often come at the cost of computational complexity
and are hard to fit into existing processes. In this work, we unveil an efficient
approach that universally enhances existing data augmentation techniques by en-
abling their adaptation and refinement, thereby providing a significant and com-
prehensive improvement across all existing methods. We present SAFLEX (Self-
Adaptive Augmentation via Feature Label EXtrapolation), an approach that uti-
lizes an efficient bilevel optimization to learn the sample weights and soft labels of
augmented samples. This is applicable to augmentations from any source, seam-
lessly integrating with existing upstream augmentation pipelines. Remarkably,
SAFLEX effectively reduces the noise and label errors of the upstream augmenta-
tion pipeline with a marginal computational cost. As a versatile module, SAFLEX
excels across diverse datasets, including natural, medical images, and tabular data,
showcasing its prowess in few-shot learning and out-of-distribution generaliza-
tion. SAFLEX seamlessly integrates with common augmentation strategies like
RandAug and CutMix, as well as augmentations from large pre-trained gener-
ative models like stable diffusion. It is also compatible with contrastive learn-
ing frameworks, such as fine-tuning CLIP. Our findings highlight the potential to
adapt existing augmentation pipelines for new data types and tasks, signaling a
move towards more adaptable and resilient training frameworks.

1 INTRODUCTION

Data augmentation is a cornerstone in improving machine learning models, especially when labeled
data is scarce. It enhances model performance by introducing varied training samples. Though
traditional methods like rotation and cropping are widely used, they operate under a one-size-fits-all
assumption that often falls short in the complexity of real-world data. The key is not just to augment
data, but to do it in a way that does not mislead the learning process.

Recent work emphasizes the benefits of learned data augmentation, where techniques such as Au-
toAugment (Cubuk et al., 2019) and RandAugment (Cubuk et al., 2020) adapt to specific datasets
and tasks. While promising, this area is still nascent and lacks a comprehensive framework to ad-
dress diverse tasks and data nuances. Furthermore, selecting meaningful transformations remains a
challenge, often relying on heuristics or domain expertise, which is especially problematic in spe-
cialized fields. Inappropriate transformations can harm model performance, underscoring the need
for systematic selection. Amid the rise of image generation methods, such as diffusion models
and other generative AI, an abundance of synthetic data is available but requires discerning use.
A recent study, LP-A3 (Yang et al., 2022a), aims to generate “hard positive examples” for aug-
mentation but risks introducing false positives that could mislead learning. Another recent work,
Soft-Augmentation (Liu et al., 2023), introduces soft learning targets and loss reweighting to train
on augmented samples but is primarily limited to improving image crop augmentation. The overar-
ching need is for smarter, more adaptable data augmentation algorithms.

This paper proposes SAFLEX (Self-Adaptive Augmentation via Feature Label Extrapolation), which
automatically learns the sample weights and soft labels of augmented samples provided by any given
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Figure 1: SAFLEX learns to adjust sample weights and soft labels of augmented samples from
an upstream pipeline, aiming to maximize the model’s performance on the validation set. While
formulated as a bilevel optimization problem, it can be efficiently solved by linear programming
with a gradient-matching objective. SAFLEX is a plug-in to the existing training framework.

upstream augmentation pipeline. Existing learnable augmentation methods that directly learn in the
feature space (e.g., image space) often restrict augmentation scope due to differentiability needs
and suffer from complicated training in high-dimensional spaces. Contrary to this, we advocate for
learning only low-dimensional sample weights and soft labels for each augmented instance sourced
from a pre-existing upstream augmentation pipeline like synthetic data generation. While upstream
augmentation methods can sometimes alter labels or introduce noise, especially when creating sam-
ples outside the data distribution, our approach offers a mechanism to correct them. By calibrating
sample weights and labels after augmentation, we considerably alleviate issues stemming from up-
stream augmentation methods. Without the complexity of learning augmentation transformations
from scratch, this strategy ensures that augmentation is both diverse and consistent with the inher-
ent data distribution, thereby fostering better generalization across various tasks. See Fig. 1 for a
demonstration of our proposed SAFLEX.

We frame learning sample weights and soft labels as a bilevel optimization problem. This captures
the interdependent nature of the model and its augmented data: the model’s performance depends
on the quality of the augmented data, which in turn is guided by the model itself (Bard, 2013). This
new perspective advances our understanding of data augmentation, offering a theoretical framework
that underpins its practical applications. Despite the bilevel nature of the problem, direct solutions
are computationally infeasible for large-scale real-world applications. To mitigate this, we propose
a streamlined, greedy, online, single-level approximation algorithm, which optimizes a gradient-
matching objective to accelerate the learning process.

