
A Theoretical analysis

A.1 Preliminaries

Recall the definition of the binary entropy H(p) = −p log p− (1− p) log(1− p). A useful approxi-
mation that will be used in the analysis is the following:

log

(
n

m

)
≈ nH

(
m

n

)
, (1)

which holds when both n and m grow at the same rate, i.e., m . n, and can be derived using
Stirling’s approximation.

For the following comparisons, we will be considering a graph distribution with n vertices. For better
exposition, the analysis will be performed for directed graphs. The same trends in the bounds hold
also for undirected graphs.

Conventional graph encodings. We consider two types of baseline graph encodings:

• Uniform: Lunif-G(G) = n2. Here no assumptions are made about the graph; all graphs are
considered to be equally probable.

• Erdős-Renyi: LER-G(G) = log
(
n2

m

)
+ log(n2 + 1) ≈ n2Hm + log(n2 + 1), where m the

number of edges and Hm = H
(
m
n2

)
. This baseline is efficient at encoding graphs that are

either very sparse or very dense.

Though the above encodings assign the same probability to isomorphic graphs, they map them to
different codewords. Hence, they are redundant when dealing with unlabelled graphs. The following
variants are more efficient by taking into account isomorphism:

• Uniform - Isomorphism classes: Lunif-S(G) = log |Gn| ≈ n2 − n log n.

• Erdős-Renyi - Isomorphism classes: LER-S(G) = log |Gn,m| + log(n2 + 1) ≈ n2Hm +
log(n2 + 1)− n log n,

where Gn and Gn,m are the set of all graphs with n vertices and the set of all graphs with n vertices
and m edges, respectively. In both cases, we used the fact that asymptotically almost all graphs are
rigid i.e., that they have only the trivial automorphism [1].

Observing that all four encodings asymptotically grow quadratically with the number of nodes we
can derive the following lemma:

Lemma 1. Consider a graph distribution p over graphs with n vertices and denote by H̄m =
EG∼p[H( mn2 )] the expected value of the binary entropy of the number of edges m. If H̄m < 1, then
the expected description lengths of the baseline models are asymptotically ordered as follows:

EG∼p[LER-S(G)] . EG∼p[LER-G(G)] . EG∼p[Lunif-S(G)] . EG∼p[Lunif-G(G)] (2)

The compression gain when encoding isomorphism classes instead of labelled graphs is Θ(n log n),
while that of the Erdős-Renyi encoding compared to the uniform one is Θ

(
n2(1− H̄m)

)
.

The proof follows directly from the equations above. Since most real-world graphs are sparse, then
the condition H̄m < 1 is almost always true.

Partitioning (only). The partitioning models considered in this analysis assume that each graph is
clustered into b subgraphs of k vertices each (i.e., b = n

k ) and that the intra- and inter-subgraph edges
are encoded independently1. Note that the preamble terms that encode the number of blocks in the
partition and the number of vertices per block are unnecessary since k is fixed. Overall, the code
length is given by

LPart(G) = L(H) + L(C|H),

1To make the analysis more tanglible, we examine here a slightly simpler encoding than the one used in the
experiments - see Eq. (9).

1



with the two terms defined respectively as follows:

L(H) =

b∑
i=1

(
log(k2 + 1) + log

(
k2

mi

))
and L(C|H) =

b∑
i 6=j

(
log(k2 + 1) + log

(
k2

mij

))
.

(3)

Above,mi is the number of edges in subgraphHi andmij is the size of the cut between subgraphsHi

and Hj . In both cases, the first term encodes the number of edges, and the second their arrangement
across the vertices.

Partition and Code (PnC). We make the same assumptions for PnC as in LPart(G): the graph is
partitioned into b subgraphs of k vertices and the same encoding of non-dictionary subgraphs H and
cuts C is used. The number of dictionary subgraphs bdict is encoded with a Binomial distribution and
the dictionary subgraphs Hdict themselves with a Multinomial as in Eq. (6) and (7) of the main paper.
The overall encoding length is

LPnC(G|D) = L(bdict) + L(Hdict|bdict, D) + L(Hnull|bnull, D) + L(C|H), (4)

Each dictionary atom is encoded using any of the null models mentioned above, hence L(D) =
O(|D|k2).

A.2 Why partitioning? Partitioning vs Null Models

As a warm-up, we will discuss the case of encodings based on pure graph partitioning, such as the
Stochasic Block Model (“Partioning non-parametric” in the tables of the main paper). We remind the
reader that these encodings do not take into account the isomorphism class of the identified subgraphs
but rely on a null model to encode them.

In the following, we derive a sufficient condition for the sparsity of the connections between subgraphs,
under which partitioning-based encodings will yield smaller expected description length than the
baseline null models. Formally:
Theorem 1a. Let every G ∼ p be partitioned into b blocks of k = O(1) vertices and suppose that
the partitioning-based encoding of Eq. (3) is utilised. The following holds:

EG∼p[LPart(G)] . EG∼p[LER-S(G)]− n2
(

H̄m −
log(k2 + 1)

k2
− H̄mij

)
, (5)

where H̄mij = EG∼p[H
(mij
k2

)
] and H̄m = EG∼p[H( mn2 )] are the expected binary entropy of the cuts

and of the total number of edges, respectively.

Proof.

