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Figure 1: Overview.With hierarchical representation (left), our HPC progressively encodes the volumetric video into a scalable
bitrate bitstream using a single model, enabling different quality reconstructions (e.g., base quality 34.85dB@53KB, medium
quality 36.93dB@101KB, full quality 38.41dB@154KB).TheRD performance (right) still outperforms those fixed-bitratemeth-
ods (e.g., ReRF[65], TeTriRF[71]).

Abstract
Volumetric video based on Neural Radiance Field (NeRF) holds vast
potential for various 3D applications, but its substantial data vol-
ume poses significant challenges for compression and transmis-
sion. Current NeRF compression lacks the flexibility to adjust video
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quality and bitrate within a single model for various network and
device capacities. To address these issues, we propose HPC, a novel
hierarchical progressive volumetric video coding framework achiev-
ing variable bitrate using a single model. Specifically, HPC intro-
duces a hierarchical representation with a multi-resolution resid-
ual radiance field to reduce temporal redundancy in long-duration
sequences while simultaneously generating various levels of detail.
Then, we propose an end-to-end progressive learning approach
with a multi-rate-distortion loss function to jointly optimize both
hierarchical representation and compression. OurHPC trained only
once can realize multiple compression levels, while the current
methods need to train multiple fixed-bitrate models for different
rate-distortion (RD) tradeoffs. Extensive experiments demonstrate
that HPC achieves flexible quality levels with variable bitrate by a
single model and exhibits competitive RD performance, even out-
performing fixed-bitrate models across various datasets.
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1 Introduction
Volumetric video captures dynamic 3D scenes, which allows users
to freely select their viewing angles for a unique and immersive
exploration experience. With its powerful 3D realism and inter-
active capabilities, volumetric video holds vast potential for 3D ap-
plications such as virtual reality, telepresence, sports broadcasting,
remote teaching, and beyond. Therefore, volumetric video is con-
sidered a cornerstone for the next generation of media.

Recent advances in Neural Radiance Field (NeRF)[46] facilitate
dynamic scene rendering for photorealistic volumetric video gen-
eration. Some methods[16, 37, 48, 52] utilize deformation fields
to track voxel displacements relative to a canonical space, captur-
ing motion information in volumetric video. However, their re-
liance on canonical space limits their effectiveness in sequences
with large motion or topological changes. Other methods [16–18,
20, 22, 32, 70, 72] extend the radiance field to 4D spatio-temporal
domains or introduce temporal voxel features, using a single neu-
ral network to fit 4D scenes and directly train on multi-view video
data for high-quality temporal reconstruction. These methods ef-
fectively capture the dynamic details of scenes, but the substantial
data volume poses significant challenges for transmitting volumet-
ric video.

Several methods [15, 51, 55, 59, 65, 66, 71] have been developed
to compress explicit features of dynamic NeRF for efficiently stor-
ing and transmitting volumetric video. ReRF[65] employs a com-
pact motion grid and residual grid for representation, followed
by traditional image encoding techniques to further reduce redun-
dancy. TeTriRF[71] utilizes a three-plane decomposition of the rep-
resentation and traditional video encoding methods, yielding im-
proved results. However, they rely on traditional image/video en-
coding techniques and fail to jointly optimize the representation
and compression of the radiance field, resulting in the loss of dy-
namic details and reduced compression efficiency. Additionally,
they lack the flexibility to adjust video quality and bitrate within a
single model for various network and device capacities. For achiev-
ing different bitrates, they require re-training and storing each
model separately, resulting in large storage cost.

In this paper, we propose HPC, a novel hierarchical progres-
sive volumetric video coding approach achieving variable bitrate
using a single model. Our HPC improves coding efficiency and en-
ables progressive variable bitrate streaming of data by being able

to scale the quality to available bandwidth or desired level of de-
tail (LOD), see Fig. 1. Our key idea is to use multi-resolution fea-
ture grids which can be truncated at any level to achieve adaptive
bitrate and quality. We hence introduce a hierarchical represen-
tation with multi-resolution residual feature grids to fully utilize
feature relevance between consecutive frames. The feature grids
of the representation are then sequentially quantized and entropy
encoded to further reduce redundancy.