We conducted extensive empirical evaluations to highlight SAFLEX’s superior performance and
adaptability. On eight medical images (Yang et al., 2023), SAFLEX elevates popular augmentation
techniques like RandAugment (Cubuk et al., 2020) and Mixup (Zhang et al., 2018), boosting per-
formance by up to 3.6%. On seven tabular datasets, SAFLEX shows compatibility with categorical
data and effectively enhances CutMix (Yun et al., 2019). Furthermore, SAFLEX improves image
augmentations from diffusion models, yielding an average improvement of 1.9% in fine-grained
classification and out-of-distribution generalization against three diffusion-augmentation methods,
harnessing on their pre-trained expertise. We also validate SAFLEX’s integration with contrastive
learning through a CLIP fine-tuning experiment. These findings underline its versatility across var-
ied data types and learning tasks.

Our contributions are threefold:
(1) We unveil a novel parametrization for learnable augmentation complemented by an adept bilevel
algorithm primed for online optimization.
(2) Our SAFLEX method is distinguished by its universal compatibility, allowing it to be effortlessly
incorporated into a plethora of supervised learning processes and to collaborate seamlessly with an
extensive array of upstream augmentation procedures.
(3) The potency of our approach is corroborated by empirical tests on a diverse spectrum of datasets
and tasks, all underscoring SAFLEX’s efficiency and versatility, boosting performance by1.2% on
average over all experiments.

2 PROPOSED METHOD: SAFLEX

Our goal is to refine augmented samples from any upstream pipeline to enhance classifier general-
ization. The proposed methodology is founded on two pivotal questions: (1) Which aspects of the
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augmented samples should be refined? (2) What approach should be taken to learn these refined
samples? We start from these questions and defer the derivation of the algorithm to Section 3.

Limitations of Augmentation Methods. Data augmentation is pivotal in enhancing model gener-
alization. However, its limitations, particularly the unintentional introduction of noise, can some-
times outweigh its benefits. For instance, consider the widespread use of random cropping on nat-
ural images. Although largely effective, there are times when this approach inadvertently omits
task-relevant information, leading to unintended outcomes like false positives. This inherent noise
creates a trade-off: under-augmentation may yield insufficient challenging examples, whereas over-
augmentation can flood the dataset with misleading samples. As shown in Fig. 2a, reducing the
noise in augmentation is the key to resolving the dilemma.

Noise in augmentation primarily arises from two fundamental challenges: (1) the deviation of aug-
mented samples from the original data distribution and (2) the potential mislabeling of augmented
samples. We shall envision augmentation as a method to harness prior knowledge in capturing the
underlying data distribution. This distribution is encapsulated in the joint distribution, PXY (x, y),
where x ∈ X are features and y ∈ {1, . . . ,K} represents labels, with K indicating the number of
classes. Breaking down this joint distribution: PXY (x, y) = PX(x) · PY |X(y|x), we observe that
the primary source of noise is associated with the feature distribution PX(x), while the secondary
source is tied to the conditional distribution PY |X(y|x). Addressing these challenges, our method-
ology is designed to integrate seamlessly with any upstream augmentation process, amending both
types of errors post-augmentation, and considering the initial augmentation process as a separate,
unchanged entity.

Feature and Label Extrapolation. A key concern in data augmentation pertains to addressing
these two types of errors. Some prior works on learning augmentation (e.g., (Yang et al., 2022a))
attempted to reduce noise by fine-tuning augmented features, using them as initializations. Specif-
ically, the aim was to derive a modified feature x′ that eliminates both error types. Yet, due to the
high-dimensionality of feature space X , manipulating x is computationally burdensome.

A more efficient strategy is to handle the errors individually and abstain from modifying x. When
encountering erroneous estimation of the feature distribution PX(x), even if augmented samples lie
in low-density areas, we can compensate by modulating the sample weights w ∈ [0, 1] in the em-
pirical risk minimization loss. Specifically, rarer augmented features are assigned decreased sample
weights. For inaccuracies in estimating the conditional distribution PY |X(y|x), it’s advantageous to
modify the augmented label y directly. We also propose transitioning from a hard class label to a soft
one, denoted as y, representing a probability mass across K classes, residing in the K-dimensional
simplex y ∈ ∆K . The proposed refinement of augmented samples is depicted in Eq. (1). Remark-
ably, optimizing these sample weights and soft labels effectively mitigates errors resulting from
varied augmentation methods across numerous classification challenges.

(x, y)
Upstream Augment−−−−−−−−−−→ (xaug, yaug)

SAFLEX−−−−−→
(

waug

sample weight ∈ [0, 1]
, xaug, yaug

)
soft label ∈ ∆K

(1)

To elucidate, consider a hypothetical example in Fig. 2b. Envision a training sample from the green
class (represented by a pronounced green dot). Upon applying a noise-prone augmentation, such as
Gaussian perturbation in a 2D setting, the augmented sample could either (1) fall into a region with
few validation samples regardless of their class, or (2) be overwhelmingly encompassed by valida-
tion samples from a different class. In the former case, it is judicious to reduce the sample weights
since they might not be pivotal in discerning the conditional distribution. In the latter instance, the
label of the augmented sample should be fine-tuned. This can entail a shift to a soft label to rectify
or mitigate potential label inconsistencies, informed by patterns in the validation set.