EG∼p[Lpart(G)] ≈ EG∼p
[ b∑
i=1

(
log(k2 + 1) + k2H

(mi

k2

))
+

b∑
i6=j

(
log(k2 + 1) + k2H

(mij

k2

))]
=
n

k

(
log(k2 + 1) + k2H̄mi

)
+ (

n2

k2
− n

k
)

(
log(k2 + 1) + k2H̄mij

)
= n2

(
log(k2 + 1)

k2
+ H̄mij

)
+ nk

(
H̄mi − H̄mij

)
= EG∼p[LER-S(G)]− n2

(
H̄m −

log(k2 + 1)

k2
− H̄mij

)
+ nk

(
H̄mi − H̄mij + log n

)
− log(n2 + 1)

. EG∼p[LER-S(G)]− n2

(
H̄m −

log(k2 + 1)

k2
− H̄mij

)
,

where we assumed that m . n2, mi . k2, mij . k2, and in the last step we derive an asymptotic
inequality using the dominating quadratic term. In other words, partitioning-based encoding is
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quadratically superior to the best null model whenever there exists a k such that

log(k2 + 1)

k2
< H̄m − H̄mij .

The above concludes the proof.

A.3 The importance of the dictionary: PnC vs Partitioning

We proceed to mathematically justify why encoding subgraphs with a dictionary (the “Code” part in
PnC) can yield extra compression gains compared to pure partitioning-based encodings.

As our main theorem shows, utilising a dictionary allows us to reduce the linear O(n) terms of the
partitioning-based description length:

Theorem 1b. Let every G ∼ p be partitioned into b blocks of k = O(1) vertices and suppose that
the PnC encoding of Eq. (4) is used. If there exists a dictionary such that |D| < (k2 + 1)2k

2H̄mi with
H̄mi = EG∼p[H

(
mi
k2

)
] being the expected binary entropy of the subgraph edges, then it holds that:

EG∼p[LPnC(G)] . EG∼p[Lpart(G)]− nk(1− δ)
(

H̄mi −
H(D)− log(k2 + 1)

k2

)
, (6)

where 1− δ is the probability that a subgraph belongs in the dictionary and H(D) is the entropy of
the distribution q over the dictionary atoms.

Proof. We will analyse the description length of each of the components of Eq. (4).

Number of dictionary subgraphs. The expected description length of the number of subgraphs is
equal to the entropy of the binomial distribution:

EG∼p[L(bdict)] =
1

2
log
(

2πebδ(1− δ)
)

+O
(1

b

)
=

1

2
log
(

2πeδ(1− δ)
)

+
1

2
log
(n
k

)
+O

(k
n

)
= O

(
log

n

k

)
Dictionary subgraphs. The expected description length of the subgraphs that belong in the dictionary
amounts to the entropy of the multinomial distribution and can be upper bounded as follows:

EG∼p[L(Hdict|bdict, D)] = EG∼p
[
− log

bdict!∏
a∈D ba!

−
∑
a∈D

ba log q(a)

]
≤ EG∼p[−

∑
a∈D

ba log q(a)]

= −
∑
a∈D

EG∼p[ba] log q(a)

= −b(1− δ)
∑
a∈D

q(a) log q(a) =
n

k
(1− δ)H(D) ≤ n

k
(1− δ) log |D|,

where we used the fact that bdict! ≥
∏
a∈D ba!. The term

H(D) = Ha∼q(a)[a] = −
∑
a∈D q(a) log q(a) corresponds to the entropy of the dictionary

distribution.

Non-dictionary subgraphs. Assuming that the subgraph edges mi are independent from the number
of non-dictionary subgraphs b − bdict, then the expected description length of the non-dictionary
subgraphs becomes:

EG∼p[L(Hnull|bnull, D)] ≈ EG∼p
[ b−bnull∑
i=1

(
log(k2 + 1) + k2Hmi

)
] =

n

k
δ

(
log(k2 + 1) + k2H̄mi

)
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Overall, using the same derivation for the cuts as in Theorem 1a, we obtain:

EG∼p[LPnC(G|D)] / O(log
n

k
) + n2

(
log(k2 + 1)

k2
+ H̄mij

)
+ n

(
δkH̄mi + (1− δ)

(
H(D)− log(k2 + 1)

k

)
− kH̄mij

)
= EG∼p[Lpart(G)] + n(1− δ)

(
H(D)− log(k2 + 1)

k
− kH̄mi

)
+O(log

n

k
)

Including the description length of the dictionary and amortising it over each graph in a dataset of G
graphs, we conclude

EG∼p[LPnC(G)] = EG∼p[Lpart(G)]− nk(1− δ)
(

H̄mi −
H(D)− log(k2 + 1)

k2

)
+O(log

n

k
+
|D|
|G|

k2).

Hence, if k = O(1) and |D| � |G| (more precisely, the ratio |D||G| shouldn’t grow with n), then a
linear compression gain is obtained if:

H̄mi −
H(D)− log(k2 + 1)

k2
> 0⇔ H(D) < log(k2 + 1) + k2H̄mi .

The proof concludes by noting that the above condition is implied by |D| < (k2 + 1)2k
2H̄mi .

A.4 The importance of subgraph isomorphism - Theorem 2

Theorem 2. Let p be a graph distribution that is invariant to isomorphism, i.e., p(G′) = p(G) if G ∼=
G. Moreover, consider any algorithm that partitions G in b subgraphs of k vertices. Denote by LPnC-G
and LPnC-S the description length of a PnC compressor that uses a dictionary of atoms encoded as
labelled graphs and as isomorphism classes, respectively. The following holds:

EG∼p[LPnC-S(G)] ≈ EG∼p[LPnC-G(G)]− n(1− δ) log k (7)

under the condition that almost all graphs in the dictionary are rigid2.

Importantly, the compression gains implied by the theorem hold independently of the size of the
dictionary, applying e.g., also when the dictionary is equal to the universe and contains all graphs of
size k (which amounts to the traditional partitioning baselines).

Proof. Let DG be a dictionary of labelled graphs of k vertices, i.e. graphs whose vertices are ordered,
and DS the corresponding dictionary of unlabelled graphs, i.e., where the atoms are isomorphism
classes.

