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A Experiment Details1

A.1 Dataset Details2

The datasets used in our experiments are MFEAT [13], Data Visual Marketing (DVM) [6],3

SUNAttribute [11], CelebA [8], PetFinder-adoption, PetFinder-pawpularity and Avito.4

MFEAT. This dataset consists of features of handwritten numerals (‘0’–‘9’) extracted from a collec-5

tion of Dutch utility maps. 200 patterns per class (for a total of 2, 000 patterns) have been digitized in6

binary images. These digits are represented in terms of the following six feature sets. We use only 767

fourier coefficients of the character shapes and 6 morphological features for tabular data. The image8

modality is reconstructed from 240 pixel averages of images from 2× 3 windows.9

DVM. DVM dataset aims to facilitate business related research and applications in automotive10

industry such as car appearance design, consumer analytics and sales modeling. The dataset contains11

car images, model specifications and sales information about 899 car models that have been sold in12

the UK market over the last 20 years. which comprises two data parts: the image data and the table13

data. The former contains 1, 451,784 car images that have been deliberately cleaned and organized.14

While the latter includes six CSV tables that cover the non-visual attributes such as brand, price,15

sales, etc. Different from MMCL, only the new version DVM dataset is available [3]. We pair this16

tabular data with a single random image from each advertisement, yielding a dataset of 70, 580 train17

pairs, 17, 645 validation pairs, and 88, 226 test pairs. Car models with less than 700 samples were18

removed, resulting in 129 target classes, classification task. There are total of 13 numerical variables19

and 3 categorical variables in this dataset. We expect that under the guidance of tabular data, images20

can learn more knowledge and make classification better.21

The DVM dataset utilized in the original paper is an earlier version, and unfortunately, we don’t have22

access to the dataset after the official update. This discrepancy in dataset versions may introduce23

variations in the data distribution and characteristics. Specifically, all the images are resized to24

300x300 resolutions; Segment results are no longer provided directly; Image data of 2019 registered25

car models is added and the non-visual feature data is updated to 2020.26

We follow the steps in [3] in Section 4.1 to preprocess the data. In detail, the car models with less27

than 700 samples were removed, resulting in 129 target classes. This process ensures that the amount28

of data remain largely consistent with [3].29

Lastly, to maintain uniformity and facilitate fair comparisons, we employed a fixed batch size of 6430

across all methods, whereas the original paper employed a larger 512. Additionally, we conducted31

MMCL method on our dataset with a batch size of 512. The result was 0.8869/0.9070. This is still32

somewhat different from the values reported in [3] and performs worse than our method 0.9207 with33

a batch size of 512.34
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Furthermore, we conducted a comparison of GPU usage with batch size 64. Our method uses 835

GB of memory while theirs uses 20 GB. The results revealed that the MMCL method remains36

resource-intensive. Conversely, our method achieves superior performance with lower computational37

costs, further highlighting the efficiency of our approach.38

SUNAttribute. SUNAttribute annotates 20 scenes from each of the 717 SUN categories. Each scene39

has 102 attributes and each attribute will have multiple annotations. For simplicity, we divide each40

attribute into zero and one and our goal is to predict whether a scene is an open space, which is a41

binary classification task. The dataset contains 14, 340 images and the corresponding table feature,42

each attribute of the table feature represents a scene and takes the value of 1 if the attribute is present43

in the image. we use 8 : 1 : 1 to divide the training set, validation set, and testing set. There are total44

of 101 categorical variables in this dataset.45

CelebA. is the abbreviation of CelebFaces Attribute, meaning celebrity face attribute dataset, which46

contains 202, 599 face images of 10, 177 celebrities, each image is well marked with features,47

including 40 attribute markers such as Big_Nose. We use Attractive as the label, which is a binary48

classification task. We use 8 : 1 : 1 to divide the training set, validation set, and testing set. There are49

total of 39 categorical variables in this dataset. We expect to introduce more detailed face information50

in the table, allowing the image to perform better on downstream tasks.51

PetFinder-adoption. Animal adoption rates are strongly correlated to the metadata associated with52

their online profiles, such as descriptive text and photo characteristics. This dataset comes from53

a kaggle competition where the task is to predict the speed at which a pet is adopted, which is a54

five-class classification task. There are total of 10 numerical variables and 14 categorical variables in55

this dataset. Tabular data contains information about the pet such as the type and vaccination status.56