Moreover, we present an end-to-end progressive training scheme
to jointly optimize both the hierarchical representation and com-
pression, significantly enhancing the rate-distortion (RD) perfor-
mance. Specifically, considering the non-differentiability of quan-
tization and entropy encoding during compression, we introduce a
method for simulating quantization and estimating bitrate, thus en-
abling gradient back-propagation. Additionally, we employ amulti-
rate-distortion loss function together with a step-by-step training
strategy to optimize the entire scheme. Experimental results demon-
strate that ourHPC achieves variable bitrate by a singlemodel with
higher compression efficiency compared to the fixed-bitrate mod-
els.

In summary, our contributions are as follows:

• We propose HPC, the first approach to enable progressive
volumetric video coding, streaming and decoding. Our HPC
achieves flexible quality levels and variable bitrate within
a single model, while maintaining competitive RD perfor-
mance.

• Wepresent an efficient and compact hierarchical representa-
tion, which represents volumetric video as amulti-resolution
residual radiance field with low temporal redundancy for
high efficiency progressive compression.

• We introduce an end-to-end progressive learning approach
that jointly optimizes hierarchical representation and com-
pression based on a multi-rate-distortion loss function to
enhance RD performance at each layer and overall.

2 Related work
2.1 Neural Scene Representation
NeRF[46] achieves photorealistic synthesis of new viewpoints us-
ing an implicit representation. This powerful method has quickly
gained attention and has been extensively applied in various do-
mains including pose estimation[10, 34, 64, 82, 83], 3D generative
modeling[8, 23, 24, 27, 45], and 3D reconstruction[14, 33, 38, 61, 68,
69, 75]. In tasks involving the synthesis of new viewpoints in static
scenes, NeRF-based approaches have recorded significant achieve-
ments. Differentiable rendering[10, 34, 49, 64, 82, 83] has demon-
strated strong robustness against inaccuracies in camera pose in-
puts. A range of techniques[4–6, 43, 69] aimed at scene modeling
has notably enhanced the quality of NeRF volumetric rendering.
Additionally, various dense 3D representations such as octrees[19,
53, 67], multiscale hash tables[47], tensors[9, 60, 77], and mesh
assets[11, 21, 54, 56, 75] have been explored to accelerate train-
ing and rendering. The breakthroughs achieved by NeRF in static
scenes have spurred research into its application in dynamic scenes,
laying a solid foundation for further advancements.
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Figure 2: Illustration of our HPC framework. In progressive encoding, residual grids network takes images I𝑡 and previous
reconstructed feature grids F̂𝑡−1 as input, generates multi-resolution residuals R𝑡 . After quantization Q, the residuals are en-
coded into a bitstream 𝐵𝑡 via entropy encoder E. During progressive decoding, residuals are decoded from the bitstream and
then recursively integrates with prior reference grids to recover the current frame features layer by layer.

2.2 Dynamic Radiance Field Representation
Dynamic scenes present significant challenges, particularly when
dealing with large motions on new view synthesis. Current ad-
vances inNeural Radiance Field (NeRF)[46] promote dynamic scene
rendering for photorealistic volumetric video generation. The de-
formation field methods[16, 32, 48, 52, 59] recover temporal fea-
tures bywarping the live-frame space back into the canonical space,
yet struggle with large motions and changes, leading to slower
training and rendering. Another category of methods[7, 17, 18, 22,
30, 51, 53, 57, 70, 76, 78] extends the radiance field to 4D spatial-
temporal domains, where they model the time-varying radiance
field in a higher-dimensional feature space for quicker training and
rendering, though at the cost of increased storage needs. Several
works[65, 66, 71] adopt the residual radiance field technique by
leveraging compact motion grids and residual feature grids to ex-
ploit inter-frame feature similarity, achieving favorable outcomes
in representing long sequences of dynamic scenes. Our hierarchi-
cal representation further integrates the concept of residuals to
correct errors and incorporate newly encountered regions, signifi-
cantly reducing data redundancy. Moreover, this hierarchical rep-
resentation enables us to implement progressive encoding, enhanc-
ing our capability to deliver optimal viewing experiences across
varied network conditions and device capabilities.