In the context of this comparison we are only interested in the description length of the dictionary
subgraphs. For simplicity we will assume that these are encoded with a categorical distribution
instead of multinomial:

EG∼p[L(Hdict|bdict, D)] = EG∼p
[
−
∑
a∈D

ba log q(a)

]
= −b(1− δ)

∑
a∈D

q(a) log q(a) =
n

k
(1− δ)H(D)

Hence, in order to compare the two variants, we are interested in the entropy H(D), which requires
enumerating the possible outcomes of the categorical distribution, i.e., the dictionary atoms.

Denote with Sa the isomorphism class of an atom a, i.e., Sa = {a′ ∈ Gk|a ∼= a′} It is known
that the size of each Sa is |Sa| = k!

|Aut(a)| [2], where Aut(a) the automorphism group of a, i.e., all
isomorphisms that map the adjacency matrix onto itself.

Since p(G) is isomorphism invariant, then the same will hold for the subgraphs H ⊆ G, i.e.
p(H ′) = p(H) if H ∼= H . Hence, regarding PnC-G, it should hold that for each atom a in DG,
then all a′ ∼= a should be also contained in the dictionary and assigned the same probability, i.e.,

2A rigid graph has only the trivial automorphism.
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qG(a) = qG(a′). Therefore, the corresponding probabilties of isomorphism classes in the context of
PnC-S should be as follows: qS(Sa) =

∑
a∈Sa qG(a) = |Sa|qG(a).

Then, using a similar argument to [3], we can derive the following for the entropy HG(D):

HG(D) = −
∑
a∈DG

qG(a) log q(a)

= −
∑
a∈DG

qS(Sa)

|Sa|
log

qS(Sa)

|Sa|

= −
∑

Sa∈DS

∑
a∈Sa

qS(Sa)

|Sa|
log

qS(Sa)

|Sa|

= −
∑

Sa∈DS

qS(Sa) log
qS(Sa)

|Sa|

= HS(D) +
∑

Sa∈DS

qS(Sa) log |Sa| = HS(D) + log k!−
∑

Sa∈DS

qS(Sa) log |Aut(a)|

At this point we will assume that almost all graphs in the dictionary are rigid, or more precisely we
require that

∑
Sa∈DS qS(Sa) log |Aut(a)| ≈ 0, which can be also satisfied when non-rigid dictionary

atoms have small probability. In practice, although for very small graphs of up to 4 or 5 vertices,
many graphs have non-trivial automorphisms, this condition is easily satisfied for larger k (but still of
constant size w.r.t. n), that were also considered in practice. Then, the result immediately follows:

EG∼p[LPnC-G(Hdict|bdict, D)] ≈ EG∼p[LPnC-S(Hdict|bdict, D)] +
n

k
(1− δ) log k! =⇒

EG∼p[LPnC-S(G)] ≈ EG∼p[LPnC-G(G)]− n(1− δ) log k,

where we used Stirling’s approximation log k! ≈ k log k.

B Algorithmic Details

B.1 Cut encoding

Denote the vertex count of subgraph Hi as ki. Further denote with mc = {m1,1,m1,2, . . . ,mb−1,b}
the vector containing the number of edges between each subgraph pair i, j and mc =

∑b
i<jmij . The

b-partite graph C containing the cuts will be encoded hierarchically, i.e. first we encode the total edge
count mc, then the pairwise counts mc and finally, for each subgraph pair, we independently encode
the arrangement of the edges. For each of these cases, a uniform encoding is chosen, following the
rationale mentioned in Section 3 of the main paper. Hence, calculating the length of the encoding
boils down to enumerating possible outcomes:

L(C|H) = L(C,mc,mc|H) = L(mc|H) + L(mc|mc,H) + L(C|mc,mc,H)

= log
(
1 +

b∑
j>i

kikj
)

+ log

(
b(b− 1)/2 +mc − 1

mc

)
+

b∑
j>i

log

(
kikj
mij

)
(8)

We make the following remarks: (a) The encoding is the same regardless of the isomorphism class
of the subgraphs, and the only dependence arises from their number, as well as their vertex counts.
(b) Small cuts are prioritised, thus the encoding has an inductive bias towards distinct clusters in the
graph. (c) Our cut encoding bears resemblance to those used in non-parametric Bayesian inference
for SBMs (e.g., see the section B.2 on the baselines and [4] for a detailed analysis of a variety of
probabilistic models), although a central difference is that in these works the encodings also take the
vertex ordering into account.

B.2 Baseline Encodings

Null models. The description length of the uniform encoding is
equal to L(G) = log(nmax + 1) +

(
n
2

)
and that of the edge list model is

L(G) = log(nmax + 1) + log
((
n
2

)
+ 1
)

+m log
(
n
2

)
.
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Clustering. The encoding we used for the clustering baselines is optimal under SBM assumptions
and is obtained from [4] with small modifications. It consists of the following uniform encodings:
number of graph vertices, number of graph edges, number of blocks, number of vertices in each block,
number of edges inside each block and between each pair of blocks, and finally the arrangements of
intra- and inter-block edges (a detailed explaination for each term can be found in [4] and [5]):

L(G) = log(nmax + 1) + log

(
n(n− 1)/2 + 1

)
+ log(n) + log

(
n− 1

b− 1

)
+ log

(
b(b+ 1)/2 +m− 1

m

)
+

b∑
i=1

log

((ki
2

)
mi

)
+

b∑
i<j

log

(
kikj
mij

) (9)

B.3 Dictionary Learning - Continuous Relaxation

In the following section we will relax the Minimum Description Length objective (Eq. (10) in the
main paper) by introducing the fractional membership variables x̂.

