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ABSTRACT

Accurately estimating the informativeness of individual samples in a dataset is
an important objective in deep learning, as it can guide sample selection, which
can improve model efficiency and accuracy by removing redundant or potentially
harmful samples. We propose Laplace Sample Information (LSI) measure of sample
informativeness grounded in information theory widely applicable across model
architectures and learning settings. LSI leverages a Bayesian approximation to the
weight posterior and the KL divergence to measure the change in the parameter
distribution induced by a sample of interest from the dataset. We experimentally
show that LSI is effective in ordering the data with respect to typicality, detecting
mislabeled samples, measuring class-wise informativeness, and assessing dataset
difficulty. We demonstrate these capabilities of LSI on image and text data in
supervised and unsupervised settings. Moreover, we show that LSI can be computed
efficiently through probes and transfers well to the training of large models.

1 INTRODUCTION

Deep learning (DL) relies fundamentally on pattern extraction and knowledge acquisition from
underlying data to determine a model’s parameters. Throughout the training of a neural network,
each sample in the training dataset imparts information on these parameters. However, the amount of
information varies between samples. Beyond providing insights on learning dynamics, measuring
per-sample information content allows selecting the most beneficial subsets of a given dataset for
model training (i.e. dataset condensation or distillation (Chen et al., 2022; Tan et al., 2023)). This
can help to reduce the amount of required computational resources, rendering model training more
economical and energy-efficient (Strubell et al., 2019). However, achieving these efficiency goals
without decreasing the learnt model’s accuracy (or other beneficial properties such as sub-group
fairness (Ghosh et al., 2023)) is of particular importance and represents a challenge which –so far–
has not been sufficiently addressed (Asi & Duchi, 2019). Additionally, evaluating the contribution of
individual samples to the final model is of importance across many domains of machine learning (ML)
research such as privacy preservation (Ünsal & Önen, 2023), memorization analysis (Bansal et al.,
2022), sample difficulty evaluation (Harutyunyan et al., 2021), machine unlearning (Xu et al., 2023),
and equitable reimbursement for data contributors (Cummings et al., 2015). All of the aforementioned
workflows thus stand to gain from a well-defined notion of sample informativeness.

We contend that a useful measure of sample informativeness should (1) be applicable to most datasets
and learning settings without imposing simplifications on the model or constraints on the training and
(2) be grounded in information theory to truly measure information and not a related –but different–
quantity like sample difficulty. While some previous methods (Agarwal et al., 2022; Jiang et al., 2020)
are applicable to a broad range of training settings, they do not measure information flow but rather
related quantities (e.g. sample difficulty) which merely approximate informativeness. To compute an
information-theoretically grounded measure of sample informativeness, the Kullback Leibler (KL)
divergence can be employed to approximate the information flow (more formally, the conditional
point-wise mutual information) from a single sample to the parameters of the network. However,
the KL divergence is defined on probability distributions, whereas most trained neural networks
(excluding, e.g., Bayesian neural networks) comprise a single set of parameters, for which the KL
divergence is undefined. To enable computing the KL divergence in this setting, prior works have used
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techniques like linearization (Harutyunyan et al., 2021). However, this approach leads to performance
degradation (Chizat et al., 2019) and scales poorly to larger real-world datasets. Alternatively, noisy
iterative learning algorithms, e.g. Langevin dynamics (Negrea et al., 2019) or Gaussian processes (Ye
et al., 2023), result in a distribution of parameters but come with a computational cost that increases
proportionally with dataset size (Brosse et al., 2018).

To address the aforementioned challenge, we propose Laplace Sample Information (LSI) (Definition 2)
as a measure of the sample informativeness. LSI estimates the KL divergence-based information via
a Laplace approximation, a post-hoc method to construct a quasi-Bayesian learner from a trained
neural network, and to thus obtain a distribution over model parameters. LSI is applicable to various
model architectures, learning settings, and can be computed through automatic differentiation, which
facilitates the use of LSI to analyze sample informativeness in diverse DL tasks.

Similar to the aforementioned KL divergence-based techniques, LSI relies on leave-one-out (LOO)
retraining of the model to provide a direct measure of informativeness from omitting a single sample.
This requires repetitive training, which can become exceedingly costly for larger models. To mitigate
this cost, we show that LSI can be computed using a (very) small model as probe. The sample order
obtained from this probe generalizes well to the training of larger models. This approach allows us to
combine the fidelity of a true LOO-based informativeness metric while remaining economical and
time-efficient. We provide the code as well as the pre-computed values of LSI for common datasets
under github.com/TUM-AIMED/LSI. Our contributions can be summarized as follows:

• Our primary contribution is the introduction of LSI, an approximation of the unique infor-
mation contributed by an individual sample to the parameters of a neural network computed
via the KL-divergence of Laplace approximations to the posterior of a neural network’s
parameters;

• We demonstrate the ability of LSI to identify a spectrum of typical/atypical samples, detect
mislabeling, and assess informativeness on the level of individual samples, dataset classes
and the entire dataset in supervised and unsupervised tasks across various data modalities
(images and text);

• We show that LSI can be efficiently computed by probing the model features and generalizes
effectively to large architectures.