We also use the same division for the dataset.57

PetFinder-pawpularity. This dataset also comes from a kaggle competition where the task was to58

predict the popularity of a pet based on that pet’s profile and photo, which is a regression task. Each59

pet photo is labeled with the value of 1 (Yes) or 0 (No) for each of features. For example, “Face”60

represents whether the face of the pet in the picture is frontal. There are 12 categorical variables in61

tabular data.62

Avito. Avito, Russia’s largest classified advertisements website, is deeply familiar with this problem.63

Sellers on their platform sometimes feel frustrated with both too little demand (indicating something64

is wrong with the product or the product listing) or too much demand (indicating a hot item with a65

good description was underpriced). This dataset is challenging you to predict demand for an online66

advertisement based on its full description, its context and historical demand for similar ads in similar67

contexts. The target deal_probability can be any float from zero to one. It’s also a regression task.68

There are total of 2 numerical variables such as and 11 categorical variables such as in this dataset.69

A.2 Training Details70

We use ResNet50 with weight pretrained on ImageNet-1k [12] as image feature extractor for all71

methods mentioned in this paper. The classifier is built from an MLP with one hidden layer of size72

1024.73

For baseline methods, the numerical tabular data fields are standardized using z-score normaliza-74

tion with a mean value of 0 and standard deviation of 1. For our method CHARMS, we use FT-75

Transformer [2] to get the embedding of tabular data, which can process continuous and categorical76

variables separately.77

• KD [5]: For KD method, we search the temperatures in {1.0, 2.0, 4.0, 6.0, 8.0} and λ in78

{0.2, 0.4, 0.6, 0.8}.79

• KD-Fou: This means that we use only 76 fourier coefficients of the character shapes features80

when training the teacher network.81

• KD-Mor: This means that we use only 6 morphological features when training the teacher82

network, which can be revealed in images.83

• FMR [17]: We set ten percent of the fixed features to be knockdown in each epoch in FMR84

method. The fixed feature classifier is a linear connection between tabular data and the85

corresponding image.86
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Table 1: Introduction to the dataset. Here we introduce image data and tabular data in each dataset,
and numerical and categorical variables are introduced separately in the tabular data. An example is
given for each dataset.

Dataset Numerical Attribute Categorical Attribute Image

MFEAT Fourier coefficient_1
0.13839 -

DVM Length
4865.0

Fuel_type
9

SUNAttribute - Warm
1

CelebA - Big_Nose
0

PetFinder-adoption Fee
100

Type
0

PetFinder-pawpularity - Focus
0

Avito Price
1290

Category_name
4

• MFH [16]: For MFH method, we set modality general decisive information according to the87

feature ranking algorithm. The number of the features is fifty percent of that for all features.88

• MMCL [3]: The same parameters are set for MMCL method according to [3]. We use the89

frozen version after pretrain and only train the classifier for downstream task.90

• CHARMS: For FT-Transformer, the number of Transformer blocks is set to 2. We use the91

K-Means method to cluster the representations obtained by ResNet50 and n_cluster is 40.92

Embedding dimension E is set according to the data distribution. Adam optimizer with93

weight decay is used to train the models. We choose to update cost matrix every 5 epochs,94

striking a balance between updating them without stable knowledge and minimizing the95

computational burden. However, we continuously update ϕ throughout the training process96

to enhance the representation.97
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Table 2: Comparisons with baseline methods on DVM, SUN, CelebA, Adoption, Pawpularity, and
Avito datasets on five random seeds.