2.3 NeRF Compression
In recent years, deep learning-based image and video compression
methods[1–3, 12, 25, 26, 31, 35, 36, 39–41, 44, 58, 62, 63, 73, 74, 80]
have been widely applied, achieving good rate-distortion (RD) per-
formance on 2D videos. Currently, there are some efforts[15, 28,
29, 51, 55] underway to apply compression techniques in the NeRF

domain. Among them, VQRF[29] employs an entropy encoder to
compress the static radiance field model, while ECRF[28] maps ra-
diance field features to the frequency domain before applying en-
tropy encoding. Despite their efficacy, these methods are still re-
stricted to to static scenes, and lack exploration in dynamic spaces.
ReRF[65], VideoRF[66], and TeTriRF[71] focus on dynamic scene
modeling, employing traditional image/video encoding techniques
for enhanced feature compression and do not simultaneously op-
timize both the representation and compression of the radiance
field, leading to a loss of dynamic details and lower compression
efficiency. Similar to approach[79, 81], we have designed a deep
learning-based compressionmethod for feature grids which can be
optimizedwith representation and compressed for dynamic scenes,
achieving very good RD performance.

3 Method
Our framework, depicted in Fig. 2, is organized into two core seg-
ments: hierarchical progressive encoding and hierarchical progres-
sive decoding. The input includes multi-view images I𝑡 along with
former reference feature grids.These inputs are processed through
a residual grids network, designed to produce residual feature grids
at multiple resolutions. These residual features are passed through
entropy encoders and transmitted to the decoding side as a bit-
stream. During the decoding phase, the bitstream is decoded by
entropy decoders into multi-resolutions residuals. They are inte-
grated with former reference features to render images at differ-
ent scales according to various bitrates. This process allows for the
adaptive rendering of volumetric video outputs Î𝑡 , catering to dif-
ferent compression needs and ensuring the high-quality content
across varying resolutions. Next, we introduce the details about
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the proposed hierarchical progressive encoding in Sec.3.1, consist-
ing of hierarchical representation and entropy encoder, followed
by hierarchical progressive decoding in Sec.3.2.

3.1 Hierarchical Progressive Encoding
Hierarchical representation. Recall that the NeRF-based repre-
sentationsmap the implicit neural feature to color and densitywith
MLPΦ, where the feature F is determined by sampling position(𝑥,𝑦, 𝑧)
and view direction d.

(c, 𝜎) = Φ(F(𝑥,𝑦, 𝑧, d)) (1)

For long-sequence dynamic volumetric videos, our aim is to pre-
cisely establish the radiance field for each frame. Transitioning
from a static to a dynamic scene highlights a significant challenge
in data explosion.The simplistic method of transmitting individual
per-frame feature grids F𝑡 for a dynamic scene overlooks the es-
sential aspect of temporal coherence, leading to considerable data
redundancy. To mitigate the inefficiency of transmitting the entire
radiance field for each frame and capitalize on the sequence’s con-
tinuity, we segment the video sequence into multiple groups of fea-
tures (GoFs), with each group comprising 𝑁 frames. Within these
groups, take the first group for example G1 = {F1,R2,R3 · · ·R𝑁 },
we establish frame-to-frame residuals based on forward references,
thus harnessing the inherent temporal coherence and substantially
reducing the data required for accurate scene representation. And
the feature grid ofthe frame 𝑡 can be recursively reconstructed by
combining the feature grid of the previous frame with the current
frame’s residual R𝑡 .