2 RELATED WORK

Sample Informativeness The notion of sample informativeness is defined somewhat inconsistently
in literature. For instance, some studies focus on the information contributed by individual samples
to a learner, defining informativeness as the reduction in parameter uncertainty upon the addition of
a sample (Dwork et al., 2015; Rogers et al., 2016). A more recent body of work describes sample
informativeness by extending Shannon information theory to consider computational constraints (Xu
et al., 2020; Ethayarajh et al., 2022). Yet another research direction employs influence functions
to estimate the informativeness of individual samples. This method examines changes in model
parameters due to the inclusion of specific samples, based on the model’s final parameters (Koh &
Liang, 2017; Pruthi et al., 2020; Schioppa et al., 2022). However, this approach does not account for
the so-called “butterfly effect” in neural networks (Basu et al., 2020; Ferrara, 2024), where omitting
a single sample at the beginning of training can alter the gradient trajectory and lead to significant
misestimation of a sample’s true influence; recent work has shown that influence functions are poor
substitutes for true leave-one-out (LOO) retraining (Schioppa et al., 2024; Bae et al., 2022).

Our work’s use of the KL-divergence is closely related to the information-theoretic notion of al-
gorithmic stability, which investigates the change in a model due to single sample differences in
underlying datasets (Bassily et al., 2016; Raginsky et al., 2016; Steinke & Zakynthinou, 2020). For
instance, Bassily et al. (2016); Steinke & Zakynthinou (2020); Feldman & Steinke (2018) define max
KL stability and the average leave one out KL stability as supD,D−i KL(pA(θ | D) ∥ pA(θ | D−i))

and supD
1
n

∑n
i=1 KL(pA(θ | D) ∥ pA(θ | D−i)) respectively, with pA(θ | D) being the output

distribution over the parameters θ of an algorithm A trained on the dataset D = {z1, ..., zn} and
D−i = D \ {zi}. While max KL stability is defined across all possible datasets, average KL stability
is defined on a fixed underlying dataset. LSI is thus closely related to average per-sample level KL
stability; this definition is also used by Harutyunyan et al. (2021). Moreover, a connection between
LSI and Differential Privacy exists, which we investigate in Appendix H.
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Estimating Parameter Distributions Computing the KL divergence on the constant sets of pa-
rameters (i.e. degenerate random variables) outputted by most (non-Bayesian) learning algorithms
is impossible. Negrea et al. (2019); Ye et al. (2023) circumvent this issue by leveraging a Bayesian
learning setting, which generates a distribution of parameters, while Rammal et al. (2022) add noise to
the final parameters (smoothing) to generate a distribution. Another line of work aims to approximate
the training of a neural network by employing continuous stochastic differential equations (Li et al.,
2017) or through neural tangent kernels using a linear approximation of a KL divergence-based
informativeness notation (Harutyunyan et al., 2021). Our approach mirrors the Bayesian strategy, but
we establish a distribution on the network parameters post-hoc by employing a Laplace approximation
to the posterior parameter distribution (Daxberger et al., 2021; MacKay, 1992).

Sample Difficulty As demonstrated by Ethayarajh et al. (2022), sample difficulty is related to sample
informativeness, as it (informally) measures the probability that a neural network can learn a sample.
Previous studies approximate sample difficulty by examining the impact of model compression on
individual samples (Hooker et al., 2020b;a) or by assessing the effect of individual samples on the loss
of a held-out dataset (Mindermann et al., 2022; Wu et al., 2020). Our work is related to methods that
infer sample difficulty from loss landscape geometry (Zielinski et al., 2020; Chatterjee, 2020; Agarwal
et al., 2022; Katharopoulos & Fleuret, 2018), as the Laplace approximation leverages curvature
information. However, we note that –while sample difficulty can be a proxy for informativeness–
the two concepts are distinct, and, while the aforementioned methods use sample difficulty to infer
informativeness (Agarwal et al., 2022), we directly measure sample informativeness, which allows us
to draw conclusions about sample difficulty.

3 LAPLACE SAMPLE INFORMATION

Next, we formally introduce LSI and its theoretical underpinnings.

Sample Information As discussed above, LSI is a per-sample informativeness notion based on
the KL divergence, the arguably most established information theoretic divergence. Consider a
(probabilistic) training algorithm A, a training dataset D = {z1, ..., zn}, an input-label pair of
interest zi = (xi, yi), and the training dataset with zi removed D−i = D \ {zi}. The distribution
of parameters induced by A is denoted as pA(θ | D), where θ ∈ RK is a specific realization of
the random variable of the parameters Θ. To approximate the (per-sample) information flow of
the sample of interest zi to the neural network’s parameters, we compute the KL divergence of the
distribution of parameters of a model trained on D to the distribution of parameters of a model trained
on D−i. This information measure is called the Sample Information (SI) of zi:
Definition 1 (Sample Information). The Sample Information of zi is defined as:

SI(A,D, zi) = KL
(
pA (θ | D) ∥ (pA

(
θ | D−i

))
.