The dictionary description length, Eq. (5), can be trivially rewritten as follows:

Lx̂(D) =
∑
a∈U

x̂a Lnull(a). (10)

Regarding the description length of the graphs, the membership variables are the ones that select
when a subgraph is encoded as a dictionary atom or when with the help of the null model. Note
that this is an additional explanation for the necessity of the the dual encoding: except for giving
sufficient freedom to the partioning algorithm to choose non-dictionary atoms, it is also necessary for
optimisation.

The relaxation of the graph description length was done as follows: ba(x̂) = x̂aba,
bdict(x̂) =

∑
a∈U ba(x̂), and qφ,x̂(a) = x̂ae

φa∑
a′∈U x̂a′e

φ
a′

. The rest of the components of the graph

description length are unaffected from the choice of the dictionary. Now Eq. (6)-(8) can be rewritten
as:

Lφ,x̂(bdict, bnull) = − log

(
b

bdict(x̂)

)
− bdict(x̂) log(1− δφ)−

(
b− bdict(x̂)

)
log(δφ)− log qφ(b)

Lφ,x̂(HD|bdict, D) = − log
(
bdict(x̂)!

)
+
∑
a∈U

log
(
ba(x̂)!

)
−
∑
a∈U

ba(x̂) log qφ,x̂(a)

Lnull,x̂(Hnull|bnull, D) = −
∑
H∈H

log qnull(H)(1− x̂H), where x̂H =

{
x̂i ∃ ai ∈ U s.t. H ∼= ai
0 otherwise.

(11)

To obtain a continuous version of the terms where factorials are involved we used the Γ function,
where Γ(n+ 1) = n!, for positive integers n. The rest of the terms are differentiable w.r.t x̂.

B.4 Learning to Partition

We remind that our algorithm is based on a double iterative procedure: the external iteration refers to
subgraph selection and the internal to vertex selection. In order for the algorithm to be able to make
decisions, we maintain a representation of two states: the subgraph state SHt = {H1, H2, . . . Ht}
that summarises the decisions made at the subgraph level (external iteration) up to step t , and the
vertex state SVi = {vt1 , vt2 , . . . vti} that summarises the decisions made at the vertex level (internal
iteration) up to the i-th vertex selection. Overall, we need to calculate the probability of ST , where T
is the number of iterations:

pθ(ST |G) = pθ(HT |SHT−1, G)pθ(S
H
T−1|G) =

T∏
t=1

pθ(Ht|SHt−1, G)

=

T∏
t=1

( kt∏
i=1

pθ(v|SVi−1, kt, S
H
t−1, G)

)
pθ(kt|SHt−1, G)

(12)
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Hence, the parametrisation of the algorithm boils down to defining the vertex count probability
pθ(kt|SHt−1, G) and the vertex selection probability pθ(v|SVi−1, kt, S

H
t−1, G), where v ∈ Vt and Vt

the set of the remaining vertices at the step t.

Now we explain in detail how we parametrise each term. First, we use a Graph Neural Network
(GNN) to embed each vertex into a vector representation h(v) = GNNv(G), while the graph itself is
embedded in a similar way h(G) = GNNG(G).

Each subgraph is represented by a permutation invariant function on the embeddings of its vertices,
i.e., h(Ht) = DeepSets({h(v)|v ∈ Ht}), where we used DeepSets [6] as a set function approximator.
Similarly, the subgraph state summarises the subgraph representations in a permutation invariant
manner to ensure that future decision of the algorithm do not depend on the order of the past ones:
h(SHt ) = DeepSets({h(Ht)|Ht ∈ SHt }).

Given the above, the probability of the vertex count at step t is calculated as follows:

pθ(kt|SHt−1, G) = softmax|Vt|kt=1MLP
(
h(SHt−1),h(G)

)
, (13)

where MLP is Multi-layer perceptron.

As mentioned above, the probability of the selection of each vertex is computed in a way that
guarantees connectivity:

pθ(v|SVi−1, kt, S
H
t−1, G) =


softmaxv∈VtMLP

(
h(SHt−1),h(v)

)
i = 0, v ∈ Vt

softmaxv∈Vt∩N(SVi−1)MLP
(
h(SHt−1),h(v)

)
0 < i < kt, v ∈ Vt ∩N(SVi−1)

0 otherwise,
(14)

where N(SVi−1) denotes the union of the neighbourhoods of the already selected vertices, excluding
themselves: N(SVi−1) =

⋃i−1
i′=1 N(vti′ )− {vt1 , vt2 , . . . vti−1

}. Overall, the parameter set θ is the set
of the parameters of the neural networks involved, i.e., GNNs, DeepSets and MLPs.

In the algorithm 1 we schematically illustrate the different steps described above.

Algorithm 1: Partitioning algorithm
Input: graph G
Output: partition H
Initialisations: h(v) = GNNv(G), h(G) = GNNG(G), V1 = V , SH0 = ∅
t← 1
while Vt 6= ∅ do

kt ∼ pθ(kt|SHt−1, G) // sample maximum vertex count
Initialise SV0 = ∅
while i = 1 ≤ kt and N(SVi−1) 6= ∅ do