F𝑡 = F𝑡−1 + R𝑡 (2)

We decompose a large feature grid F into 𝐿 different resolutions
to meet the needs for progressive streaming, F = {F𝑙 | 𝑙 ∈ [1, 𝐿]}.
With the increment of the index 𝑙 , each level of the feature grid
F𝑙 increases in resolution and enhances the details captured in the
scene. By merging these feature grids from the lowest to the high-
est resolution, the reconstructed scene can be presented at differ-
ent levels of precision.Thismethodology allows for the use of a sin-
gle model to output features at different bitrates, satisfying the vol-
umetric video viewing experience under various bandwidth condi-
tions. Our multi-resolution residual representation is shown in Fig.
3. Within the GoFs, each group starts with a 𝐿-levels full feature
grids as reference and follows with 𝐿-levels residuals. For frame 𝑡 ,
F𝑡 is reconstructed by adding together the residuals and the fea-
tures from the previous frame at their respective levels. Our hi-
erarchical representation with multi-resolution residual radiance
fields, effectively reducing temporal redundancy in extended se-
quences and offering scalable quality adjustments. This approach
tailors the streaming experience to fluctuating network conditions
or specific requirements for the level of detail, enhancing both the
efficiency and flexibility of volumetric video delivery.

F𝑡 = {F𝑙𝑡−1 + R𝑙𝑡 | 𝑙 ∈ [1, 𝐿]} (3)

Entropy Encoder. The sparsity of radiance field residual fea-
tures significantly enhances compression and transmission efficiency.
We scale the residuals of each level by the quantization parameter
and round it to uint8, thereby substantially reducing the volume

Figure 3: The multi-layered feature grids for subsequent
frames F𝑡 can be recursively reconstructed by layer-wise ac-
cumulation of residuals R𝑡 .

of data required for an accurate depiction. Following this quanti-
zation, the quantized residuals are subjected to compression via a
range encoder[42], culminating in the generation of a more com-
pact bitstream 𝐵. Notice that the residuals at each level are pro-
cessed through separate entropy encoders rather than being amal-
gamated for collective compression.This layered approach ensures
the unique statistical properties and predictability of the residuals
at each resolution are meticulously accounted for, enabling more
effective compression.

𝐵𝑡 = {𝐵𝑙𝑡 | 𝑙 ∈ [1, 𝐿]} (4)

𝐵𝑙𝑡 = E𝑙
(
Q(𝑞 · R𝑙𝑡 ) − Q

(
𝑞 ·min(R𝑙𝑡 )

))
(5)

where E𝑙 is the 𝑙−th entropy encoder, and Q represents the quanti-
zation operation. In order to facilitate compression into the uint8
format, the data is first converted into non-negative values. The
variable 𝑞 is the quantization parameter.During quantization, data
is multiplied by 𝑞, effectively expanding the data range and en-
hancing quantization precision. By adjusting the parameter 𝑞, we
trade-off between reconstruction quality and model storage.

3.2 Hierarchical Progressive Decoding
Hierarchical Decoding. On the decoding side, the user receives
the transmitted bitstream and then decodes it using an entropy de-
coder to recover the original features. The operation is articulated
as follows:

R̂𝑡 =
D(𝐵𝑡 ) + Q(𝑞 ·min(R𝑡 ))

𝑞
, (6)

where D is the entropy decoder. Since the data was converted into
non-negative values and multiplied by 𝑞, we will revert it to its
original range during decompression.

In practical scenarios, both the bandwidth available for data
transmission and the computational power of decoding devices
may be limited, insufficient to process all data. However, given
that our scene representation is hierarchical, we can adaptively
render dynamic scenes with varying effects at the decoding end,
tailored to the device’s computational capacity. Specifically, by se-
lecting a smaller level 𝑙 , we can choose to only receive and decode
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Figure 4: Overview of our hierarchical progressive training. We generate different resolution feature grids R𝑙𝑡 from current
frame images and previous reference feature F̂𝑡−1 from buffer. The network trains on the most basic resolution grids, 𝑙 = 1. As
training advances, it progressively incorporates higher resolution grids from the next level, while supervising at each layer
via the multi-rate-distortion loss 𝐿𝑙 . After training is completed, the trained feature grids F̂𝑙𝑡 are stored in the reference frame
buffer.