SI is justified information-theoretically, as it represents an upper bound on the point-wise conditional
mutual information between the parameters of the trained neural network and the datapoint zi. For
this reason, SI has already been used in previous literature (Harutyunyan et al., 2021).

Alternatively, SI can be understood through the lens of information-theoretic hypothesis testing: In
information theory, KL(pA(θ | D) ∥ pA(θ | D−i)) can be interpreted as the expected discrimination
information or the expected weight of evidence of D vs. D−i through observing θ. In other words, SI
can be interpreted as the weight of the discriminatory evidence induced by zi. Intuitively, samples
that contribute a lot of information to θ allow for improved insight about the underlying dataset
compared to samples that contribute little information, which the KL divergence can measure.

Laplace Approximation The definition of SI above implies that the training algorithm is proba-
bilistic; however, most neural networks are trained with Maximum Likelihood Estimation (MLE).
This does not result in a distribution over trained parameters which is required to estimate the KL
divergence. To remedy this, previous works have leveraged probabilistic/Bayesian neural network
training (Negrea et al., 2019; Ye et al., 2023) which can be computationally expensive, or added noise
directly to the final parameters (Rammal et al., 2022), which reduces model utility. In contrast, we
propose to construct a quasi-Bayesian learner from the trained model parameters by fitting a posterior
probability distribution to the parameters using a Laplace approximation, a classical technique in
Bayesian inference, whose application in neural networks has recently witnessed increased interest.
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We use the “classical” Laplace approximation (Daxberger et al., 2021) throughout and discuss the
recently proposed Riemann Laplace approximation (Bergamin et al., 2024) in Appendix I. The
Laplace approximation leverages a second-order Taylor expansion of the loss landscape around the
final parameters θ of the model Aθ. It thus assumes that the loss function is convex around the local
minima and can be approximated by a quadratic function, which is a common assumption made
for the analysis of the training behavior of neural networks (Wen et al., 2020; Zhu et al., 2018; He
et al., 2019). The Laplace approximation models the parameters of the neural network as multivariate
Gaussian distributions whose covariance is based on the local curvature of the loss landscape. This
normality assumption is made by invoking the central limit theorem on the distribution of the pa-
rameters after many training steps. Despite these assumptions, the aforementioned works show the
Laplace approximation to be efficient and competitive with fully Bayesian training in deep networks,
which motivates its use in our work.

Formally, suppose that a neural network is trained on a dataset D by minimizing the loss function
L(D, θ) with l (xn, yn; θ) as the empirical loss term and regularizer r(θ) on the parameters θ ∈ RK

resulting in:

θ̂ = arg min
θ∈RK

L (D, θ) = arg min
θ∈RK

(
r(θ) +

N∑
n=1

l (xn, yn; θ)

)
. (1)

Considering the empirical loss term as an i.i.d. log-likelihood l (xn, yn; θ) = − log p(yn | Aθ(xn))

and the regularizer as a log-prior r(θ) = − log p(θ) establishes θ̂ as a maximum a-posteriori estimate
(MAP) of the parameters. In other words, the MLE of the regularized learner is interpreted as a
MAP solution whose prior is defined by the regularizer. The Laplace approximation then uses a
second-order Taylor expansion of L around θ̂ to construct a Gaussian approximation of pA(θ | D):

L(D, θ) ≈ L(D, θ̂) + (∇θL(D, θ̂))(θ − θ̂) +
1

2
(θ − θ̂)T (∇2

θL(D, θ̂))(θ − θ̂). (2)

Considering a converged model, the first order term vanishes as ∇θL (D, θ) |θ̂ ≈ 0 yielding the
Laplace approximation of the posterior distribution as:

p(θ|D) ≈ N (θ̂,Σ) with Σ = (∇2
θL(D, θ̂))−1. (3)

Remark that while the derivation of the Laplace approximation requires the model to be converged,
we show that the sample order established by LSI remains largely consistent across training. Thus,
according to our empirical findings in shown Appendix G, employing LSI to gain insights does not
necessitate the convergence of the model.

Laplace Sample Information (LSI) After introducing the key theoretical insights, we are now
ready to define LSI. Concretely, we combine the Laplace approximation of the posterior parameter
distribution (Equation (3)) and the definition of sample informativeness (Definition 1), which yields
our definition of Laplace Sample Information:

Definition 2 (Laplace Sample Information). Let A be a (non-Bayesian) learning algorithm with
parameters θ, a loss function L, a dataset D and D−i = D \ {zi}; moreover, let θMLE be the
maximum likelihood estimate of θ. Then, the LSI of the investigated sample zi with respect to A
and D−i is defined as:

LSI(zi, A,D−i) ≜ KL(N (θ̂,Σ)||N (θ̂−i,Σ−i)). (4)

Above, θ̂ ≜ θMLE(A(D)) and θ̂−i ≜ θMLE(A(D−i)).