vti ∼ pθ(v|SVi−1, kt, S
H
t−1, G) // sample new vertex

SVi = SVi−1 ∪ {vti}
end
Ht = SVi
SHt = SHt−1 ∪ {Ht}
t← t+ 1

end
H = SHt

Limitations. Below we list two limitations of the learnable partitioning algorithm that we would
like to address in future work. First, it is well known that GNNs have limited expressivity which
is bounded by the Weisfeiler Leman test [7, 8]. The most important implication of this is that they
have difficulties in detecting and counting substructures [9]. Since in our case subgraph detection
is crucial in order to be able to partition the graph into repetitive substructures, the expressivity of
the GNN might be an issue. Although iterative sampling may mitigate this behaviour up to a certain
extent, the GNN will not be able to express arbitrary randomised algorithms. Modern architectures
such as [10, 11] might be more suitable for this task, which makes them good candidates for future
exploration on the problem.
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Second, more sophisticated inference schemes should be explored, since currently a partition is
decoded from the randomised algorithm by taking a single sample from the learned distribution. In
particular, currently at each step t the algorithm can only sample kt vertices as dictated by the initial
sampling on the vertex count. However, there might be benefit from expanding the subgraph more, or
stopping earlier than kt when no other vertex addition can contribute towards a smaller description
length. However, there is no control on the stopping criterion apart from the initial vertex count
prediction. To this end, it is of interest to explore alternatives that will allow the algorithm to choose
from a pool of candidate decisions based on the resulting description lengths (e.g., in hindsight).
Further inspiration can be taken from a variety of clustering and graph partitioning algorithms, e.g.
k-means or soft clustering in a latent space [12, 13], agglomerative [14, 15] and Markov Chain Monte
Carlo as in [16] where a modified Metropolis-Hastings algorithm is proposed.

B.5 Special cases of note

A pertinent question is whether one can determine the optimal way to partition a graph when
minimising (10). Though a rigorous statement is beyond our current understanding, in the following
we discuss two special cases:

(a) Small predefined universe. When the subgraphs are chosen from a small and predefined U, one
may attempt to identify all the possible atom appearances in G by repeatedly calling a subgraph
isomorphism subroutine. The minimisation of (10) then simplifies to that of selecting a subset of
subgraphs that have no common edges (as per the definition in Section 4.1). The latter problem can be
cast as a discrete optimisation problem under an independent set constraint (by building an auxiliary
graph the vertices of which are candidate subgraphs and two vertices are connected by an edge when
two subgraphs overlap, and looking for an independent set that minimises the description length).

(b) Unconstrained universe. When U contains all possible graphs, the problem can be seen as a special
graph partitioning problem. However, contrary to traditional clustering algorithms [17, 18, 15, 14],
our objective is not necessary optimised by finding small cuts between clusters (see Appendix A).

Since most independent set and partitioning problems are NP-hard, we suspect that similar arguments
can be put forward for (10). This highlights the need to design learnable alternatives that can provide
fast solutions without the need to be adapted to unseen data.

C Additional Experiments

C.1 Ablation studies

Compression of unseen data. In the Tables 1 and 2 we report the compression rates (in bpe) of
the training and the test data separately for all the PnC variants. As can be seen, in most of the
cases the generalisation gap is small, which implies that there was no evidence of overfitting and the
compressor can be used to unseen data with small degradation in the compression quality.

Table 1: Average negative log likelihood of train and test data in bpe (molecular distributions).

Dataset name MUTAG PTC ZINC

Set train test train test train test

PnC + SBM 3.81 3.85 4.40 4.25 3.33 3.41
PnC + Louvain 2.18 2.39 2.67 2.74 1.96 1.97
PnC + PropClust 2.37 2.89 3.33 3.83 2.19 2.27
PnC + Neural Part 2.16±0.02 2.28±0.03 2.64±0.24 2.59±0.21 2.01±0.02 2.03±0.01

Out-of-distribution compression. In the following experiment we tested the ability of PnC to
compress data sampled from different distributions. In particular we trained the Neural Partitioning
variant on one of the MUTAG and IMDB-B datasets, and then used the pretrained compressor
on the remaining ones. In Table 3 (left) we report the data as well as the total (data + model)
description length, in accordance with the experiments of the main paper. We make the following
two observations: (1) As expected, PnC can generalise to similar distributions relatively well (in the
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Table 2: Average negative log likelihood of train and test data in bpe (proteins and social network
distributions).

Dataset name PROTEINS IMDB-B IMDB-M

Set train test train test train test

PnC + SBM 3.24 3.46 0.48 0.50 0.35 0.31
PnC + Louvain 3.33 3.47 0.94 0.95 0.66 0.59
PnC + PropClust 3.41 3.53 1.43 1.61 0.95 0.75
PnC + Neural Part 3.33±0.24 3.36±0.29 1.01±0.05 0.99±0.04 0.70±0.03 0.63±0.02

table we highlight the MUTAG→ ZINC and the IMDB-B→ IMDB-M transfer), but fails to do so
when there is significant distribution shift. (2) Although MUTAG contains only approximately 100
graphs, it sufficient to train a compressor that can generalise to a significantly larger dataset (ZINC
contains approximately 10K graphs), which is an indication that PnC is sample efficient.

Table 3: Out of distribution compression (left) and probability of a subgrpaph to belong in the
dictionary (right).

Training dataset

MUTAG IMDB-B same dataset
Test dataset data total data total data total

MUTAG - - 6.68 7.61 2.17±0.02 2.45±0.02
PTC 4.14 4.48 8.16 8.55 2.63±0.26 2.97±0.14
ZINC 2.62 2.63 6.92 6.94 2.01±0.02 2.07±0.03
PROTEINS 4.74 4.87 4.31 4.44 3.34±0.25 3.51±0.23
IMDB-B 1.83 1.86 - - 1.00±0.04 1.05±0.04
IMDB-M 1.37 1.39 0.74 0.77 0.66±0.05 0.72±0.05

dataset 1 - δ

MUTAG 0.998
PTC 0.995
ZINC 0.999
PROTEINS 0.999
IMDB-B 0.995
IMDB-M 0.997

How frequently do we encounter dictionary subgraphs? In Table 3 (right), we report the proba-
bility 1− δ for the Neural Partitioning variant of PnC, i.e., the estimated probability of an arbitrary
subgraph to belong in the dictionary. Interestingly, since the values are very close to 1, it becomes
evident that the partitioning algorithm learns to detect frequent subgraphs in the distribution, which
(following Theorem 1b) can in part justify the high compression gains of PnC in all the datasets.

