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A METHOD AND ALGORITHM DETAILS

In this appendix, we provide more details about the proposed method and algorithm. We first show
the derivation details behind results in Theorem 1. Then, we provide more details about the SAFLEX
algorithm on contrastive losses discussed at the end of Section 3.

Proof of Theorem 1: As outlined in Section 3, we start from approximating the validation loss up to
first order around the current parameter θt−1. By the first-order approximation, we shall rewrite the
optimization problem in Eq. (3) as follows:

max
(w1,...,wB), (y1,...,yB);∑B
i=1 wi=1, yi∈∆K ,∀i∈[B]

〈
∇θL(Dval, θt−1),∇θL

(
Dbatch

train ∪ {(waug
i , xaug

i ,yaug
i )}Bi=1, θt−1

)〉
(4)

where we also explicitly write out the learnable parts in the augmented batch.

Clearly, the set of constraints,
∑B

i=1 wi = 1 and
∑

k=1[Kyi]k = 1 for ∀i ∈ [B], are linear. To show
that the objective function is also linear, we consider the form of cross-entropy loss:

LCE(D, θ) = −
B∑
i=1

log
exp [f (xi)]yi∑K
k=1 exp [f (xi)]k

(5)

Since f (·) : X → ∆K is assumed to have the Softmax function applied on the outputs (see Sec-
tion 2), we have

∑K
k=1 exp [f (xi)]k = 1, and the cross-entropy loss can be rewritten as:

LCE(D, θ) = −
B∑
i=1

log[f (xi)]yi
(6)

When sample weights and soft labels are introduced, the cross-entropy loss becomes:

LCE(D, θ) = −
B∑
i=1

wi ·
K∑

k=1

[yi]k log[f (xi)]k (7)

From the above equation, we can see that the objective function L
(
Dbatch

train ∪
{(waug

i , xaug
i ,yaug

i )}Bi=1, θt−1

)
in Eq. (4) is indeed linear with respect to sample weigths

(w1, . . . , wB) and soft labels (y1, . . . ,yB).

Given these, we conclude, the resulted optimizaiton task, Eq. (4), is a linear programming problem,
which can be solved efficiently. Moreover, the set of linear constraints are independent, which
means the solution for sample weight w and soft labels y for an augmented sample xaug ∈ Dbatch

aug

are independent of other augmented samples and the training sample batch Dbatch
train . For an arbitrary

augmented sample xaug ∈ Dbatch
aug , replacing the gradient vector on the entire batch of training and

augmented samples with the gradient vector on this single augmented sample,

LCE({(waug, xaug,yaug)}, θ) = waug ·
K∑

k=1

[yaug]k log[f (xaug)]k (8)

it is not hard to see that if the gradient inner product is denoted by

Π = ∇θf (xaug) |θ=θt−1
∇θL(Dval, θt−1) (9)

the optimal solution for waug and yaug are:

y = OneHot
(
argmax

k
[Π]k

)
(10)

where OneHot(·) denotes one-hot encoding, and,

w = 1 if
K∑

k=1

[Π]k ≥ 0, otherwise w = 0 (11)
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□

For the adaptation of SAFLEX to contrastive losses, in Section 3, we have already shown the main
idea. Here we take a closer look at some typical contrastive losses like,

Lcontrast(D, θ) = −
B∑
i=1

log
exp

(
ϕ̄ (xi) · ϕ̄

(
x+
i

)
/τ

)
exp

(
ϕ̄ (xi) · ϕ̄

(
x+
i

)
/τ

)
+

∑B−1
j=1 exp

(
ϕ̄ (xi) · ϕ̄

(
x−
j

)
/τ

) (12)

where x+
i is the positive example of xi, and x−

j is the j-th negative example of xi. And ϕ̄ (·) is the
L2 normalized encoder, τ is the temperature. And the contrastive pre-training (which is also use for
finetuning in (Goyal et al., 2023)),

LCLIP(D, θ) :=

B∑
i=1

− log
exp

(
ḡ (Ii) · h̄ (Ti)

)∑B
j=1 exp

(
ḡ (Ii) · h̄ (Tj)

) +

B∑
i=1

− log
exp

(
ḡ (Ii) · h̄ (Ti)

)∑B
j=1 exp

(
ḡ (Ij) · h̄ (Ti)

) ,
(13)

where Ii is the image, and Ti is the text for the i-th sample. ḡ (·) and h̄ (·) are the L2 normalized
image and text encoders, respectively.