Bilevel Formulation. The remaining question in our design is how to learn the sample weights
and soft labels for augmented samples. The overarching goal of augmentation is enhancing model
generalization. While the test set remains inaccessible, a prevalent approach is to fine-tune perfor-
mance using a validation set. This methodology aligns with standard practices in hyperparameter
optimization and is evidenced in learnable augmentation methods such as AutoAugment (Cubuk
et al., 2019) and RandAugment (Cubuk et al., 2020). Given a neural network f (·) : X → ∆K

(where we assume Softmax is already applied and the outputs are L1 normalized) with parameter θ,
let us denote the training set, validation set, and the set of augmented samples as Dtrain, Dval, and
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Figure 2: (a) Under-augmentation can lead to a scarcity of hard positives, while over-augmentation
can introduce an excess of false positives. Reducing the noise in augmentation helps resolve the
dilemma. (b) Adjusting sample weights and recalibrating soft labels can address the two types of
noises introduced by the augmentation process.

Daug, respectively. The ambition is to refine Daug such that a model trained on the amalgamation of
Dtrain ∪ Daug optimizes performance on Dval.

min
Daug, θ

L(Dval, θ) s.t. θ ∈ argmin
θ′

L(Dtrain ∪ Daug, θ
′) (2)

This scenario can be cast as a bilevel optimization problem as in Eq. (2), where Daug, the set of
augmented samples with parametrized by sample weights and soft labels, and the model parameters
θ are learnable. The conventional model training constitutes the inner level, while the quest to iden-
tify optimal augmented samples Daug, which minimize the validation loss post-inner level training,
establishes the outer problem. Such a paradigm inherently transforms learnable augmentation into
bilevel optimization. Intriguingly, much of the existing literature on learnable augmentation eschews
this representation. The primary reservations stem from concerns related to efficiency and differen-
tiability. Notably, works such as (Mounsaveng et al., 2021; 2023) are among the sparse few to apply
bilevel optimization for augmentation learning, yet their focus remains constricted to affine transfor-
mations. In contrast, our approach sidesteps the modification and modeling of feature augmentation,
obviating the challenge of differentiability. The low-dimensional nature of sample weights and soft
labels potentially simplifies the learning process. In subsequent sections, we demonstrate that, un-
der benign approximations, we can adeptly navigate the bilevel problem, determining the apt sample
weights and soft labels within a singular step for each training iteration.

3 ALGORITHM

We now develop an algorithm for the bilevel problem described in Eq. (2).

The Greedy Approach. Bilevel optimization is notoriously challenging, often necessitating nested
loops, which introduces significant computational overhead. Upon inspecting Eq. (2), it becomes
evident that an essential characteristic of the problem — the training dynamics of the model — has
been understated. In standard practice, augmented samples are typically generated during model
training for each minibatch across all iterations. Therefore, the actual problem deviates from Eq. (2)
in two ways: (1) different batches of augmentation may influence the learned parameters differently,
and the model is not trained on a cumulative set of augmented samples, and conversely, (2) the
learned parameters are affected differently by the refined augmented samples across batches, imply-
ing that augmentation should be optimized with respect to the corresponding model parameters.

To incorporate model optimization dynamics, we should reformulate the problem on a finer scale:
Given the model parameter θt−1 at an intermediate training step, how can we determine the batch
of refined augmented samples, Dbatch

aug ? Through a greedy approach, we posit that the granular
objective is to minimize the validation loss after a single update, denoted as L(Dval, θt), where θt is
the model parameter updated from θt−1.

min
Dbatch

aug , θt
L(Dval, θt) s.t. θt = θt−1 − α · ∇θL(Dbatch

train ∪ Dbatch
aug , θt−1) (3)

This micro-perspective of Eq. (2) is represented in Eq. (3), where the batch of augmented sam-
ples Dbatch

aug = {(waug
1 , xaug

1 ,yaug
1 ), . . . , (waug

B , xaug
B ,yaug

B )} is parametrized by the set of sample
weights (waug

1 , . . . , waug
B ) and soft labels (yaug

1 , . . . ,yaug
B ).

As a direct consequence, if the inner loop uses a first-order optimizer like SGD (as assumed), this
significantly eases the optimization task. The emergent problem is no longer bilevel. With the
analytical solution of the “inner problem” at our disposal, we can integrate the formula for θt into
the outer objective, L(Dval, θt), converting it into a single-level problem.
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Efficient Solution. We next derive an algorithm for efficiently addressing Eq. (3). Crucially, due
to the linearity of the loss function L(·, θt−1) with respect to datasets and the inherent linearity of
gradient computation, the gradient vector for the combined training and augmentation batch linearly
relates to the sample weights and soft labels, assuming the sample-wise loss function, such as the
cross-entropy loss, behaves linearly with respect to sample weights and soft labels. Validating this,
the cross-entropy loss is indeed linear concerning these variables, a typical characteristic based on
their definitions.