C.2 Reducing the model size of deep generative models

C.2.1 Smaller architectures

It is made clear by the experimental results of section 7 that deep neural compression is particularly
costly due to heavy overparametrisation. Yet, we also observe that these models achieve strong results
in terms of likelihood. Is it possible to strike a better balance between number of parameters and
compression cost for a deep generative model? To investigate this, we have conducted the following
experiment. We trained 5 GRAN models that differ in parameter count, on 3 different datasets, and
monitored the total BPE.

In order to consistently scale the number of parameters across these 5 different models, we have fixed
the GNN depth for all models to one, and set for each model the size of the embedding, attention, and
hidden dimension, to a constant c. Using a different c for each model allows us to explore different
scales for the parameter count of the GRAN model. Furthermore, to facilitate comparison with PnC,
one of the 5 models is trained without attention and features a reduced amount of mixture components.
This is the minimum, in terms of parameter count, working instantiation of GRAN. Finally, we also
considered the BPE for the null Erdős-Renyi (ER) model. Figure 1 plots the total BPE of the different
models against the number of parameters.

Results. In the low parameter regime, the GRAN models are not capable of outperforming the
null models and fall significantly behind PnC. At scales that range from 103 to 104 parameters,
we observe slight improvements in the total BPE of GRAN on the Proteins and the IMDB-Binary
datasets. However, the improved likelihood is not able to compensate sufficiently for the increase in
the number of parameters. This becomes more pronounced on larger scales, where GRAN experiences
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Figure 1: Total BPE of likelihood-based models as a function of the parameter count. GRAN minimal
refers to the minimum working GRAN model that does not feature attention and multiple mixture
components. The non-parametric ER model is represented with dashed lines.

diminishing returns as the cost of parameters outpaces the likelihood gains. On the other hand, the
results consistently worsen as the number of parameters grows on MUTAG. In this case, the size of
the dataset is an additional detrimental factor that weighs against overparametrised models. Overall,
the experiment suggests that, as the number of parameter grows, the off-the-shelf GRAN model
becomes increasingly inefficient and is thus not well suited for compression.

C.2.2 Pruning

Based on the results of the previous section, parameter search alone cannot mitigate the cost of
overparametrisation. A more efficient approach to manage the tradeoff between model size and data
likelihood is required. However, as shown on table 4, a (at least) two order of magnitude reduction
in the model size without a decrease in the data likelihood is required for a more competitive
neural compressor with deep generative models. In the following section, we experimented with a
combination of modern model compression techniques as a heuristic to reduce the model size.

Model compression techniques aim to reduce the size of a given model while maintaining its
performance. Research in model compression has empirically demonstrated that large models can
often be considerably shrunk without suffering from major performance losses. Combined with
parameter search and mixed precision training, model compression may result in more cost-effective
neural compressors. We investigate the feasibility of such an approach in the following experiment.

First, we decrease the model size by hyper-parameter search. We fix the depth of both GraphRNN
and GRAN to the one provided in the original implementations, and gradually reduce their width
to identify a compact version of the network that maintains high performance. This leads to fixing
the width of both GraphRNN and GRAN to 16. Then, we train both models using an iterative
weight pruning technique. We opt for global unstructured L1 weight pruning, using the lottery ticket
procedure [19] that has been shown to be effective in the literature. The method we utilised proceeds
in the following way: A model is trained for T iterations (T is a hyperparameter chosen based on
the convergence and running time of the models on each dataset), then a percentage of the weights
are pruned (25% in our case). After pruning, the unpruned weights are reset to their initial state and
the process is repeated from the beginning using the new pruned network. This yields up to a 10x
reduction in the size of the model in most datasets (we report the best total description length between
all pruning phases). Finally, we attempted to reduce the storage size of the model weights using half
precision. Traditionally, NNs are trained with 32-bit floating point numbers. Recently, progress has
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been made in mixed precision training which can enable the use of 16-bit tensors [20]. We follow the
same procedure and at the end of training we store the model weights using 16 bits.

Tables 5 and 6 contain the results of both single and half precision pruned models on all datasets. As
it can be observed in the results, both models benefit significantly from this hybrid approach, albeit at
the cost of reduced data likelihoods. However, PnC is still able to outperform the pruned versions.
Although our approach to model compression is by no means exhaustive, it becomes evident that
the procedure is quite tedious and choosing the right trade-off between the data likelihood and the
model size is based on heuristics, hence the minimisation of the total description length cannot be
guaranteed. Nevertheless, we believe that this an important research direction that should be further
explored in a more principled manner.

Table 4: Minimum model compression ratios required for overpametrised neural compressors to
outperform PnC. We assume zero degradation of the data likelihood.

dataset GraphRNN GRAN
MUTAG x2980 x7657
PTC x995 x6668
ZINC x112 x227
PROTEINS x105 x303
IMDBB infeasible x1745
IMDBM infeasible x2262

Table 5: Pruning deep graph generators with single and half precision (molecular distributions)

dataset name MUTAG PTC ZINC

data total params data total params data total params

GraphRNN (half) 4.70 10.77 1.08K 9.53 12.10 1.10K 3.89 4.10 2.64K
GRAN (half) 2.41 14.84 2.21K 4.35 9.86 2.36K 3.26 3.38 1.67K
GraphRNN (single) 1.95 12.39 1.08K 2.16 6.71 1.10K 1.79 2.02 1.90K
GRAN (single) 2.59 24.56 2.23K 4.31 14.00 2.36K 3.26 3.47 1.69K