Moreover, Σ ≜ (∇2
θL(D, θ̂))−1 and Σ−i ≜ (∇2

θL(D−i, θ̂−i))−1.

The Laplace approximation results in a Gaussian distribution over K neural network parameters,
enabling the computation of the KL divergence and, consequently, the LSI as follows:

LSI(zi, A,D−i) =
1

2

[
tr((Σ−i)−1Σ)−K + (θ̂−i − θ̂)T (Σ−i)−1(θ̂−i − θ̂) + ln

(
det(Σ−i)

Σ

)]
.

LSI has a notable benefit: since the Laplace approximation is computed after model training, the
computation of LSI is agnostic to model architecture, the dataset, the loss function, and the learning
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setting. In Appendix A, we show the benefits of LSI compared to two other information measures
from recent literature (Harutyunyan et al., 2021; Wongso et al., 2023).

Efficient Computation of LSI In terms of computational considerations, the Laplace approximation
of a neural network requires the computation of the Hessian of the loss function with respect to
the parameters. Unfortunately, for K total model parameters, the Hessian requires O(K2) memory,
which is intractable even for moderate networks. Additionally, the inversion of the Hessian for
computing the covariance matrix has a time complexity of O(K3). To address this issue in practice,
we leverage the established technique of using a Hessian approximation. We note that LSI is agnostic
to the exact approximation. For example, block-diagonal approximations such as K-FAC or their
eigenvalue-based counterparts (Grosse & Martens, 2016; Bae et al., 2018) can be used. However, in
our experiments, we find that even a diagonal approximation works very well, i.e. discarding all but
the diagonal Hessian entries (Farquhar et al., 2020; Kirkpatrick et al., 2017), resulting in O(K) in
memory and a time complexity of only O(K) for the inversion. We show that the LSI of this diagonal
approximation (as well as the KFAC approximation) is well-correlated with the LSI using the full
Hessian in Appendix C, indicating the applicability of the diagonal approximation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Model and Datasets We demonstrate the utility of LSI with experiments on supervised image tasks
using CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009), a medical imaging dataset (pediatric
pneumonia, i.e. lung infection in children), (Kermany et al., 2018) and two ten-class subsets of
the ImageNet dataset (Deng et al., 2009), Imagewoof and Imagenette (Howard, 2019). We select
CIFAR-10 and CIFAR-100 as easy and challenging benchmarks, and the two ImageNet subsets as
easy and challenging representatives of large image datasets. The pneumonia dataset represents a
challenging real-world use case, as two of the classes (bacterial and viral pneumonia) are hard to
distinguish, even for human experts.

Recall that LOO-estimation of LSI for any given sample necessitates retraining a model. To circum-
vent this requirement and lessen the computational burden, we employ a probe, whereby we estimate
LSI on a small model trained on image features computed by a frozen feature extractor. For the
image tasks, we employ a ResNet-18 (He et al., 2016) up to the fully connected layer pre-trained on
ImageNet as the frozen feature extractor and append a single hidden layer with a ReLu activation
function followed by a classification layer as our task-specific classification head/ probe model. The
fact that the sample informativeness order captured by LSI on the probe transfers excellently to larger
models, which is discussed in detail in Section 4.4 and Appendix D, is one of LSI’s key benefits. We
find that employing a probe allows the computation of the sample information with a speedup of at
least three orders of magnitude. Interestingly, despite the fact that the Laplace approximation requires
a converged model, empirically LSI is applicable even far prior to model convergence (after a brief
warm-up period), as shown in Appendix G.

Beyond image classification, we show the applicability of LSI in a text sentiment analysis task on the
IMDb dataset (Maas et al., 2011). As a model, we employ a pre-trained BERT (Devlin et al., 2019)
as a feature extractor and the probe model described above.

Moreover, we compute LSI in unsupervised contrastive learning using CLIP (Radford et al., 2021)
between image and caption pairs of the COCO dataset (Lin et al., 2015). To decrease the compu-
tational complexity, we reduce the dataset to images carrying segmentation masks of bananas or
elephants. We use frozen vision and language transformers (BERT (Devlin et al., 2019) and ViT-B/16
(Dosovitskiy et al., 2020)) as a backbone and compute LSI with respect to the embedding layer (acting
as the probe).

To evaluate LSI independently of the sample order, we used full-batch gradient descent for model
training. Note that LSI makes no assumptions about the training process and remains applicable in a
batched training setting, either combined with multiple re-training to average out the effect of batch
sample ordering or sampling from the entire dataset, e.g. using Poisson sampling (Abadi et al., 2016).