By approximating the validation loss L(Dval, θt) up to the first order around parameter θt, we can
recast Eq. (3) as a linear programming problem. The objective seeks to maximize the inner product
of the gradient vectors on the combined train and augmented batch and the validation batch, effec-
tively yielding a gradient-matching loss (Zhao et al., 2020). Here, both the objective and normaliza-
tion constraints linearly correspond to our learnable variables: sample weights and soft labels. The
derivation is provided in Appendix A, and we summarize the solution in the subsequent notations
and theorem.
Notation 1. Let the Jacobian matrix of logits with respect to the model parameter be
∇θf (xaug) |θ=θt−1

∈ RK×m and the gradient vector on the validation set be ∇θL(Dval, θt−1) ∈
Rm, where m is the parameter count and K is the class count. The Jacobian-vector product is
denoted as Π = ∇θf (xaug) |θ=θt−1 ∇θL(Dval, θt−1) ∈ RK , which can be computed efficiently.

Theorem 1 (Solution of Eq. (3)). The approximated soft label solution is y =
OneHot (argmaxk[Π]k), where OneHot(·) denotes one-hot encoding, and the sample weight so-
lution is w = 1 if

∑K
k=1[Π]k ≥ 0; otherwise, w = 0.

Theorem 1 illustrates that an effective approximation of Eq. (3) is computationally efficient. The
gradient inner product, Π, a Jacobian-vector product, is readily computed alongside standard
back-propagation on the combined training and augmentation batch. While determining the val-
idation set gradient vector mandates an additional back-propagation step, we can approximate
the gradient vector for the complete validation set, ∇θL(Dval, θt−1), using a minibatch gradient,
∇θL(Dbatch

val , θt−1). Despite necessitating a solution for Eq. (3) at every iteration, our efficient
SAFLEX algorithm incurs minimal computational overhead.

A notable takeaway from Theorem 1 is that while we aim to learn continuous sample weights (in
[0, 1]) and soft labels (in ∆K), the derived solutions consistently yield discrete values: either 0
or 1 and one-hot vectors. This consistency does not signify a coarse approximation, especially
considering we resolve Eq. (3) with a O(α) tolerance, where α is typically small. Nonetheless, this
characteristic could potentially impact model generalization in under-parameterized scenarios.

Generalization Aspects. Let’s interpret and examine the solution provided by Theorem 1 from a
generalization standpoint, which is our primary objective. The loss function’s linearity helps un-
derstand Theorem 1.. Given that Eq. (3) is a linear program with straightforward normalization
constraints, we effectively form a linear combination of KB gradient vectors (each pertaining to a
logit of the augmented sample), with B representing the augmented batch size, to approximate the
m-dimensional validation gradient vector. The total constraints sum up to B + 1. If these KB gra-
dient vectors are linearly independent, we can always align the combined gradient vector with the
validation gradient vector when the degree of freedom, B+KB−(B+1), is greater than or equal to
the gradient vector dimension, m. This is represented by the condition KB > m. Such a scenario,
exceedingly under-parametrized, is rare in deep learning. If the combined gradient vector consis-
tently aligns with the validation gradient vector, training with SAFLEX will approximate training on
the combined training and validation sets, potentially limiting the generalization improvements.

To enhance generalization, it is essential to circumvent the challenges of the under-parametrized
paradigm, even if we are not closely approaching it. Here, we suggest two modifications to the
solution given by Theorem 1:

1. Encouraging Retention of the Original Label. We can introduce a minor constant penalty term
to the gradient inner product to incentivize retaining the augmented sample’s original label. Thus,
we substitute Π with Π+ βeyaug, where eyaug is a one-hot vector with a value of 1 at the yaug-th
position. If no other entry in Π exceeds [Π]yaug by a margin of at least β, the learned label remains
unaltered. This approach proves especially valuable when the validation set is of limited size.

2. Substituting argmax with Gumbel-SoftMax. Our current solution invariably yields hard labels.
This can sometimes manifest as an excessive degree of confidence, particularly when Π contains
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multiple significant entries. To alleviate this, we can employ the Gumbel-SoftMax function to intro-
duce a ”softening” effect to the learned labels, adding a measure of stochasticity. Hence, we have
y = softmax

((
Π + βeyaug + g

)
/τ

)
, where g consists of i.i.d. random variables sourced from

Gumbel(0, 1). Typically, unless specified otherwise, we opt for a relatively low fixed temperature
value, τ = 0.01.

The pseudo-code of SAFLEX for cross-entropy loss is shown as Algorithm 1.