We confirm that one can perceive the contrastive training objectives in Eq. (12) and Eq. (13) as proxy
classification tasks. Here, we posit that the batch of size B can be construed as containing B classes:
one positive example coupled with B − 1 negative examples. This interpretation paves the way to
introduce the notion of (soft) labels over this surrogate classification task with its B distinct classes.

Taking the CLIP loss as an example, we shall generalize the first term in Eq. (13) to the following:

B∑
i=1

−wi ·
B∑

j=1

[yi]j log
exp

(
ḡ (Ii) · h̄ (Tj)

)∑B
k=1 exp

(
ḡ (Ii) · h̄ (Tj)

) (14)

where there are B proxy-classes.

Under this paradigm, the loss function remains linear concerning the soft labels and sample weights,
making the methodology in Theorem 1 applicable.

B RELATED WORK

In this section, we compare our approach with established augmentation methods, including tra-
ditional heuristical transformations, autonomous data augmentation, and methods leveraging large
pretrained models or adversarial perturbation. We then discuss our methodology’s connections to
noise-robust learning and hyperparameter optimization. For a detailed background on our experi-
mental tasks and other connected areas.

Traditional data augmentation operations are usually crafted and chosen heuristically based on
domain expertise (Krizhevsky et al., 2017; Simard et al., 2003). For natural images, common trans-
formations include random flipping, cropping, and color shifting (Shorten & Khoshgoftaar, 2019).
Mixup-based (Zhang et al., 2018) augmentations like cutmix (Yun et al., 2019) enhance data di-
versity by merging patches from two images, which is also widely adopted for tabular datasets. Al-
though we, like mixup, introduce soft labels, ours are not the outcome of merging two data instances.
Nevertheless, traditional methods enjoy no guarantee of effectiveness or universality, limiting their
applicability across varied data types and tasks.

Autonomous data augmentation has a rich history, while classical works generally bifurcate into
AutoAugment-based and GAN-based approaches. AutoAugment (Cubuk et al., 2019) learns se-
quences of transformations to optimize classifier performance on a validation set. Subsequent
works (Lim et al., 2019; Ho et al., 2019) have proposed alternative learning algorithms. Among
them, (Mounsaveng et al., 2021; 2023) propose to learn the augmentation transformation using
bilevel optimization at the cost that only differentiable affine transformations can be considered.
Subsequently, RandAugment (Cubuk et al., 2020) demonstrates equivalent performance to Au-
toAugment by employing random transformation selection. However, such approaches still rely
on a priori knowledge of beneficial transformations. On the other hand, GAN-generated images
conditioned on their class can be used as augmented samples (Odena et al., 2017; Sankaranarayanan
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et al., 2018; Huang et al., 2018). However, the inherent assumption of GANs, that augmented data
should mimic the original distribution, often restricts potential enhancements (Shorten & Khoshgof-
taar, 2019).

Pretrained large generative models, like diffusion models, offer the capability to synthesize train-
ing data in zero or few shot scenarios (He et al., 2022; Shipard et al., 2023) as well as generate
hard training examples (Jain et al., 2022). Nonetheless, models exclusively trained on diffusion-
produced data often underperform compared to their counterparts trained on real datasets (Azizi
et al., 2023). To address this, recent studies (Dunlap et al., 2023; Trabucco et al., 2023) proposed the
use of diffusion models for image editing with text prompts, yielding augmentations closer to origi-
nal training data without necessitating finetuning. In contrast to conventional GAN-based methods,
diffusion-based augmentations leverage knowledge from large pretrained datasets. However, they
can sometimes produce subtle image edits and corrupt class-relevant information, highlighting the
importance of noise reduction techniques like filtering (Dunlap et al., 2023). While such filtering re-
lies on heuristic metrics, it can be viewed as a specific case of learning sample weights in our work.
Another line of research models augmentation as adversarial perturbations (Goodfellow et al.,
2015), aiming to generate more challenging positive and negative samples (Yang et al., 2022a;b;
Ho & Nvasconcelos, 2020). However, these models usually suffer from inherent complexity and
instability issues.

Noise robust learning bears relevance to our approach since we treat upstream augmented samples
as noisy data. Learning sample weights and soft labels parallel noise reduction strategies such
as dataset resampling (Han et al., 2018; Lang et al., 2022), loss reweighting (Thulasidasan et al.,
2019; Konstantinov & Lampert, 2019; Gao et al., 2022), and label correction (Ma et al., 2018;
Kremer et al., 2018). Our method is efficient yet principled as we formulate to optimize the model
performance on the validation set, similar to standard hyperparameter search paradigms. Our
algorithm bears relevance to continuous hyperparameter optimization Lorraine et al. (2020) in its use
of bilevel optimization algorithms (Liu et al., 2022), but we introduce a novel bilevel approach. Data
augmentation is greedily learned in our formulation, in sync with the ongoing training dynamics.