Training Parameters and Hardware All training (hyper-)parameters are provided in Appendix N
and a description of the hardware used and resources required is provided in Appendix O.
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4.2 ESTIMATING DATA TYPICALITY, INFORMATIVENESS AND DIFFICULTY USING LSI

LSI Orders Samples According to Typicality We begin by showing that LSI provides an inter-
pretable notion of individual sample informativeness. Recall that, as shown by Feldman (2020),
data-generating distributions tend to exhibit a long tail concerning sample typicality (i.e. view angle,
object size, etc.). LSI unveils this long-tailed distribution, as the LSI distribution on the examined
datasets also exhibits a long tail (Figure 1). As most samples have low LSI and only a few samples
have high LSI, only a small subset of the data is highly informative, while most samples contribute
little information to the parameters. Note that, as the model has no prior “knowledge” about typicality
or about the data distribution, this notion of sample typicality arises during training and is encoded
through the amount of information individual samples contribute to the model. Thus, this notion of
typicality does not necessarily coincide with its human interpretation.
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Figure 1: LSI distribution across individual samples of the investigated datasets.

Investigating samples with low and high LSI, we find that samples that are strongly representative of
their class provide little unique information to the model parameters. Consequently, representative
samples have low LSI, while samples with high LSI often are cropped, mislabeled, or show the
object from an uncommon perspective. This indicates that the model “encodes” the long-tailed
sub-population distribution described by Feldman (2020).

For example, while the least informative samples in the Australian terrier class in ImageNet are
well-framed and highly typical representatives of the breed, high LSI samples also contain a variety of
different dog breeds, i.e. mislabeled samples. Similarly, high LSI samples of the radio class contain
an out-of-distribution image of a car. Low LSI samples in the pneumonia dataset contain chest x-rays
that have similar exposure and framing, while high LSI samples contain cropped, over/ underexposed
images as well a chest-x-ray of an adult woman, which is clearly wrongly included in a pediatric
(children’s) dataset (Figure 2).

A larger selection of images beyond the aforementioned representative findings can be found in Ap-
pendix K (ImageNet), Appendix L (CIFAR-10), and Appendix M (pneumonia dataset). Exemplarily,
in CIFAR-10, the lowest LSI within the bird and airplane categories feature a blue sky background,
while the samples carrying the highest LSI have the sun as the background for airplanes or are frontal
full-frame views of ostriches, a rather unrepresentative member of the bird class.

Low LSI High LSI

ImageNet
Australian Terrier

ImageNet
Radio

Pneumonia

Figure 2: Selected images with low/high LSI in ImageNet and the medical dataset. Samples with
low LSI are representative of their underlying class, whereas high LSI samples are often mislabeled/
out-of-distribution (red dots) or atypical with respect to exposure, viewing angle, etc.
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In the text domain, unambiguous texts aligning with their label carry low sample informativeness
and thus are assigned low LSI. Conversely, high LSI indicates mislabeled, ambiguous, or label-
contradicting texts, as shown exemplarily in Figure 3.

Figure 3: LSI in supervised text classification on the IMDb dataset using BERT

Even in multi-modal tasks, we find that typical samples with a prominent portrayal of class represen-
tatives (e.g. bunches of bananas) have low LSI, as they carry little unique information. Images in
which the subject is not prominently shown, not corresponding to the banana label, or do not contain
any bananas (e.g. box of cucumbers) have high LSI (shown in Figure 4).

Low LSI High LSI

Figure 4: Selected images with low/high LSI of contrastive learning on COCO

Focusing on Mislabeled Samples To further show the effect of mislabeled data on sample in-
formativeness and demonstrate the capabilities of LSI in detecting mislabeled samples, we apply
deliberate label noise (random label flips to any other class) to 10% of CIFAR-10 and pneumonia
dataset samples and recompute LSI for all samples. Figure 5 shows that mislabeled samples, on
average, have substantially higher LSI and thus provide more unique sample information. Notably,
a portion of mislabeled samples has higher LSI than even the most informative correctly labeled
samples, indicating the disproportionate detrimental effect of poor quality data and highlighting
the importance of meticulous dataset curation (Zha et al., 2023). Further experiments on human
mislabeled data are in Appendix E.
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Figure 5: LSI distribution on data with corrupted labels (mislabeled) vs. uncorrupted labels

LSI can furthermore effectively distinguish label corruption (mislabeling, Figure 6 left) from data
corruption (by including non-informative lorem ipsum text with random labels, Figure 6 right). Since
lorem ipsum is self-similar and provides little information (neither label confirming nor contradicting),
the LSI is concentrated around an intermediate value, whereas the mislabeled text has higher LSI, as
it is more informative to the model (strong contradictory information).