DVM ↑ SUN ↑ CelebA ↑ Adoption ↑ Pawpularity ↓ Avito ↓
LGB 0.9748±0.0014 0.8501±0.0003 0.7963±0.0005 0.4101±0.0053 20.0720±0.0072 0.2290±0.0011
RTDL 0.9682±0.0018 0.8563±0.0011 0.7936±0.0004 0.4107±0.0048 20.0844±0.0098 0.2317±0.0034
ResNet 0.8743±0.0183 0.8361±0.0144 0.8146±0.0092 0.3477±0.0048 18.6150±1.4559 0.2512±0.0034

KD 0.8390±0.0076 0.8382±0.0063 0.8118±0.0046 0.3532±0.0035 19.0683±1.7642 0.2499±0.0015
MFH – 0.8312±0.0022 0.7507±0.0034 0.3401±0.0027 43.1455±2.0843 0.2873±0.0047
FMR 0.8427±0.0151 0.8347±0.0119 0.8003±0.0143 0.3526±0.0088 19.3517±1.5837 0.2937±0.0084
MMCL 0.8203±0.0040 0.8431±0.0012 0.8041±0.0017 0.2981±0.0026 – –
CHARMS 0.9175±0.0052 0.8661±0.0032 0.8220±0.0022 0.3603±0.0037 18.4314±0.7427 0.2495±0.0025
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Figure 1: Mutual Information with Different
Modality in Multimodal Models. A good model
should be able to effectively combine both im-
age and tabular information, resulting in higher
mutual information between the two modalities.
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Figure 2: Mutual Information During Training
on MVFEAT dataset. We calculate mutual in-
formation from the beginning to the convergence
process in order to better understand the training
process of each method.

We experiment on five random seeds and the results in the form of mean plus standard deviation are98

shown in the table 2.99

A.3 Figure Details100

We explain some figures in detail.101

• For Figure 4, we calculated the amount of information contained in different modality data102

for different methods with the MINE method [1]. The image data are simple handwritten103

digits, we process them simply using a two-layer convolutional neural network, followed104

by a max pooling layer, and a Dropout layer to prevent overfitting. When calculating the105

mutual information, we use the mine method as the loss function for approximating the106

mutual information. The network we choose is a three layer MLP with two hidden layers of107

size 100, the method we choose is concat, and the batch_size is 16.108

• For Figure 2, we do not calculate the mutual information change process for the MMCL109

method because the MMCL method already performs much less well in Figure 4 than the110

other baseline models. We hypothesize that MMCL maps the tabular and image representa-111

tions to another space and therefore the mutual information is lower.112

• In the ablation study for different nets, we experimentally validated the impact of different113

neural network as backbone models on our approach. The accuracy in ORIGIN is {34.77,114

34.05, 34.49, 33.98}. The accuracy in out CHARMS is {35.74, 35.52, 35.82, 35.45}.115

A.4 Task Details116

The usage of knowledge from table to images could be explained from three aspects:117
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In our setting, the goal is to transfer knowledge from the tabular data to the image model. Both118

classification and regression tasks are vital and commonly encountered in our setting, where both119

of them are investigated in our experiments. For instance, on the Adoption dataset, the pet type120

and size attributes are crucial for the adoption time classification. Guidance on these features in an121

image would lead to better learning of the image model. Similarly, on the Pawpularity dataset, the122

eyes and face attributes have a positive assignment on the regression of the popularity of the pet.123