Table 6: Pruning deep graph generators with single and half precision (proteins and social network
distributions)

dataset name PROTEINS IMDB-B IMDB-M

data total params data total params data total params

GraphRNN (half) 27.10 27.47 1.43K 4.21 4.49 1.28K 2.91 3.16 1.20K
GRAN (half) 3.89 4.70 3.16K 0.89 1.41 2.39K 0.61 1.10 2.31K
GraphRNN (single) 2.63 3.76 2.56K 1.43 1.92 1.28K 0.91 1.39 1.28k
GRAN (single) 4.28 5.11 1.78K 0.84 1.75 2.38K 0.55 1.41 2.31K

C.3 Vertex and Edge attributes

Our method can be easily extended to account for the presence of discrete vertex and edge attributes,
the distribution of which can also be learned from the data. Assuming a vertex attribute domain AV
and an edge attribute domain AE , we can use the following simple encodings for a graph with n
vertices and m edges:

L(XV ) = n log |AV | and L(XE) = m log |AE |, (15)

where XV ∈ N|V |×|AV | the vertex attributes and XE ∈ N|E|×|AE | the edge attributes. One could
also choose a more sophisticated encoding by explicitly learning the probability of each attribute.

In this case, the dictionary becomes even more relevant, since when simply partitioning the graph,
the attributes will still have to be stored in the same manner for each subgraph and each edge in the
cut. Hence, in the absence of the dictionary it will be impossible to compress the attributes.
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In Table 7, we showcase a proof of concept in the attributed MUTAG and PTC MR datasets, which are
variations of those used for structure-only compression in the main paper. Vertex attributes represent
atom types and edge attributes represent the type of the bond between two atoms. As mentioned in the
previous paragraph, it is clear that non-dictionary methods are hardly improving w.r.t the null model,
which is mainly due to the fact that the attributes constitute the largest portion of the total description
length. Another interesting observation is that since the clustering algorithms we used are oblivious
to the existence of attributes, they are less likely to partition the graph in such a way that the attributed
subgraphs will be repetitive, unless structure is strongly correlated with the attributes. This becomes
clear in the PTC MR dataset, where between the different PnC variants, the neural partitioning
performs considerably better, since the partitioning is optimised in coordination with the dictionary.
In Figure 2 of the main paper, we show the most probable substructures that the Neural Partioning
yields for the MUTAG dataset. It is interesting to observe that typical molecular substructures are
extracted. This highlights an interesting application of molecular graph compression, i.e., discovering
representative patterns of the molecular distribution in question.

Table 7: Experimental evaluation on the attributed MUTAG and PTC MR molecular datasets. First,
Second, Third

Dataset name Atrributed MUTAG Atrributed PTC MRMethod
Family data total params data total params

Uniform (raw adjacency) - 13.33 - - 16.32 -
Edge list - 12.62 - - 14.06 -Null
Erdős-Renyi - 9.38 - - 10.87 -

Clustering SBM-Bayes - 9.17 - - 10.61 -
Louvain - 9.37 - - 10.76 -
PropClust - 9.52 - 10.80

PnC PnC + SBM 6.56 7.49 78 8.05 9.49 158
PnC + Louvain 3.52 4.45 78 5.56 7.65 200
PnC + PropClust 5.21 6.30 54 8.51 9.58 118

PnC + Neural Part. 3.83±0.06 4.78±0.12 74±6 5.19±0.39 6.49±0.54 170±30

D Implementation Details

Datasets: We evaluated our method on a variety of datasets that are well-established in the GNN liter-
ature. In specific, we chose the following from the TUDataset collection [21]: the molecular datasets
MUTAG [22, 23] (mutagenicity prediction) and PTC-MR [24, 23] (carcinogenicity prediction), the
protein dataset PROTEINS [25, 26] (protein function prediction - vertices represent secondary struc-
ture elements and edges either neighbourhoods in the aminoacid sequence or proximity in the 3D
space) and the social network datasets IMDBBINARY and IMDBMULTI [27] (movie collaboration
datasets where each graph is an ego-net for an actor/actress). We also experimented with the ZINC
dataset [28–31] (molecular property prediction), which is a larger molecular dataset from the dataset
collection introduced in [32]. A random split is chosen for the TUDatasets (90% train, 10% test),
since we are not interested in the class labels, while for the ZINC dataset we use the split given by
the authors of [32] (we unify the test and the validation split, since we do not use the validation set
for hyperparameter tuning/model selection).

PnC model architecture and hyperparameter tuning: The GNN used for the Neural partitioning
variant of PnC is a traditional Message Passing Neural Network [33], where a general formulation
is employed for the message and the update functions (i.e., we use Multi-layer Perceptrons similar
to [34]). We optimise the following hyperparameters: batch size in {16, 64, 128}, network width
in {16, 64} number of layers in {2, 4}. The learning rate for the updates of the dictionary and
probabilistic model parameters was 1 and 0.1 for the fixed partitioning and the neural partitioning
variants respectively, while the learning rate of the GNN (neural partitioning only) was set to 0.001.
For all the variants we further tune the maximum number of vertices for the dictionary atoms k
in {6, 8, 10, 12}. Note that the last hyperparameter mainly affects the optimisation of the Neural
Partitioning variant: small values of k will constrain the possible subgraph choices, but will facilitate
the network to find good partitions by exploitation. On the other hand, larger values of k will
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encourage exploration, but the optimisation landscape becomes significantly more complex, thus in
some cases (mainly for social networks, where there is a larger variety of non-isomorphic subgraphs)
we observed that the optimisation algorithm could not converge to good solutions.

We optimise each PnC variant for 100 epochs and report the result on the epoch where the description
length of the training set is minimum. The best hyperparameter set is also chosen w.r.t the lowest
training set description length, and after its selection, we repeat the experiment for 3 different seeds
(in total). Table 8 shows the chosen hyperparameters.