Algorithm 1: SAFLEX (Cross-Entropy Loss, Single batch).
Input: Neural network f (·) : X → ∆K (softmax applied on outputs) with parameters θ, upstream

augmented batch {(xaug
1 , yaug

1 ), . . . , (xaug
B , yaug

B )}, validation batch
Dbatch

val = {(xval
1 , yval

1 ), . . . , (xval
B′ , yval

B′ )}, penalty coefficient β, temperature τ .
1 Compute the gradient vector for the validation batch ∇θL(Dbatch

val , θ).
2 for i = 1, . . . , B do // The actual implementation is vectorized.
3 Determine the gradient inner product Πi = ∇θf (xaug

i )∇θL(Dbatch
val , θ) via Jacobian-vector product.

4 Apply Gumbel-SoftMax to get yi = softmax
((
Πi + βey

aug
i

+ g
)
/τ

)
, where eyaug

i
∈ RK is one-hot

at yaug
i , and g consists of i.i.d. random variables taken from Gumbel(0, 1).

5 Set wi = 1 if Πi · yi ≥ 0, otherwise set wi = 0.
6 Renormalize the sample weights w1, . . . , wB to sum to 1.
7 return Sample weights waug

1 , . . . , waug
B , and soft labels yaug

1 , . . . ,yaug
B .

SAFLEX for Contrastive Learning. We conclude this section by discussing to encompass the gen-
eralization of the proposed method for certain contrastive learning losses, as illustrated in Eq. (12)
and Eq. (13). Notably, the latter is utilized for CLIP training. In the realm of contrastive learning,
labels are not conventionally defined. Yet, one can perceive the contrastive training objectives in
Eq. (12) and Eq. (13) as proxy classification tasks. Here, we posit that the batch of size B can be
construed as containing B classes: one positive example coupled with B−1 negative examples. This
interpretation paves the way to introduce the notion of (soft) labels over this surrogate classification
task with its B distinct classes.

Under this paradigm, the loss function remains linear concerning the soft labels and sample weights,
making the methodology in Theorem 1 applicable. The sole requisite modification pertains to the
gradient inner product’s definition. Rather than employing gradients from the cross-entropy logits,
∇θf (xaug), we substitute them with gradients corresponding to the contrastive learning logits.

4 RELATED WORKS

Traditional data augmentation techniques such as random flipping and cropping (Krizhevsky et al.,
2017; Simard et al., 2003; Shorten & Khoshgoftaar, 2019) are hand-crafted and static, unlike our
adaptive SAFLEX method that tunes sample weights based on validation performance. Autonomous
approaches like AutoAugment (Cubuk et al., 2019; Lim et al., 2019; Ho et al., 2019; Mounsaveng
et al., 2021; 2023) learn transformations but are restricted in scope, primarily focusing on affine
transformations. Generative methods employing GANs or diffusion models (Odena et al., 2017;
Sankaranarayanan et al., 2018; Huang et al., 2018; He et al., 2022; Shipard et al., 2023; Dunlap
et al., 2023; Trabucco et al., 2023) can inadvertently alter class-relevant features, which our method
avoids by adaptively adjusting sample weights. Research on adversarial perturbations (Goodfellow
et al., 2015; Yang et al., 2022a;b; Ho & Nvasconcelos, 2020) and noise-robust learning (Han et al.,
2018; Lang et al., 2022; Thulasidasan et al., 2019; Konstantinov & Lampert, 2019; Gao et al., 2022;
Ma et al., 2018; Kremer et al., 2018) address similar problems but often suffer from complexity
and stability issues, which we mitigate by our principled approach to weight adjustment. Recently,
Soft-Augmentation (Liu et al., 2023) also proposes to use soft labels and sample weights to train
on augmented samples. However, it implements a specific formula to generate them based on the
strength parameter of upstream augmentations. This limits the applicability of Soft-Augmentation
mostly to crop augmentation on images. Wang et al. (2023) introduce self-adaptive augmentation
within the meta-learning framework, MetaMix, which improves the corruption robustness of con-
tinual learning models. Bhattarai et al. (2020) propose a progressive sampling strategy for GAN
synthetic data, while Caramalau et al. (2021) introduce a sequential graph convolutional network
for active learning. Our work extends these findings by developing a novel sampling and purifying
method for augmented data that is specifically designed to improve the performance of downstream
tasks.
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For a more detailed discussion of related works, please refer to Appendix B.

5 EXPERIMENTS

We validate the effectiveness of SAFLEX under four very different learning scenarios: (1) adapt-
ing augmentations to medical images, (2) refining augmentations for tabular data, (3) purifying
diffusion-model-generated augments, and (4) applying to contrastive fine-tuning. Experimental se-
tups and implementation details are provided in Appendix C.

Adapting Augmentations to Medical Images. Unlike natural images, medical images often carry
quantitative information (e.g., encoded as color) and objects without a canonical orientation. While
we usually lack the domain knowledge to design effective heuristic augmentation transformations
for these images, applying augmentation pipelines designed for natural images, such as RandAug-
ment (Cubuk et al., 2020), can sometimes degrade performance in the medical context (Yang et al.,
2022a). Consequently, we investigate whether SAFLEX can adapt these augmentation pipelines for
medical images.