Therefore, it makes sense to do knowledge transfer from tabular data to image for both classification124

and regression tasks.125

CHARMS is a general method for both classification and regression tasks, in detail, we use cross126

entropy loss for classification task and mean square error loss for regression task. We achieved an127

improved image representation by employing the CHARMS method, which leverages the guidance128

of tabular data on the image data. Specifically, for the classification task, our approach facilitated129

the representation with a more discerning distribution over the target categories. On the other hand,130

the regression task enabled us to learn an image representation that better approximated the target131

values during prediction. The fact that our method performs well on both tasks underscores its132

generalizability and effectiveness.133

Additionally, our visualization experiments provide further evidence of the effectiveness of our134

method. These experiments reveal that the attributes and channels selected by our approach are135

appropriately matched, leading to an enhancement in the performance of the image model. This136

alignment between the attributes and channels serves as strong evidence that we have successfully137

transferred the relevant knowledge from the table to the image model.138

In summary, our approach demonstrates its versatility by excelling in both classification and regression139

tasks, showcasing its ability to enhance image representations using guidance from tabular data.140

B Analysis on Our CHARMS Method141

B.1 Comparison with attention method142

Our method employs the transfer matrix obtained by OT to weigh the images, with the weights of the143

corresponding channels raised to learn the tabular attributes. An alternative approach is to use the144

attention method to weigh the image channels differently and learn each tabular attribute separately,145

which is a more intuitive approach:146

ϕ(xT )att = T (ϕ(xT )) · ϕ(xT ) (1)

where T is a two layer MLP that first downscales the image representation obtained by ϕ before147

rescaling it to its original dimension, thereby weighting the different channels of the image.148

In contrast to our method CHARMS, this method assigns a weight to each input element so that the149

model can pay more attention to those input elements that are more important for the task at hand. The150

attention method constructs a learnable mask for each attribute and learns each attribute separately151

based on the backbone network. However, this approach may result in unequal impacts of different152

masks on the main task. In contrast, our method weights the attention of different channels in the153

representation obtained by the main task, which essentially corrects the main task while avoiding154

potential inconsistency issues caused by the attention method.155

We compare the performance of our method CHARMS with the attention method in all experiments156

and summarized the results in Table 4. The table shows that the attention method did not perform157

as well as our method on all datasets. Specifically, on the DVM dataset, which involves a complex158

downstream task of 129 classification tasks, the attention method constructed different attentions159

for different attributes, which confused the backbone network and led to a decrease in overall task160

performance.161

This finding highlights the impracticality of using the attention mechanism alone to integrate the162

abundant information in tabular data into the image model. This further supports the effectiveness of163

our proposed approach.164
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Table 3: Comparison with CLIP method. Here CLIP-LP means two encoders are fixed, and only the
classification head is trained. CLIP-FT means fine-tuning the entire CLIP network.

DVM↑ SUN ↑ CelebA ↑ Adoption ↑ Pawpularity ↓ Avito ↓
CLIP-LP 0.7619 0.6918 0.7590 0.3047 20.1537 0.2972
CLIP-FT 0.8417 0.8333 0.8165 0.2935 42.9489 0.2940

CHARMS 0.9175 0.8661 0.8220 0.3603 18.4314 0.2495

Table 4: Comparison with Attention method. Here Attention means we directly conduct the attention
mechanism on the feature extracted by ϕ and learn an attention mask for all tabular attributes.

DVM ↑ SUN ↑ CelebA ↑ Adoption ↑ Pawpularity ↓ Avito ↓
Attention 0.4757 0.8550 0.8180 0.3454 18.7401 0.2544
CHARMS 0.9175 0.8661 0.8220 0.3603 18.4314 0.2495

B.2 Comparison with CLIP method165

CLIP is pre-trained on a large amount of text and image pairs, which makes it able to map from166

text to images. Some previous studies have demonstrated that CLIP is able to transform tabular data167

to text for classification given the column names [15, 4]. However, CLIP is heavily reliant on the168

semantic information contained within the text, so that the semantics of attributes are inevitable.169

Indeed, the setting of this paper is more general. We expect to transfer the tabular knowledge to the170

image modality during training to cope with the absence of expert knowledge during testing. Our171

method CHARMS aims to automatically extract the semantic information from the tabular and align it172

with the corresponding image channels without requiring explicit knowledge of the attribute’s precise173

meaning. Specifically, as we show in Section 4.2, based on measuring the similarity across attributes174

and channels, OT discovers and aligns the attribute semantic automatically.175

We conducted an experiment with CLIP. In this experiment, we converted the tabular data into text176

format, such as "length: 16". To ensure a fair comparison, we utilized CLIP from ?? with the177