Sample Informativeness Increases with Smaller Datasets Interestingly, the LSI for the ImageNet
subsets is about one order of magnitude larger than for CIFAR-10 when using the same experimental
setup (same training parameters and model), as seen in Figure 1. Due to the smaller dataset size
(9 469 compared to 50 000), individual samples of the ImageNet subsets provide more information
to the neural network than individual samples of CIFAR-10. This result is corroborated by picking
a subset of the same dataset (see Appendix F). Therefore, with smaller datasets, the presence or
absence of individual samples becomes more influential on the model parameters.

7



Published as a conference paper at ICLR 2025

Figure 6: LSI in supervised text classification on the IMDb dataset using BERT

Establishing a Class-wise Informativeness Ordering using LSI We next investigate the class-wise
distribution of LSI, which allows for reasoning about which class imparts the most information to
the model parameters during model training. Figure 7 (left) shows the class-specific LSI for the
three different classes of the pediatric pneumonia dataset. We consulted a diagnostic radiologist
who confirmed that this class ranking corresponds to the difficulty humans have in classifying
these pathologies in children. In particular, while classifying a radiograph as abnormal is easy,
distinguishing between bacterial and viral pneumonia is difficult, which mirrors the relationship
between the distributions in the figure. To further emphasize the capabilities of LSI to assess class
informativeness, we investigate the change in class-level distributions of LSI on the pneumonia dataset
when the feature embeddings of one class are corrupted with additive Gaussian noise (variance as
data noise in Figure 7). Note that adding noise to the embeddings increases variance and makes
the samples seem “less similar”. This is different from Figure 6 right, where the corrupted data is
highly self-similar and has little effect on LSI. Here, since the model is required to exploit more
of the information contained in every sample, the individual samples become more informative;
correspondingly, with higher added noise, the LSI distribution of the corrupted class shifts towards
higher values.

Figure 7: LSI distributions across three classes of the pneumonia dataset. By increasing the additive
Gaussian noise standard deviation (scaled to the initial standard deviation of the embedding) on
the normal class, their dissimilarity increases, requiring the model to extract more of their unique
information in its parameters. This increase in informativeness leads to higher class-wise LSI.

Measuring Dataset Difficulty using LSI Comparing the LSI distribution between datasets allows
us to reason about the overall dataset’s difficulty. For example, samples of CIFAR-100 have, on
average, higher LSI than the samples of CIFAR-10 when using the same experimental setup (see
Figure 1). This indicates that CIFAR-100 contains more samples that carry higher unique information
than CIFAR-10 which aligns well with CIFAR-100 having more classes and thus fewer samples per
class than CIFAR-10 and being generally considered more difficult. The same phenomenon arises
when comparing the distributions of the ImageNet subsets with the easier Imagenette having a lower
average LSI and a slimmer tail than the more difficult Imagewoof.

4.3 LSI AS A PROXY FOR SAMPLE LEARNABILITY AND OUT-OF-SAMPLE ACCURACY

Sample Learnability As discussed above, sample difficulty has been previously used as a proxy for
sample informativeness (Agarwal et al., 2022). We next show that this relation is indeed justified by
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demonstrating that the “reverse direction” also holds, i.e. that sample informativeness also predicts
sample difficulty, which we define as the sample-wise training accuracy. To this end, we partition
each dataset into label-stratified subsets of 1/3 of the full dataset size. Note that, since choosing the
subsets based on LSI alone may introduce class imbalances, as classes are not uniformly distributed
with respect to their LSI, we construct stratified subsets by combining data with respect to their
class-specific LSI orderings. For instance, the subset containing samples with the highest LSI contains
the 1/3 of samples of each class carrying the highest LSI. While we show the results on CIFAR-10
here, these results generalize to all other investigated datasets, which are shown in Appendix J.

Following the hypothesis that more informative samples are harder to learn (i.e., classify accurately),
we define sample learnability as the probability that a model correctly assigns the label during training
(equivalently to top-1-accuracy). We observe that the learnability follows the ordering of the subsets
with respect to their LSI (Figure 8 left): models trained on a subset of low LSI samples achieve
substantially higher training accuracy than models trained on subsets with medium or high LSI. Thus,
LSI effectively serves as a means of ordering samples with respect to their learnability for the model.

Out-of-Sample Accuracy While learnability assesses training accuracy, that is, the ability of the
model to fit, it is also (or perhaps more) important to assess how valuable the information gleaned
from training samples is for predicting unseen samples, i.e. out-of-sample (test) accuracy.

Regarding test accuracy (Figure 8 right), the models trained on intermediate LSI data exhibit the best
test accuracy and smallest train/test gap. Samples with low LSI have (near-)perfect train accuracy
but reduced test accuracy, while high LSI samples are not fitted well (low train accuracy) but tend
to generalize better than their training performance. This indicates that intermediate and high LSI
samples form the dataset partitions generally associated with learning generalizable representations
and benign memorization (as defined by Feldman (2020)). In contrast, low LSI samples seem to be
disposable or even harmful to generalization (i.e., the model overfits on sets of low LSI samples).
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Figure 8: Training accuracy (left) and test accuracy (right) of models trained on subsets of CIFAR-10
containing 1/3 of the complete dataset with the highest, intermediate, and lowest LSI values compared
to the dummy baseline of a model predicting the majority class.