Table 8: Chosen hyperparameters for each dataset (PnC + NeuralPart)

dataset batch size width number of layers k

MUTAG 16 16 2 10
PTC 16 16 2 10
ZINC 128 16 2 10
PROTEINS 16 16 4 8
IMDB-B 16 16 2 8
IMDB-M 64 64 2 8

We implement our framework using PyTorch Geometric [35], while the predefined partitioning
algorithms were implemented using graph-tool [5] for the SBM fitting and scikit-network [36] for the
Louvain and the Propagation Clustering algorithms. To track our experiments we used the wandb
platform [37].

Deep generative models and pruning. For the generative model baselines, we have used the official
implementations provided in the corresponding repositories3. For GraphRNN, we trained with the
default parameters provided with the official implementation and only tuned the number of training
epochs according to the time required for convergence. For GRAN, we adopt one of the configurations
provided in the official repository with minor modifications. Namely, we used a DFS ordering, stride
and block size 1, 20 Bernoulli mixture components for the parametrisation of the likelihood, and
switched of the subgraph sampling feature.

For our iterative pruning protocol, we fix the same number of pruning iterations for both models on
each dataset. Specifically we use {450, 270, 10, 90, 90, 90} total epochs and a pruning interval T of
{50, 30, 1, 10, 10, 10} for MUTAG, PTC, ZINC, PROTEINS, IMDB-B, and IMDB-M respectively.
We used a 25% pruning percentage, which lead to a 10-fold reduction in model size in most
cases. Further pruning was not found to be consistently beneficial in the parameter ranges that we
experimented on.

Model parameter cost. For the PnC variants we could seamlessly use half precision (16 bits) to
store the model parameters (section 4.3 in the main paper) without sacrificing compression quality.
However, as discussed in Appendix C.2.2 we were not able to retain similar likelihood estimates
when storing with half precision the weights of deep generative models, hence in the results reported
in the main tables we used 32 bits to store the model weights4. Additionally, regarding the pruned
versions of deep generative models, we need to send the locations of the non-zero weights for each
parameter matrix in Rd1×d2 , which are encoded as follows: log(d1d2 + 1) + log

(
d1d2
e

)
, where e is

the number of the non-zero elements. For all methods compared, the decompression algorithm and
the neural network architectures are assumed to be public, hence they do not need to be transmitted.

Isomorphism. In order to speed-up isomorphism testing between dictionary atoms and the subgraphs
that the partitioning algorithm yields, we make the following design choices: (a) Dictionary atoms
are sorted by their frequencies of appearance (these are computed by an exponential moving average
that gets updated during training). In this way the expected number of comparisons drops to O(1)
from O(|D|). (b) We choose the parameter k to be a small constant value (i.e., does not scale with
the number of vertices of the graph), as previously mentioned. It becomes clear, that except for the
importance of k in the optimisation procedure, it also plays a crucial role for scalability, since as

3https://github.com/JiaxuanYou/graph-generation & https://github.com/lrjconan/GRAN
4In a preliminary version of the paper we assumed a 16-bit encoding of the weights without likelihood

losses. However, our subsequent implementation and experimentation with half-precision deep graph generators
demonstrated that this might not be possible in practice.
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mentioned in the introduction in the main paper, solving the isomorphism problem quickly becomes
inefficient when the number of vertices increases. (c) Additionally, one can chose to approximate
isomorphism with faster algorithms, such as the Weisfeiler-Leman test [38], or with more expressive
Graph Neural Networks, such as [11, 10, 39]. These algorithms, will always provide a correct
negative answer whenever two graphs are non-isomorphic, but a positive answer does not always
guarantee isomorphism. In that case, exact isomorphism can be employed only when the faster
alternatives give a positive answer.

E Translating probabilities into codes

In the following section, we explain how a partitioned graph can be represented into a bitstream using
our probabilistic model. The general principle for modern entropy encoders (Arithmetic Coding [40]
and Asymmetric Numeral Systems [41]) is that both the encoder and the decoder need to possess
the cumulative distribution function (c.d.f.) of each component they are required to encode/decode.
Hence, the encoder initially sends to the decoder the parameters of the model φ using a fixed precision
encoding (e.g., we used 16-bits for our comparisons). The rest of the bitstream is described below:

• Dictionary. The dictionary is sent as part of the preamble of the message. It consists of the
following:
(a) the size of the dictionary (we assume fixed precision for this value),
(b) a sequence of dictionary atoms encoded with the null model, i.e., the message includes
the number of vertices, the number of edges and finally the adjacency matrix: ki,mi, Ei
(see Eq. (2) in the main paper).

• Graphs: Subsequently, each graph is sequentially transmitted. The message contains the
following:
(a) the total number of subgraphs and the number of dictionary subgraphs b and bdict that
are encoded using the parameters of the categorical distribution qφ(b) and the binomial
distribution Binomial(bdict|b;φ). The c.d.f. of the binomial distribution can be computed
using a factorisation described in [42],
(b) the subgraphs that belong in the dictionary, which are encoded using the multinomial
distribution qφ(Hdict|D). As above, a factorisation described in [42] can be used to compute
the c.d.f.,
(c) the non-dictionary subgraphs. These are encoded with the null model (same with the
encoding of dictionary atoms as mentioned above),
(d) the cuts, which are encoded using Eq. (8).

Several of our encodings involve uniform distributions over combinations of elements (e.g., for the
adjacency matrix in the null model). To compute them, we can either factorise the distribution as
in [43] in order to efficiently compute the c.d.f, or use a ranking function (and its inverse for the
decoder) that maps a combination to its index in lexicographic order (e.g., see [44]).
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