We assess multi-class classification across eight medical image datasets from MedMNIST (Yang
et al., 2023), with each dataset comprising 10K to 236K 28×28 images and 4 to 11 classes. In
line with (Yang et al., 2021), we train a ResNet-18 model (He et al., 2016) using the Adam opti-
mizer (Kingma & Ba, 2014) for 100 epochs. For upstream augmentation, we utilize the widely-
adopted RandAugment (Cubuk et al., 2020) and Mixup (Zhang et al., 2018) methods. Test accura-
cies are presented in Table 1, highlighting that SAFLEX significantly enhances the performance of
both RandAugment and Mixup. It’s noteworthy that SAFLEX, when combined with basic upstream
augmentations as shown in Table 1, achieves better performance than Soft-Augmentation (Liu et al.,
2023), and comparable or superior performance than the adversarial-perturbation-based augmen-
tation, LP-A3 (Yang et al., 2022a). The latter not only takes significantly longer to train but also
demands careful hyperparameter tuning. For a comprehensive view, Soft-Augmentation’s perfor-
mance and LP-A3’s performance on the MedMNIST datasets can be found in Appendix C.

Method Path Derma Tissue Blood OCT OrganA OrganC OrganS
No Aug 94.34± 0.18 76.14± 0.09 68.28± 0.17 96.81± 0.19 78.67± 0.26 94.21± 0.09 91.81± 0.12 81.57± 0.07

RandAug 93.52± 0.09 73.71± 0.33 62.03± 0.14 95.00± 0.21 76.00± 0.24 94.18± 0.20 91.38± 0.14 80.52± 0.32

SAFLEX

(w/ RandAug)
95.11± 0.1495.11± 0.1495.11± 0.14 76.69± 0.33 64.32± 0.18 96.91± 0.15 79.63± 0.2879.63± 0.2879.63± 0.28 95.32± 0.2995.32± 0.2995.32± 0.29 92.10± 0.21 82.85± 0.4282.85± 0.4282.85± 0.42

Mixup 92.98± 0.19 75.22± 0.45 66.62± 0.31 96.28± 0.23 77.93± 0.41 94.12± 0.35 90.76± 0.28 80.99± 0.21

SAFLEX

(w/ Mixup)
93.71± 0.37 76.94± 0.5176.94± 0.5176.94± 0.51 68.31± 0.4368.31± 0.4368.31± 0.43 97.21± 0.3597.21± 0.3597.21± 0.35 79.54± 0.44 95.06± 0.31 92.73± 0.5392.73± 0.5392.73± 0.53 82.14± 0.27

Table 1: On medical images, SAFLEX significantly enhances the performance of RandAugment
and Mixup across eight medical image datasets from MedMNIST.

In terms of efficiency, SAFLEX, designed as an augmentation plug-in, requires only a single-step
update per iteration. It only extends the average wall-clock time of a training epoch by roughly 42%
in this experiment; see Appendix C for details.

Refining Augmentations for Tabular Data. Tabular data typically encompasses heterogeneous
features that include a blend of continuous, categorical, and ordinal values. The presence of dis-
crete features constrains the space of potential transformations. Furthermore, the domain knowl-
edge to design invariant, label-preserving transformations is often absent. One of the few traditional
augmentation techniques directly applicable to tabular data is CutMix (Yun et al., 2019), which
substitutes a portion of continuous or discrete features with values from other randomly chosen
samples (see Appendix C for implementation details). However, studies suggest that CutMix, with
a relatively small augmentation probability like 0.1, struggles to bolster tabular classification perfor-
mance (Onishi & Meguro, 2023). Conversely, a higher augmentation probability can introduce ex-
cessive noise, potentially downgrading the performance. This leads us to explore whether SAFLEX
can mitigate the noise from CutMix and enhance classification performance.

Our experiments span seven tabular datasets varying in size (from 452 to 494K) and feature types
(from exclusively continuous features to predominantly discrete ones); detailed dataset information
and statistics are available in Appendix C. Except for the Volkert dataset, which involves 10-way
classification, all other datasets focus on binary classification. Notably, some datasets, like Credit,
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exhibit a significantly skewed class distribution (e.g., only 0.17% positive). We consider backbone
models such as the sample Multilayer Perceptron (MLP) with two hidden layers and 256 neurons
each and tranformer-based models like SAINT (Somepalli et al., 2022) (without contrastive pre-
training). These models undergo training with dropout (Srivastava et al., 2014) and, in certain cases,
batch normalization, for 200 epochs.