4.4 TRANSLATING LSI BETWEEN PROBE AND FULL MODEL

So far, we considered the LSI computed on a probe consisting of a fully connected layer acting on
the features computed offline by a frozen ResNet-18. This allows for the computation of the LSI for
each sample in the dataset in a short amount of time while keeping the respective Hessian tractable.
LSI allows the establishment of an ordering of samples with respect to the information they impart
in the model parameters. As shown previously, this orders the data from the most typical samples
of a respective class (on which the probe model overfits) to the most atypical samples (which the
probe is incapable of fitting well). As LSI is a sample-specific property, we expect an (approximately)
consistent ordering of samples when training a model directly on the underlying data (rather than
on the feature embeddings). To investigate this hypothesis, we repeat the experiment described in
Section 4.3 on CIFAR-10 by training a ResNet-9 on the dataset partitions established by the probe.
As shown in Figure 9, the same pattern emerges as when the probe is used concerning the sample
learnability and generalization capabilities: the low LSI subset is easy to fit but generalizes just
slightly worse than the mid LSI subset, and the high LSI subset is hard to fit and the worst in terms of
test accuracy. However, as the ResNet-9 model has more learnable parameters compared to the probe
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model, it is capable of overfitting on the high LSI data. Interestingly, overfitting on high LSI samples
occurs later in training than overfitting on low/intermediate LSI samples. The sample informativeness
ordering as derived by the probe generalizes to other datasets and other model architectures and is
consistent. Further results are shown in Appendix J. Additionally, this ordering emerges very early
during training and does, in fact, not require the model to be fully converged (Appendix G).
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Figure 9: Training accuracy (left) and test accuracy (right) of a ResNet-9 trained (from scratch) on
subsets of CIFAR-10 containing 1/3 of the complete dataset with the highest, intermediate and lowest
LSI values and compared to the dummy baseline of a model always predicting the majority class.

4.5 ADDITIONAL FINDINGS AND RESULTS

We refer to the Appendix for a comparison of LSI with other methods (Appendix A, Appendix B)
and additional experiments investigating Hessian approximations (Appendix C); the correlation
between LSI from probing vs. full models (Appendix D); effect of humanly mislabeled data on LSI
(Appendix E); effects of dataset size on LSI (Appendix F); the robustness of LSI throughout training
(Appendix G); its relationship with Differential Privacy (DP) (Appendix H); its computation via the
Riemann Laplace approximation (Bergamin et al. (2024), Appendix I), transferring LSI from the
probe to other architectures (Appendix J), as well as for a collection of samples with low and high
LSI for selected datasets (Appendices K to M).

5 DISCUSSION AND CONCLUSION

We introduced Laplace Sample Information, a measure of information flow from individual samples
to the parameters of a neural network, i.e. of the information a training sample contributes to the final
model. We demonstrated the capabilities of LSI as a tool to predict typical/atypical data, with atypical
samples carrying more unique information, and for detecting out-of-distribution and mislabeled
samples. Furthermore, we established LSI as a class-wise informativeness measure, which correlates
with human perception and underscores the utility of LSI for reasoning about dataset difficulty.
Therefore, we expect LSI to be a useful measure of sample-wise informativeness in various areas
of ML research. Compared to recently proposed informativeness measures, LSI does not require
linearization and is much more scalable than Harutyunyan et al. (2021). Moreover, it applies to
arbitrary architectures and task-agnostic (e.g. to self-supervised learning with CLIP) contrary to
Wongso et al. (2023). For a detailed comparison to these techniques, see Appendix A.

Due to the high computational cost of LOO retraining, we employ a probe to compute LSI. Nonethe-
less, the ordering properties defined by LSI on the probe translate effectively to larger models. We
note that using a probe as a proxy remains a design choice favouring efficiency; the LSI formalism
is model-agnostic and can be used with any Hessian approximation. As shown in Appendix C, LSI
can be used with memory-efficient (K-FAC); we thus anticipate that it can transfer to LLM-scale
workflows (Grosse et al., 2023) which we intend to investigate in the future.

In conclusion, LSI combines model- and data-centric approaches to estimate sample informativeness.
We foresee an important role in combining metrics like LSI with characterizations determined through
human reasoning to facilitate model and dataset introspection, for example, in topics like algorithmic
fairness or AI safety.
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A COMPARISON TO OTHER INFORMATIVENESS METRICS

As our work is an approximation of point-wise mutual information, we compare LSI with point-wise
mutual information measures and bounds thereof. Since mutual information is hard to compute
in high-dimensional settings such as deep learning, “slicing” has gained traction as a scalable and
efficient method for computing it, which retains some of the properties of the original MI (Goldfeld &
Greenewald, 2021). We thus compare LSI to point-wise sliced mutual information (PSMI) (Wongso
et al., 2023) and also to smooth unique information (SUI) (Harutyunyan et al., 2021) Figure 10. To
our knowledge, these are the only methods performing point-wise informativeness estimation based
on mutual information, that claim to scale beyond toy datasets. We thus believe that these are the
only salient comparisons to other techniques from current literature.