{F̂𝑖 | 𝑖 ≤ 𝑙} and then render up to that selected resolution, ig-
noring the remaining higher-resolution {F̂𝑖 | 𝑖 > 𝑙}. This approach
facilitates a trade-off between rendering quality and model storage
requirements.

We simultaneously transmit bitstream of varying resolutions,
enabling the decoder to receive and process these data streams in
parallel. Our methodology facilitates the implementation of LOD,
progressively enhancing the granularity of scene details over time.
This allows for a more efficient and dynamic presentation of com-
plex scenes, aligning with the demands of high-fidelity visualiza-
tion and real-time processing requirements.

Rendering.After decoding the reconstructed feature grids {F̂𝑙 },
we can obtain the corresponding color c𝑙𝑖 and density 𝜎𝑙𝑖 through
Eq.(1).Within a Group of Features (GoF), all frames and all levels of
features are decoded and rendered through a global MLP Φ. Then
we proceed with volume rendering to obtain the rendering result.
By accumulating the colors c𝑙𝑖 and densities𝜎

𝑙
𝑖 of all sampled points

along a ray r, we can derive the predicted color ĉ𝑙 (r) at resolution
𝑙 for the corresponding pixel:

ĉ𝑙 (r) =
𝑁∑
𝑖

𝑇𝑖 (1 − 𝑒𝑥𝑝 (−𝜎𝑙𝑖 𝛿𝑖 ))c
𝑙
𝑖 , (7)

where𝑇𝑖 = 𝑒𝑥𝑝 (−∑𝑖−1
𝑗=1 𝜎𝑖𝛿𝑖 ), and 𝛿𝑖 denotes the distance between

adjacent samples. In this way, we finally get the multi-resolution
rendering results.

4 Hierarchical Progressive Training
In this section, we introduce our designed hierarchical progressive
training methods, with the training process illustrated in Fig. 4.
We train different feature grids progressively, jointly optimizing

reconstruction and compression. Our training approach is primar-
ily divided into two parts: end-to-end joint optimization (Sec.4.1)
and progressive training strategy (Sec.4.2).

4.1 End-to-end Joint Optimization
Here, we detail an end-to-end optimization strategy for enhanc-
ing compression efficiency by jointly optimizing the representa-
tion and compression of HPC. By applying simulated quantization
to the feature grids R𝑡 and using an entropy model for bitrate es-
timation, we facilitate efficient end-to-end training. The objective
of end-to-end joint optimization is to minimize the entropy of the
radiance field representation while ensuring high reconstruction
quality.

Simulated Quantization. Implementing quantization during
the compression process significantly reduces the bitrate of feature
grids at the expense of some information loss. By incorporating the
quantization operation within the training phase, we enhance the
model’s robustness to the information loss caused by quantization.
However, the rounding operation interrupts gradient flow, compli-
cating end-to-end training. To avoid this, we emulate the effects
of quantization by introducing uniform noise within the [− 1

2 ,
1
2 ]

range, as depicted in Eq.(8), allowing gradient flow to be preserved
and supporting end-to-end training.

Q(𝑥) = 𝑥 + 𝑢,𝑢 ∼ 𝑈 (−1
2
,
1
2
). (8)

Rate Estimation. Entropy encoding on quantized feature grids
produces a highly compressed bitstream. By incorporating bitrate
measurement into the training phase and including it in the loss
function, we encourage a distribution of features with lower en-
tropy, effectively imposing a bitrate constraint during network up-
dates. However, entropy encoding disrupts gradient flow, either.
To address this, entropy models are introduced during training to
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estimate the entropy of the grids, representing the compression bi-
trate’s lower bound. These models are capable of approximating
the probability mass function (PMF) for the quantized values 𝑦 of
a feature grid by calculating its cumulative distribution function
(CDF), as demonstrated in Eq.(9). This approach enables network
optimization towards lower bitrates while maintaining compatibil-
ity with gradient-based training.