ResNet50 backbone. The CLIP model consists of an image encoder and a textual encoder, and178

we connected a one-layer linear head for classification or regression after the image encoder. Two179

versions of CLIP were trained in our experiment. CLIP-LP means CLIP-LinearProb, which denotes180

the scenario where the two encoders are fixed, and only the classification head is trained. CLIP-FT181

means CLIP-FineTune, on the other hand, involves fine-tuning the entire CLIP network. With the182

contrastive learning of the two modalities of the CLIP model, tabular knowledge is transferred to the183

image modality. By transforming the task into a language-to-vision knowledge transfer, the results184

were obtained in table 3.185

From the experiments, we can see that the performance of CLIP is not ideal. This is probably due186

to the fact that in tabular data, each column holds its own distinct meaning, and directly utilizing it187

as input to CLIP can lead to the loss of certain information. For instance, on the CelebA dataset,188

the attribute "wood (not part of a tree)" might not be a highly significant feature. However, when189

this attribute is converted to text format, its character length tends to be relatively long, which can190

introduce redundancy in the information.191

From another perspective, previous work has pointed out that there is a modality gap in the CLIP’s192

embedding space [7]. This gap is caused by a combination of model initialization and contrastive193

learning optimization. In a multi-modal model with two encoders, the representations of the two194

modalities are clearly apart when the model is initialized. During optimization, contrastive learning195

keeps the different modalities separate by a certain distance. This gap makes the CLIP method fail in196

our task.197

In summary, the loss of information and the modality gap that arises when transferring tabular data198

to images can hinder the performance of the CLIP method in our setting. However, our method199

addresses these challenges by automatically discovering and establishing the matching relationship200

between the two modalities, thereby facilitating effective knowledge transfer, which is a more general201

method.202
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Table 5: More Visualization by GradCAM.

Tabular Attribute 5_o_Clock_Shadow Arched_Eyebrows Big_Nose Blond_Hair

Aligned Channel 65, 87, 119, 236. . . 33, 76, 78, 115, . . . 50, 224, 258, . . . 684

Visualization

Tabular Attribute High_Cheekbones Smiling Oval_Face Rosy_Cheeks

Aligned Channel 2, 26, 41, 85,. . . 11, 12, 28, 57, . . . 52, 646, 924, . . . 4, 47, 88,...

Visualization

Tabular Attribute Type Color

Aligned Channel 399, 413, 414, 521. . . 400, 412, 425, 448. . .

Visualization

Aligned Channel 399, 413, 414, 521. . . 400, 412, 425, 448. . .

Visualization

C More Experiments203

C.1 More Visualization204

We provide more visualizations in Table 5 to validate the ability of CHARMS to match the correspond-205

ing attributes and channels. We apply GradCAM on various datasets, which show similar visualization206

results, where the channels could be matched to a certain attribute with semantic meaning.207

For the Adoption dataset, all tabular attributes are inherently more abstract in nature. However, for208

the purpose of visualization, we have specifically selected features that are visually recognizable by209

humans from images. For instance, attributes such as the type of pet and the color of the pet highlight210

more general aspects that are of interest.211

From the visualization, we can see that the judgment of the pet type focuses more on the pet’s head,212

whereas the judgment of the color takes into account the whole body of the pet, and from this point213

of view we believe that our approach does achieve knowledge transfer.214

C.2 Visualization with t-SNE215

To visualize the impact of our method on the distribution of image features, we conducted experiments216

using the t-SNE method [14]. t-SNE can map high-dimensional data to a two- or three-dimensional217

space, enabling better visualization and interpretation of the data structure. The method employs a218

nonlinear mapping approach that minimizes the difference between the distances of points in high-219

dimensional space and those in low-dimensional space. Specifically, it represents high-dimensional220