Medical image classification MedMNIST (Yang et al., 2023; 2021) is a comprehensive dataset of
biomedical images, offering both 2D and 3D standardized images pre-processed to small sizes with
classification labels. ResNets (He et al., 2016) popular models for medical image classification.
(Yang et al., 2022a) and (Mounsaveng et al., 2023) are augmentation methods that have been shown
to improve performance on medical image classification tasks. (Yang et al., 2022a) introduces a
novel, prior-free autonomous data augmentation approach that leverages representation learning to
create hard positive examples as augmentations, enhancing performance in various machine learn-
ing tasks without the need for a separate generative model. (Mounsaveng et al., 2023) proposes an
automatic data augmentation learning method for histopathological images, wherein the augmen-
tation parameters are determined as learnable using a bilevel optimization approach, proving more
efficient and effective than predefined transformations. However, (Mounsaveng et al., 2023) is not
evaluated on MedMNIST and the adaptation is non-trivial.

Tabular data classification Classical models, such as XGBoost (Chen & Guestrin, 2016), have
been the cornerstone for tabular data processing, providing interpretability and handling diverse fea-
ture types effectively, including those with missing values. Multilayer perceptrons (MLPs) have
also been a staple in the domain, offering flexibility in modeling non-linear relationships in tabular
datasets. TabNet (Arik & Pfister, 2021), a more recent innovation, employs neural networks to emu-
late decision trees, focusing selectively on specific features at every layer. Lastly, SAINT (Somepalli
et al., 2022) presents a hybrid deep learning solution tailored for tabular data. It employs attention
mechanisms over both rows and columns and introduces an improved embedding technique. On
tabular data, cutmix (Yun et al., 2019) is widely adopted and considered as a standard augmentation
method.

Diffusion-model-based image augmentations Recent studies have shed light on the prowess of
diffusion models in image augmentations. (Dunlap et al., 2022) introduces ALIA, a technique inte-
grating both vision and language models. Using natural language descriptions of a dataset’s classes
or domains, ALIA edit the image using image-to-image diffusion models (Brooks et al., 2023), en-
suring the augmented data is not only visually consistent with the original but also encompasses
a broader range of diversity, particularly beneficial for fine-grained classification tasks. (Trabucco
et al., 2023) propose to change the inherent semantics of images, generalizing to novel visual con-
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cepts from a few labeled examples, making it especially valuable for tasks demanding semantic
diversification.

Robust finetuning of vision models, particularly the cutting-edge variants, has witnessed significant
progress in recent times. Notably, image-text pre-trained models like CLIP (Radford et al., 2021)
have heralded unprecedented levels of robustness, as demonstrated in CLIP and subsequent studies
(Wortsman et al., 2022; Kumar et al., 2021). While standard fine-tuning methodologies possess
substantial potential, there’s evidence to suggest that they might diminish robustness, especially
in zero-shot paradigms. The culmination of methodologies from (Kumar et al., 2021) (LP-FT)
and (Wortsman et al., 2022) (weight ensembling) represents a notable benchmark in the literature.
Meanwhile, the approach by (Goyal et al., 2023) introduces a nuanced strategy to the fine-tuning
landscape. Harnessing a simple yet effective technique that mimics contrastive pretraining, it casts
downstream class labels as text prompts and then optimizes the contrastive loss between image
embeddings and these prompt embeddings, terming it ”contrastive finetuning”. This method has
achieved remarkable results, outstripping benchmarks in multiple areas such as distribution shifts,
transfer learning, and few-shot learning. Especially on the WILDS-iWILDCam, the FLYP approach
championed by (Goyal et al., 2023) has set new performance standards, surpassing both traditional
finetuning and existing state-of-the-art approaches. The research solidifies contrastive finetuning as
a premier, intuitive strategy for the supervised finetuning of image-text models like CLIP.

Supervised learning via contrastive loss has taken center stage in recent research undertakings.
The methodology advocates for the fine-tuning of zero-shot models in a fashion similar to their
pre-training phase by capitalizing on contrastive loss. Various studies, such as (Khosla et al., 2020)
have investigated this concept in a fully supervised setting without the support of a pre-trained
model. In contrast, (Gunel et al., 2020) ventured into the realm of fine-tuning vast language models,
while (Zhang et al., 2021) concentrated on vision-only models. A salient distinction in the approach
becomes evident when considering the addition of loss functions: while certain works have paired
contrastive loss with cross-entropy, it has been observed that integrating cross-entropy with FLYP
loss might negatively impact results. Direct comparisons between the two loss functions have show-
cased the superior accuracy credentials of contrastive loss over cross-entropy.