𝑃𝑃𝑀𝐹 (𝑦) = 𝑃𝐶𝐷𝐹 (𝑦 + 1
2
) − 𝑃𝐶𝐷𝐹 (𝑦 − 1

2
). (9)

To maintain precision, we refrain from the assumption of any
predefined data distribution for the 3D grids. Instead, we construct
a novel distribution within the entropy model to closely match the
actual data distribution.The entropymodel plays a crucial role dur-
ing training by estimating the size of the compressed bitstream of
R𝑙𝑡 at resolution 𝑙 , named L𝑙

𝑟𝑎𝑡𝑒 , which in turn informs the overall
loss calculation.

L𝑙
𝑟𝑎𝑡𝑒 = − 1

𝐿

∑
�̂�∈R̂𝑙𝑡

log2 (𝑃𝑃𝑀𝐹 (𝑦)) (10)

4.2 Progressive Training Strategy
When end-to-end joint optimization is applied to feature grids across
all resolutionswithin an entire scene, superior performance is achieved
at the highest level. However, only supervising the overall recon-
struction quality and simultaneously training all feature grids can-
not ensure optimal results at every layer. In light of these chal-
lenges, we introduce our progressive training strategy, growing
model with multi-level supervision.

Initially, the network trains only on the most basic resolution
grids, 𝑙 = 1. As training progresses, the model integrates higher
resolution grids from the next 𝑙 + 1 level, and supervises render-
ing for each layer of grids. Towards the final phases of training,
we intentionally halt training on the low-resolution grids, and rate
supervision is also progressively discontinued. This approach en-
courages the model to focus more on capturing finer details at the
highest resolution grid.

Training Objective. The multi-rate-distortion loss function of
each stage is defined as:

L𝑙 = L𝑙−1 + 𝛼𝑙L𝑙
𝑚𝑠𝑒 + 𝜆1L𝑙

𝑟𝑎𝑡𝑒 + 𝜆2L𝑙
𝑟𝑒𝑔, (11)

L𝑙
𝑚𝑠𝑒 =

∑
| |c(r) − ĉ𝑙 (r) | |2, (12)

L𝑙
𝑟𝑒𝑔 = | |R̂𝑙𝑡 | |1, (13)

whereL𝑙 is the loss of level 𝑙 ,L𝑙
𝑚𝑠𝑒 metrics the difference between

the ground truth and the result of different levels of resolution ren-
dered by our framework, measuring the quality of reconstruction.
L𝑙
𝑟𝑎𝑡𝑒 represents the estimated rate derived from R̂𝑙𝑡 .L𝑙

𝑟𝑒𝑔 is the L1
regularization applied to R̂𝑙𝑡 of different resolution to ensure tem-
poral continuity andminimize themagnitude of R̂𝑙𝑡 .The parameter
𝜆1 is used to balance the rate and distortion, allowing for control
over the model size and reconstruction quality. The parameter 𝜆2
measures the extent of our constraint on R̂𝑙𝑡 .

5 Experimental Results
5.1 Configurations
Datasets. In this section, we extensively assess our HPC frame-
work on the ReRF[65] and DNA-Rendering[13] datasets. The ReRF
dataset , 1920 × 2080, includes 74 camera views. We assign 70 for
training and the remaining 4 for testing.TheDNA-Rendering dataset,
2048 × 2448, includes 48 views, with 46 used for training and 2 for
testing. For fairness, we specify the same bounding box for the
same sequence in different comparison experiments.

Setups. In our framework, we specify the number of feature
grids, 𝐿, as 6. Our experimental setup includes an Intel(R) Xeon(R)
W-2245 CPU @ 3.90GHz and an RTX 3090 graphics card. During
training, the initial settings are as follows: 𝜆1 and 𝜆2 are set to
0.000001, 𝛼6 (for full modeling) is set to 1, and the remaining 𝛼𝑙
values are set at 0.25. The maximum number of iterations,𝑚𝑎𝑥𝑖𝑡𝑒𝑟 ,
is set to 40, 000, with the activation iteration, 𝑎𝑐𝑡𝑖𝑡𝑒𝑟 , at 2, 500. We
utilize six distinct entropy models, each tailored to one of the six
different-resolution feature grids.The duration for each GoF is con-
sistently fixed at 20 frames.

