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Why Inference on a Flow?

Motivation

d  Generative models are becoming increasingly expensive to
train. So we would like to repurpose a single pre-trained
model to perform multiple downstream tasks.

1 One way to reuse the same generative model for multiple tasks
is to perform probabilistic inference.

4 Normalizing flow models are flexible, offering fast likelihood
evaluation, sampling, and inversion.

Problem

1 Given a joint distribution defined by a flow, how can we perform
conditional inference for a given observation while retaining
the computational flexibility of a flow model?

d In other words, can we learn a flow model that approximates
the conditional p(x2 | 1 = x7) for the given observation x7,
from the base model p(x) = p(x1, x2)?

Hardness of Inference

d Conditional inference in a general Bayesian Belief Network is
known to be NP-hard. Perhaps the computational flexibility of
a flow model makes inference tractable? Unfortunately not.

d  We show that sampling from the exact conditional distribution
Is hard for a large family of existing flow architectures.
Moreover, even approximate sampling is hard.

d This motivates the use of approximate conditioning, where
we perform Gaussian smoothing on the observed variable to
allow the given observation to be matched with some error.

d Thus, the goal is to learn p(x3 | &1 = x7) as a flow model
where g, ~ N (x1, %) is the smoothed version of .

Our Approach: Pre-generator

Learning to Construct Noise with a Pre-generator

1 We propose to learn a flow model defined by the invertible
mapping f : € — z such that its composition with the given
model produces approximate conditional samples:

e ~N(0,I)= (fof)(e)~plx|z =)

where f : z — @ is the invertible mapping for the joint model.
1 Because the composition f of IS invertible, this approximate

posterior (which we denote ¢(x)) is itself a flow model and

allows for exact likelihood evaluation, fast sampling, and
Inversion.
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Training the Pre-generator

Modified VI Objective
4 Because we have access to samples and likelihood only

Experimental Results
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d  Sample quality compared to baselines (variational inference
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through the base model, we cannot directly compute the
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Generalization to Transformed Observations

d  The VI formulation allows for an easy generalization to
conditioning under a differentiable transformation 7, where we
observe some ™ in the range of T'. The corresponding
objective is (X denotes Gaussian smoothing):

Dxr, (q(z)||p(x | T(x) = y)

which further simplifies to

L(g) = Dx, (a(2)[[p(2)) + Eang |32 IT(£(2)) — w7 13]

d Various inverse problems
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Conclusion

1 Flow-based variational inference is stable to train and has
many computational advantages, without a large
degradation in the sample quality compared to simple
MCMC baselines.

4 Future directions include amortization as well as
generalization to non-invertible generators.