Generalization aspects and theoretical understanding of data augmentation is a less explored
area. Data augmentation plays a pivotal role in boosting performance, especially in tasks such as
image and text classification. (Wu et al., 2020) delves into the reasons behind the efficacy of various
augmentations, specifically linear transformations, within the context of over-parametrized linear
regression. The study reveals that certain transformations can either enhance estimation by expand-
ing the span of the training data or act as regularization agents. Based on these insights, the authors
present an augmentation strategy that tailors transformations to the model’s uncertainty about the
transformed data, validating its potency across image and text datasets. On the other hand, (Lin
et al., 2022) offers a fresh perspective on data augmentation (DA), challenging traditional beliefs.
While classic augmentations, like translations in computer vision, are thought to create new data
from the same distribution, this fails to explain the success of newer techniques that dramatically
shift this distribution. The study introduces a theoretical framework that posits that DA imposes im-
plicit spectral regularization, achieved through manipulating the eigenvalues of the data covariance
matrix and boosting its entire spectrum via ridge regression. This framework provides a profound
understanding of DA’s varying impacts on generalization, serving as a foundational platform for
innovative augmentation design.

Other augmentation methods that use soft labels and sample weights. There is a recent pa-
per, Soft-Augmentation (Liu et al., 2023), which also considers soft labels/targets and soft sample
weights (i.e., loss reweighting). However, we believe there are huge methodological differences
between the two methods in how they model the soft labels and weights. These methodological
distinctions lead to significant differences in applicability. Below, we elaborate on the methodologi-
cal and applicability differences between the two approaches and provide empirical comparisons to
further highlight the novelty and improved performance of our method.

Our SAFLEX employs a learnable, augmentation-method agnostic, and more automatic and prin-
cipled approach for generating soft labels and sample weights. In Soft-Augmentation, the au-
thors implement a specific approach to generating soft labels, namely through label smoothing.
Label smoothing modifies the indicator value “1” (representing the ground-truth class label) with
p = 1 − α(ϕ), where the adaptive smoothing factor α(ϕ) is determined by the degree/strength ϕ
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of the specific sampled augmentation applied to input xi. Notably, the remaining probability mass
α(ϕ) is uniformly distributed across all other class labels. The formula of α(·) requires human
modeling with domain expertise. And since different upstream augmentation methods have differ-
ent definitions of the strength factor ϕ, remodeling of α(·) for each new augmentation method is
required. The discussion in Soft-Augmentation mainly focuses on crop augmentations on images,
which impressively draws insights from human visual classification experiments. Our SAFLEX, in
contrast, differs in these key aspects: (a) Flexible Soft Labels: SAFLEX employs a more flexible
approach to modeling soft labels, moving beyond label smoothing’s limitations. We believe that
uniformly distributing the probability mass across all classes may not always be the most effective
strategy. This limitation of Soft-Augmentation is also acknowledged in the paper. (b) Learned Soft
Labels and Sample Weights: In SAFLEX, both soft labels and sample weights are learned from a
bilevel optimization problem, which is agnostic to the type and strength of the upstream augmenta-
tion method. (c) Bilevel Optimization Problem: SAFLEX confronts the inherent challenge of soft
augmentation by framing it as a bilevel optimization problem. This approach represents the first rig-
orous formulation of the problem, underscoring an important theoretical contribution. Additionally,
we introduce novel and efficient algorithms specifically designed to tackle this bilevel optimization
challenge.

Our SAFLEX approach offers broader applicability compared to the Soft-Augmentation method.
Unlike Soft-Augmentation, which requires an explicit augmentation strength parameter ϕ, SAFLEX
seamlessly integrates with any upstream data augmentation mechanism, including diffusion models
that lack the strength parameter ϕ. This versatility enables SAFLEX to effectively handle a wider
range of data types, including medical and tabular data. SAFLEX demonstrates its versatility by
effectively handling a variety of tasks, including (standard) classification, fine-grained classification,
out-of-distribution (OOD) generalization, and self-supervised learning. This broad applicability is
evident in our comprehensive experiments. Conversely, Soft-Augmentation primarily focuses on
image classification, with specific emphasis on model occlusion performance and calibration error,
thus limiting its applicability to a narrower range of tasks.

C EXPERIMENTAL SETUPS AND IMPLEMENTATION DETAILS

In this section, we provide more details about the experimental setups and implementation details.

The experiments are conducted on 4 NVIDIA Tesla V100 GPUs with 32GB memory each.