5.2 Comparison
To our knowledge, HPC is the first framework for hierarchical pro-
gressive volumetric video coding, using a multi-resolution resid-
ual radiance field for optimized compression. It achieves variable
RD performance through progressive encoding and decoding with-
out additional training or compression. To validate HPC’s effective-
ness, we compare it at different resolutions with TiNeuVox[17], K-
Planes[18], ReRF[65], and TeTriRF[71] both qualitatively and quan-
titatively. Figure 5 shows visual results of two sequences, demon-
strating HPC’s superiority in model compactness and detail preci-
sion.
Table 1: Quantitative comparison against volumetric video
encoding methods. We calculate the average PSNR, SSIM,
and storage for each frame across all training and testing
views separately.

Dataset Method Training View Testing View Size
(MB)↓PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

ReRF

TiNeuVox[17] 31.03 0.964 27.12 0.958 0.81
K-Planes[18] 37.97 0.985 30.01 0.971 2.99
ReRF[65] 33.04 0.979 30.88 0.975 0.50

TeTriRF[71] 38.01 0.987 33.45 0.980 0.14
Ours 38.38 0.990 33.55 0.981 0.14

DNA-
Rendering

TiNeuVox[17] 29.28 0.953 22.19 0.947 0.80
K-Planes[18] 31.98 0.979 27.81 0.962 3.00
ReRF[65] 30.20 0.974 29.59 0.972 0.31

TeTriRF[71] 32.33 0.980 29.48 0.973 0.16
Ours 32.69 0.983 29.88 0.977 0.15

Besides qualitative experiments, we also conduct a quantitative
comparison in terms of Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity Index (SSIM) and model storage as shown in Ta-
ble 1. Our method shows significant advantages in reconstruction
quality and model storage, achieving optimal rate-distortion per-
formance. TiNeuVox[17] performs poorly on long sequences. K-
Planes[18] has good reconstruction for known viewpoints but strug-
gles with unknown ones and has a large model size. ReRF[65] has
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Figure 5: Qualitative comparison against volumetric video coding methods TineuVox[17], K-Planes[18], ReRF[65],
TeTriRF[71].

Figure 6: Rate-distortion curves in both the ReRF and
DNA-Rendering datasets. Rate-distortion curves not only il-
lustrate the efficiency of various components within our
method, but also demonstrate its superiority over ReRF[65]
and TeTriRF[71].

similar model storage to ours, but lower reconstruction quality.
TeTriRF[71]’s RD performance is nearly comparable to ours but
lacks progressive coding. Unlike ReRF[65] and TeTriRF[71], which
require additional training and compression to adjust quality and
storage trade-offs, our method optimizes this by selecting the num-
ber of feature grids during decoding.

Table 2:TheBDBR results of ourHPC andTeTriRF[71]when
compared with ReRF[65] on different datasets.