Method Model Appetency Arrhythmia Click Credit QASR Shrutime Volkert
No Aug MLP 49.03± 0.01 81.53± 0.03 52.54± 0.04 66.91± 0.03 91.84± 0.02 86.27± 0.04 61.14± 0.05
CutMix MLP 48.98± 0.03 81.57± 0.05 52.59± 0.09 73.68± 0.08 91.87± 0.02 86.39± 0.05 61.20± 0.02
SAFLEX

(w/ CutMix)
MLP 51.04± 0.0951.04± 0.0951.04± 0.09 83.02± 0.0683.02± 0.0683.02± 0.06 52.81± 0.0652.81± 0.0652.81± 0.06 74.61± 0.1574.61± 0.1574.61± 0.15 92.69± 0.1392.69± 0.1392.69± 0.13 86.90± 0.1086.90± 0.1086.90± 0.10 61.51± 0.0561.51± 0.0561.51± 0.05

No Aug SAINT 78.90± 0.03 83.90± 0.01 65.72± 0.06 79.49± 0.05 98.18± 0.04 87.53± 0.04 66.82± 0.05
CutMix SAINT 81.05± 0.07 85.32± 0.0985.32± 0.0985.32± 0.09 65.77± 0.04 79.71± 0.08 98.61± 0.0698.61± 0.0698.61± 0.06 87.61± 0.07 68.23± 0.10
SAFLEX

(w/ CutMix)
SAINT 81.33± 0.1481.33± 0.1481.33± 0.14 85.27± 0.14 66.12± 0.0966.12± 0.0966.12± 0.09 79.93± 0.1779.93± 0.1779.93± 0.17 98.59± 0.21 87.93± 0.1387.93± 0.1387.93± 0.13 68.91± 0.1768.91± 0.1768.91± 0.17

Table 2: On tabular data, SAFLEX outperforms the upstream augmentation method, CutMix, across
diverse tabular datasets using either MLP or SAINT as the backbone models.

Table 2 shows that SAFLEX almost consistently enhances the performance of CutMix across all
datasets, regardless of whether the MLP or SAINT model is used. This improvement is especially
noticeable with the MLP backbone, which is typically more intricate to train, and on datasets abun-
dant in discrete features, such as Click and Shrutime, where CutMix tends to inject more noise.
Notably, the Volkert dataset demonstrates a considerable performance impovement, potentially at-
tributed to the fact that it has 10 classes where soft labels might be more useful.

Purifying Diffusion-Model-Generated Augments. Recent research (Dunlap et al., 2023; Trabucco
et al., 2023) has advocated the application of diffusion models for image editing via text prompts.
Compared to traditional augmentation techniques, images produced by pretrained diffusion models
maintain task-specific details while offering enhanced domain diversity, as dictated by the prompts.
Diffusion-model-generated augmentations have been found particularly efficacious in fine-grained
classification and out-of-distribution (OOD) generalization tasks (Dunlap et al., 2023). However,
these diffusion models occasionally generate subtle image alterations, potentially corrupting class-
essential information, thus underscoring the necessity for noise reduction (Dunlap et al., 2023). In
this context, we probe the capability of SAFLEX to enhance the purity of diffusion-model-generated
augmentations, aiming for improved classification outcomes.

In our experimentation, we adhere to the setups in (Dunlap et al., 2023). We assess SAFLEX using
diffusion-model-generated images derived from two distinct approaches: (1) The Img2Img approach
involves an image encoder that first converts a given image into a latent representation. Subse-
quently, employing a diffusion model (specifically, Stable Diffusion v1.5 (Rombach et al., 2022)
for this experiment), this latent representation undergoes a series of prompt-conditioned transforma-
tions. Ultimately, the altered representation is decoded, yielding an augmented image reflecting the
modifications stipulated in the prompt. Notably, the diffusion model may or may not undergo fine-
tuning (w/ and w/o finetune) on the dataset in question. (2) The InstructPix2Pix approach (Brooks
et al., 2023) accepts an image and an edit instruction sampled (e.g., “position the animals within the
forest”) and outputs a correspondingly modified image. InstructPix2Pix is a conditional diffusion
model pretrained on a dataset containing paired images and their associated edit instructions.

Our evaluation encompasses two tasks: (1) Fine-grained classification on a CUB dataset subset (Wah
et al., 2011) (featuring 25 images per category). (2) OOD generalization on an iWildCam subset
from the Wilds dataset (Koh et al., 2021) (consisting of over 6,000 images and simplified to 7-
way classification). We use a ResNet-50 model (He et al., 2016) pretrained on ImageNet (Deng
et al., 2009). For comparison, we also consider data generated solely from text (Text2Img) and the
RandAugment method as baselines.