data points as probability distributions and generates corresponding probability distributions in the221

low-dimensional space. Then, it uses KL divergence to measure the difference between the two222

probability distributions and minimizes it to achieve the best mapping effect.223
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Figure 3: Visualization of t-SNE on the MFEAT dataset. the ORIGIN method represents training on
image modalities only. As can be seen from the figure, our method makes the intra-class distance
smaller and the inter-class distance larger. Therefore the transfer of expert knowledge from tabular
data to the image model is effective. The red circles mean that our method makes the intra-class
distance smaller, and the green circles indicate that our method makes the inter-class distance larger.

The experimental results are presented in Figure 3, where the ORIGIN method refers to training with224

image modalities only. The figure shows that the ORIGIN method achieved good segmentation results225

due to the task’s simplicity. However, due to the lack of expert knowledge, the intra-class distance is226

still large, particularly for samples with label 7, while the inter-class distances remain small, such227

as for samples with labels 2 and 9. In contrast, our method compensates for these deficiencies by228

transferring expert knowledge.229

C.3 More Mutual Information experiments230

We chose the MFEAT dataset for the Mutual Information experiments since, in this dataset, the231

formal features of each category are simple and easily distinguishable. For example, morphological232

features and non-morphological features. And the images are all digital images, which are relatively233

simple and easy to understand. The experiment mainly helps us understand. More mutual information234

experiments can be obtained in Table 4 5.235

The experiments in PetFinder-adoption dataset also indicate that existing methods for transferring236

tabular knowledge to image models yield low mutual information between the representations and237

tabular data. Our CHARMS method, on the other hand, maximises the mutual information of tabular238

and images to achieve better results.239

C.4 More Ablation Studies240

In the CHARMS method, we use the K-Means [9, 10] method to cluster the 2048-dimensional features241

extracted from ResNet. We discuss the number of clusters on the SUNAttribute dataset, and the242

results in Table 6 show that the performance of CHARMS is not affected by the number of clusters243

taken, demonstrating the robustness of the method to hyperparameter choices. This robustness244

makes the method more flexible and reliable in practical applications, as it does not require excessive245

hyperparameter tuning or fine-tuning, saving time and effort.246

To further demonstrate the applicability and robustness of our proposed method, CHARMS, we247

conducted experiments using different network structures on DVM dataset with results shown in248

Table 7. The result also shows that the performance improvements achieved by our method are249

consistent across different network structures.250
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Figure 4: Mutual Information with Different
Modality on the Adoption Dataset.
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Table 6: Ablation study on cluster number on SUNAttribute dataset.
n_cluster 20 40 60 80 100

Accuracy 0.8494 0.8661 0.8494 0.8556 0.8522

D Limitations and Future Works251

Our approach relies on leveraging mutual information between the two modalities, which establishes252

the feasibility of knowledge transfer. When there is a significant amount of mutual information253

present between the tabular and image modalities, our approach can effectively transfer relevant254

knowledge and insights between them. On the other hand, converting text into tables is indeed a255

viable approach, but this approach results in the loss of some of the textual information and it is256

challenging to handle such a conversion well. The problem of testing data drift also exists in real life.257

We will consider this problem deeply in future work. In terms of social impact, we think that our258

approach holds potential for application in the medical field, where it can assist doctors in making259

rapid and accurate diagnoses. There should be no negative social impact of our method.260

Our work demonstrates the effectiveness of our method in both classification and regression tasks. In261

future work, it would be valuable to investigate the applicability of our method to other tasks, such262

as semantic segmentation. These types of tasks may require additional domain-specific knowledge,263

such as precise object localization within images, to achieve optimal performance. Nonetheless, we264

believe that our approach is still applicable for such tasks.265

On the other hand, the high cost of annotating expert data often leads to imbalanced datasets, which266

pose a challenge for improving image model performance using a limited amount of tabular data.267

Therefore, addressing this data imbalance is crucial for future work.268
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