For the hyperparameter setting of SAFLEX algorithm, we usually set the penalty coefficient β = 0,
and only set it β = 1 for experiments on the tabular datasets. We often keep the temperature
τ = 0.01, and only set it to be τ = 0.1 on the CLIP finetuning experiment. We do not conduct hy-
perparameter search for the hyperparameters of SAFLEX algorithm, and we believe the performance
can be further improved by hyperparameter search.

We then describe the infomation of datasets. The information about tabular datasets are listed below.

Dataset Task # Features # Categorical # Continuous Dataset Size # Positives # of Neg. % of Positives

Appetency Binary 39 3 36 494,021 97,278 396,743 19.69
Arrhythmia Binary 226 0 226 452 66 386 14.60
Click Binary 12 7 5 39,948 6,728 33,220 16.84
Credit Binary 29 0 29 284,807 492 284,315 0.17
QSAR Binary 41 0 41 1,055 356 699 33.74
Shrutime Binary 11 3 8 10,000 2,037 7,963 20.37
Volkert Multiclass (10) 147 0 147 58,310 — — —

Table 5: Statistics of the tabular datasets.

The specific subsets of iWILDCam and CUB datasets used in diffusion-generated augmentation
experiments are adopted form (Dunlap et al., 2023).

Next, we show some more experiment results. The performance of Soft-Augmentation (Liu et al.,
2023) on MedMNIST datasets is listed below. Since the Soft-Augmentation paper focuses on im-
proving crop augmentation and does not provide formulas to generate soft labels and sample weights
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Dataset Download Link

Appetency http://kdd.ics.uci.edu/databases/kddcup99
Arrhythmia http://odds.cs.stonybrook.edu/arrhythmia-dataset/
Click https://kdd.org/kdd-cup/view/kdd-cup-2012-track-2
Credit https://www.kaggle.com/jacklizhi/creditcard
QSAR https://archive.ics.uci.edu/ml/datasets/QSAR+biodegradation
Shrutime https://www.kaggle.com/shrutimechlearn/churn-modelling
Volkert http://automl.chalearn.org/data

Table 6: Links of the tabular datasets.

for the upstream augmentations we considered, we test it with crop augmentation on the MedM-
NIST medical image datasets. We use the tuned hyperparameters for crop augmentation and Soft-
Augmentation as described in the paper.

Method Path Derma Tissue Blood OCT OrganA OrganC OrganS

Crop 92.68± 0.82 76.61± 0.14 67.38± 0.19 95.38± 0.12 77.50± 0.11 94.46± 0.14 90.29± 0.09 80.19± 0.06

Soft Augmentation (w/ Crop) 91.95± 0.59 77.05± 0.24 67.06± 0.44 95.96± 0.28 76.92± 0.46 93.90± 0.25 91.44± 0.24 80.92± 0.17

Table 7: Soft-Augment’s performance on MedMNIST images, ResNet-18 backbone is used.

We see that except on the DermaMNIST dataset, the performance of Soft-Augmentation is even
lower than the No Augmentation baseline. While SAFLEX’s performance is consistently higher
than the ’No Augmentation’ baseline. Applying crop augmentation directly decreases the perfor-
mance on most of the MedMNIST datasets. This is not surprising as we observed that applying
RandAugment or Mixup directly also lowers the performance. However, the main reason for Soft-
Augmentation’s relatively poor performance is that it cannot consistently improve performance over
the crop augmentation baseline (it shows improvement on Derma, Blood, OrganC, OrganS, but de-
creases performance on Path, Tissue, OCT, OrganA). This suggests that in situations with a high
prevalence of poor-quality augmented samples (e.g., crop augmentation on medical images), Soft-
Augmentation’s relatively conservative strategy is inadequate in overcoming the significant noise
and label errors introduced by these samples.

The performance of LP-A3 (Yang et al., 2022a) on MedMNIST datasets (copied from the original
paper) is listed below for reference.

Method Path Derma Tissue Blood OCT OrganA OrganC OrganS

LP-A3 94.42± 0.24 76.22± 0.27 68.63± 0.14 96.97± 0.06 80.27± 0.54 94.73± 0.21 92.41± 0.22 82.28± 0.38

Table 8: LP-A3’s performance on MedMNIST images, ResNet-18 backbone is used.

For the efficiency result, we found that on the eight MedMNIST datasets considered, the overhead
of SAFLEX measure as wall-clock time is 42% on average, while more specifically, 54% with Ran-
dAugment and 31% with Mixup. On the seven tabular datasets, on average the overhead of SAFLEX
is 81% of the original training time per epoch.
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