Results, as depicted in Table 3, affirm that SAFLEX consistently elevates the performance of all
three diffusion-model-generated augmentation techniques, across both fine-grained classification
and OOD generalization tasks. Notably, the performance boost is more prominent within the OOD
generalization task, where feature and label distortions are particularly detrimental. We confirm that
SAFLEX is useful to refine diffusion-model-generated augmentations, leading to enhanced classifi-
cation accuracy.
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Task No Aug RandAug Text2Img InstructPix2Pix Img2Img (w/o finetune) Img2Img (w/ finetune)
— — — w/o SAFLEX w/ SAFLEX w/o SAFLEX w/ SAFLEX w/o SAFLEX w/ SAFLEX

Fine-Grained
Classification

68.60± 0.16 71.26± 0.52 69.68± 0.97 71.38± 0.91 72.34± 0.5972.34± 0.5972.34± 0.59 71.25± 0.86 73.22± 0.6373.22± 0.6373.22± 0.63 72.01± 1.24 73.61± 0.7873.61± 0.7873.61± 0.78

OOD
Generalization

57.19± 1.13 61.34± 2.72 64.53± 3.01 67.29± 1.96 69.92± 0.8869.92± 0.8869.92± 0.88 70.65± 1.50 72.61± 1.4472.61± 1.4472.61± 1.44 70.49± 1.21 72.83± 0.9272.83± 0.9272.83± 0.92

Table 3: For diffusion-model-generated augmentations, SAFLEX enhances the fine-grained clas-
sification and OOD generalization performance for various diffusion-generation methods.

Applying to Contrastive Fine-Tuning. We next shift our focus from the empirical risk minimiza-
tion (ERM) framework utilizing cross-entropy loss, as demonstrated in the prior scenarios. To test
the adaptability and compatibility of SAFLEX with contrastive loss, we turn to a contrastive fine-
tuning paradigm termed “Finetune Like You Pretrain” (FLYP)(Goyal et al., 2023). This methodol-
ogy offers a straightforward yet potent means to fine-tune pretrained image-text models, including
notable ones like CLIP (Radford et al., 2021). Remarkably, by simply fine-tuning classifiers through
the initial pretraining contrastive loss (refer to Eq. (13)), FLYP achieves uniformly better classifica-
tion performance. This entails constructing prompts from class labels and subsequently minimizing
the contrastive loss between these prompts and the image embeddings within the fine-tuning set.

Our experimentation adopts the framework presented in (Goyal et al., 2023). Specifically, we fine-
tune a CLIP model equipped with a ViT-B/16 encoder on the full iWildCam dataset from Wilds (Koh
et al., 2021). Post fine-tuning, we adopt a strategy from (Goyal et al., 2023) that linearly interpo-
lates weights between the pretrained and the fine-tuned checkpoints to optimize in-distribution (ID)
performance. As our upstream augmentation technique, we employ RandAugment, following hy-
perparameter setups as described in (Koh et al., 2021). For handling the CLIP contrastive loss,
we apply our tailored algorithm, detailed in Section 3. For an in-depth understanding, please refer
to Appendix A and Appendix C.

Task Zero-Shot LP-FT FLYP FLYP+RandAug FLYP+SAFLEX (w/ RandAug)
ID

w/o Ensembling
8.7± 0.0 49.7± 0.5 52.2± 0.6 52.4± 0.8 52.7± 0.752.7± 0.752.7± 0.7

OOD 11.0± 0.0 34.7± 0.4 35.6± 1.2 36.3± 1.4 36.9± 1.536.9± 1.536.9± 1.5

ID
w/ Ensembling

8.7± 0.0 50.2± 0.5 52.5± 0.6 52.6± 1.0 53.0± 0.753.0± 0.753.0± 0.7

OOD 11.0± 0.0 35.7± 0.4 37.1± 1.2 37.6± 0.9 37.8± 1.137.8± 1.137.8± 1.1

Table 4: Applied to contrastive fine-tuning of CLIP using FLYP (Goyal et al., 2023), SAFLEX
also enhances the performance of standard image augmentations like RandAugment.

As evidenced in Table 4, incorporating RandAugment alongside FLYP yields favorable outcomes.
Moreover, the introduction of SAFLEX amplifies performance gains for both ID and OOD tasks,
irrespective of whether ensembling is applied. This observation is particularly noteworthy, as it
demonstrates that SAFLEX is compatible with contrastive loss, which is a key component of many
training paradigms, including self-supervised learning.

6 CONCLUSIONS

Our study presents SAFLEX, a novel solution to current challenges in data augmentation. At its
core, SAFLEX offers a paradigm shift from traditional, one-size-fits-all augmentation strategies to a
more adaptive, data-driven approach. It allows for the learning of low-dimensional sample weights
and soft labels for each augmented instance, thereby circumventing the complexities and limitations
inherent in direct augmentation feature learning. Our method demonstrates universal compatibility,
underscoring its vast potential for diverse data types in learning scenarios. Extensive empirical eval-
uations confirm SAFLEX’s prowess, proving its adaptability from medical imaging contexts to the
nuances of tabular and natural image datasets. While SAFLEX demonstrates promising results, there
are certain factors to consider for optimal performance. A substantial and high-quality validation
set is beneficial. A suboptimal set could limit its effectiveness. Additionally, the type of upstream
augmentation methods selected plays a role, as it impacts the overall performance of SAFLEX. Our
approach also entails some computational overhead due to frequent gradient evaluations. These
considerations will be the focus of future studies to further refine the methodology. In essence,
SAFLEX stands as a testament to the advancements in learnable data augmentation, ushering in a
more adaptive and customized era of data-centric AI.
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