Dataset Method Training View Testing View
BD-PSNR

(dB) ↑ BDBR
(%) ↓ BD-PSNR

(dB) ↑ BDBR
(%) ↓

ReRF TeTriRF[71] 6.582 -80.822 4.878 -86.948
Ours 7.576 -81.523 5.173 -87.946

DNA-
Rendering

TeTriRF[71] 5.516 -80.575 4.037 -88.682
Ours 5.633 -82.463 4.398 -89.192

Fig. 6 and Table 2 also shows a comparison of RD performance
between our HPC, ReRF[65] and TeTriRF[71]. We evaluate these
methods using BjontegaardDelta Bit-Rate (BDBR) and Bjontegaard
Delta Peak Signal-to-Noise Ratio (BD-PSNR)[50]. From Table 2,
we can see that on the ReRF dataset, we observe average BDBR
reductions of 81.523% and 87.946% for training and testing views,
respectively. Similarly, on the DNA-Rendering dataset, the aver-
age BDBR saving is 82.463% and 89.192% for training and testing
views, respectively. Fig. 6 also demonstrates the superior RD per-
formance of our method. Our method obviously performs better
than ReRF[65] and have a slightly better result with TeTriRF[71].
However, all of them need to train multiple fixed-bitrate models
for different rate-distortion tradeoffs. In contrast, Our method sup-
ports achieving multiple RD performances with a single compres-
sion and training process.

In additional, we evaluate the computational complexity of HPC
at different quality levels, as detailed in the Table 3. Our decoding
and rendering time gradually increases as reconstruction quality
improves due to our use of higher-dimensional features to cap-
ture additional scene details, resulting in increased data volume
and complexity required for decoding and rendering. Our method
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Figure 7: The results of our full method in comparison to approaches without progressive training strategy. With the progres-
sive training strategy, our HPC achieves flexible quality levels at variable bitrate using a single model.

achieves shorter decoding and rendering times at base andmedium
reconstruction qualities, significantly outperforming TeTriRF[71]
and remaining competitive with ReRF[65]. At full reconstruction
quality, we achieve computational performance comparable to TeTriRF.

Table 3: Computational complexity of our HPC at different
quality levels in compression to ReRF[65] and TeTriRF[71].

Time TeTriRF
[71]

ReRF
[65]

Ours
BaseQuality MediumQuality Full Quality

Decode(ms) 101 55 22 43 121
Render(ms) 120 58 56 72 109

5.3 Ablation Studies
We conduct three ablation studies to validate the effectiveness of
each component in our method. As a baseline, we opt for quantiza-
tion and entropy encoding on the hierarchical representation and
incrementally add each component under test to the baseline. Our
primary focus lies on the dynamic residual model, end-to-end joint
optimization, and progressive training strategy. In the first abla-
tion study, we build on the baseline by adding the dynamic residual
model. The second ablation study extends the first by incorporat-
ing an end-to-end joint optimization of the NeRF reconstruction
and compression. Finally, in the third ablation study, which repre-
sents our full method, we further enhance the second study’s setup
by integrating the progressive training strategy.

The ablation study results are shown in Fig. 6. We adjusted the
axis scales for clarity. Using the dynamic residual model, we repre-
sent non-keyframe features with small residual grids, significantly

reducing the overall model size. Joint optimization enhances rate-
distortion performance and reduces storage while hardly affect-
ing the reconstruction quality. Moreover, it offers advantages in
terms of reconstruction quality over the baseline when we don’t
utilize all feature grids. Our progressive training strategy further
decreasesmodel size and improves robustness, enabling low-resolution
grids to convey structural information effectively, whose impor-
tance can also be seen in Fig. 7 as HPC maintains excellent render-
ing quality across each level of result. Overall, the ablation studies
highlight the critical roles of the dynamic residual model, joint op-
timization, and progressive training strategy.

6 Conclusion
In this paper, we propose HPC, the first progressive volumetric
video coding approach, enabling flexible and effective scaling be-
tween quality and bitrate. HPC introduces a highly compact hier-
archical representation with a multi-resolution residual radiance
field to effectively leverage feature relevance between frames and
generate different levels of detail. Furthermore, HPC employs an
end-to-end progressive training scheme to jointly optimize the hi-
erarchical representation and compression based on a multi-rate-
distortion loss function, significantly improving RD performance
of each level and overall. Experimental results show thatHPC achieves
variable bitrate using a single model and outperforms the state-of-
the-art fixed-bitrate methods. HPC’s unique variable bitrate capa-
bilities enable progressive streaming and rendering across various
quality levels, making it particularly suitable for scenarios with
fluctuations in bandwidth and computational resources. This pro-
vides a fundamental basis for the widespread application of volu-
metric video.
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