

Why Inference on a Flow?

Motivation

- Generative models are becoming increasingly expensive to train. So we would like to **repurpose** a single pre-trained model to perform multiple downstream tasks.
- One way to reuse the same generative model for multiple tasks is to perform **probabilistic inference**.
- □ Normalizing flow models are **flexible**, offering fast likelihood evaluation, sampling, and inversion.

Problem

- Given a joint distribution defined by a flow, how can we perform conditional inference for a given observation while retaining the computational flexibility of a flow model?
- □ In other words, can we learn a flow model that approximates the conditional $p(\boldsymbol{x}_2 \mid \boldsymbol{x}_1 = \boldsymbol{x}_1^*)$ for the given observation \boldsymbol{x}_1^* , from the base model $p(\boldsymbol{x}) = p(\boldsymbol{x}_1, \boldsymbol{x}_2)$?

Hardness of Inference

- Conditional inference in a general Bayesian Belief Network is known to be NP-hard. Perhaps the computational flexibility of a flow model makes inference tractable? Unfortunately not.
- We show that sampling from the exact conditional distribution is hard for a large family of existing flow architectures. Moreover, even approximate sampling is hard.
- □ This motivates the use of **approximate conditioning**, where we perform Gaussian smoothing on the observed variable to allow the given observation to be matched with some error.
- \Box Thus, the goal is to learn $p(x_2 \mid \tilde{x}_1 = x_1^*)$ as a flow model where $\tilde{\boldsymbol{x}}_1 \sim \mathcal{N}(\boldsymbol{x}_1, \sigma^2 \boldsymbol{I})$ is the smoothed version of \boldsymbol{x}_1 .

Our Approach: Pre-generator

Learning to Construct Noise with a Pre-generator

U We propose to learn a flow model defined by the invertible mapping $\hat{f}: \boldsymbol{\epsilon} \mapsto \boldsymbol{z}$ such that its **composition** with the given model produces approximate conditional samples:

$$\boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}) \Rightarrow (f \circ \hat{f})(\boldsymbol{\epsilon}) \sim p(\boldsymbol{x} \mid \tilde{\boldsymbol{x}}_1 = \boldsymbol{x}_1^*)$$

where $f: z \mapsto x$ is the invertible mapping for the joint model. \Box Because the composition $f \circ \hat{f}$ is **invertible**, this approximate posterior (which we denote $q(\mathbf{x})$) is itself a flow model and allows for exact likelihood evaluation, fast sampling, and inversion.

Approximate Probabilistic Inference with Composed Flows

Jay Whang, Erik M. Lindgren, Alexandros G. Dimakis

Training the Pre-generator

Modified VI Objective

Because we have access to samples and likelihood only through the base model, we cannot directly compute the marginal posterior:

$$p(\boldsymbol{x}_2 \mid \tilde{\boldsymbol{x}}_1 = \boldsymbol{x}_1^*) = \int_{\boldsymbol{x}_1} p(\boldsymbol{x} \mid \tilde{\boldsymbol{x}}_1 = \boldsymbol{x}_1^*) \mathrm{d} \boldsymbol{x}_1$$

 We instead optimize the joint variational posterior via stochastic variational inference by minimizing the KL $D_{\mathrm{KL}}\left(q(oldsymbol{x})\|p(oldsymbol{x}\mid ilde{oldsymbol{x}}_1=oldsymbol{x}_1^*)
ight)$, which is an **upper bound** to the intractable marginal KL $D_{\text{KL}}(q(\boldsymbol{x}_2) \| p(\boldsymbol{x}_2 \mid \tilde{\boldsymbol{x}}_1 = \boldsymbol{x}_1^*)).$

Generalization to Transformed Observations

□ The VI formulation allows for an easy generalization to conditioning under a differentiable transformation T, where we observe some y^* in the range of T. The corresponding objective is (\approx denotes Gaussian smoothing):

 $D_{\mathrm{KL}}(q(\boldsymbol{x}) \| p(\boldsymbol{x} \mid T(\boldsymbol{x}) \approx \boldsymbol{y}^*)$

which further simplifies to

```
\mathcal{L}(q) = D_{\mathrm{KL}}\left(q(\boldsymbol{z}) \| p(\boldsymbol{z})\right) + \mathbb{E}_{\boldsymbol{z} \sim q} \left| \frac{1}{2\sigma^2} \| T(f(\boldsymbol{z})) - \boldsymbol{y}^* \|_2^2 \right|
```

Experimental Results

Image Completion on CelebA-HQ

Conditional Completions

Variance Original Observed Conditional Samples

Ours Langevin Ambient VI 1 PL-MCMC 2

Experimental Results

□ Sample quality compared to baselines (variational inference in image space, Langenvin dynamics and PL-MCMC)

	MNIST		CIFAR-10 (5-bit)				CelebA-HQ (5-bit)		
FID	MSE	LPIPS	FID	IS↑	MSE	LPIPS	FID	MSE	LPIPS
4.11	21.67	0.074	41.14	7.189	9.71	0.176	33.61	223.06	0.208
14.34	36.51	0.135	47.53	6.732	9.31	0.201	30.33	323.47	0.229
114.59	65.56	0.290	84.78	5.156	16.74	0.296	289.64	1060.66	0.587
21.20	59.89	0.190	N/A				N/A		

Class-conditional Sampling from an unconditional model

Various inverse problems

Original Observed

Conditional Samples

Variance

Conclusion

- Flow-based variational inference is stable to train and has many computational advantages, without a large degradation in the sample quality compared to simple MCMC baselines.
- Future directions include amortization as well as generalization to non-invertible generators.