Our comparison shows that, while SUI and PSMI are nearly uncorrelated, likely due to compounding
approximation error, LSI is strongly correlated with PSMI and weakly with SUI, indicating that –
while both SUI and PSMI measure some aspect of sample informativeness – neither of them seems to
capture the full picture. LSI is positively correlated with PSMI, which is a result of the relationship
between the KL divergence and point-wise mutual information mentioned in Section 3. Interestingly,
the fact that sliced MI is a computational approximation of mutual information and lacks some of the
guarantees inherent to the “true” MI (notably, the absence of the information-processing inequality)
seems to somewhat diminish PSMI’s expressiveness. LSI, on the other hand, seems to suffer less
from the approximation of the Hessian (see Appendix C). Thus, LSI and PSMI measure distinct but
related quantities, and both detect the same underlying structure in the data. In terms of SUI, the
metric relies on a global linearization of the entire network, a drastic intervention that can make
the model fragile (Ortiz-Jimenez et al., 2021). Moreover, SUI is extremely memory-inefficient and
does not scale to larger datasets (the SUI paper limited its evaluation to binary classification datasets
with ca. 1000 samples). LSI is much more flexible regarding the choice of Hessian approximation
and Laplace approximation, does not intervene on the model weights, and does not have the same
memory inefficiency problem. Our comparison is thus based on a 1000 sample three class subset
classification task of CIFAR-10.

Figure 10: Correlation plots between LSI, Smooth Unique Information (SUI) and Point-wise Sliced
Mutual Information (PSMI) on a CIFAR-10 subset. While LSI and PSMI are strongly correlated,
SUI and LSI exhibit a weaker correlation, likely due to the limitations of SUI. SUI and PSMI are
nearly uncorrelated, likely due to compounding approximation errors.
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B COMPARISON OF LSI WITH TRAK

To show the differences between leave-one-out retraining-based data valuation metrics to influence
estimation, we compare LSI with TRAK (Park et al., 2023) and discuss the results. Note that
while both methods perform data attribution, they differ in their fundamentals. LSI measures the
informativeness of individual samples to the weights of the trained neural network. At the same
time, TRAK aims to measure the influence of individual samples on correctly predicting a sample
of interest. Therefore, LSI provides a singular value for each sample in the train set, while TRAK
provides a N ×M tensor of values with N and M being the sample count of the train and test set,
respectively. To compare these two measures we assign the datapoints in the train set the average of
their TRAK values across all test datapoints.

Figure 11: Correlation with confidence interval of 0.95 of LSI with TRAK

Figure 11 shows a weak correlation (Spearman’s Rank correlation of 0.15) between LSI and TRAK
scores assigned to each datapoint in the Imagenette dataset.

To further compare LSI and TRAK, we perform a qualitative analysis of samples assigned the highest
and lowest values of these measures. Figure 12 shows that LSI separates the dataset into samples
of little unique information (less typical) carrying low LSI and samples of large unique information
(visually dominated by people, mislabeled or out of distribution) of high LSI. Opposingly, TRAK
fails at this, with out of distribution images like the car carrying average TRAK scores. Moreover, the
images of low and high TRAK scores do not substantially differ, as both show clear images of radios,
however with white background for high TRAK scores. Therefore, we conclude that while TRAK
may be meaningful in assessing sample-wise cross-influence, it fails as a data attribution measure
specific to a sample.
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Low LSI High LSI

Low TRAK scores High TRAK scores

Figure 12: Exemplary images of the highest and lowest LSI and TRAK for the Radio class in
Imagenette. The images are labeled with corresponding percentiles of them in the measure-ordered
dataset.
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C APPROXIMATION OF THE HESSIAN

Due to computational constraints, we refrain from using the full Hessian of the parameters of the
neural network to compute the LSI and use a diagonal approximation. Figure 13 shows that LSI
computed on the diagonal approximation of the Hessian, LSI computed on the KFAC approximation
of the Hessian and LSI computed on the full Hessian correlate strongly with a Spearman’s R > 0.9.

Figure 13: Correlation between LSI on the full Hessian, on the diagonal approximation and the KFAC
approximation of the Hessian. All approximations correlate strongly with LSI computed on the full
Hessian. LSI is computed using the last-layer probe on CIFAR-10

D PROBE MODEL APPROXIMATION OF LSI

While LSI does not put any constraints on the model it is computed on, training large models until
convergence in a leave-on-out setting is computationally very expensive. Thus, we employ a probe
model, that acts upon the features probed from a pre-trained feature extractor. To indicate the
applicability of this probing approach, we show the correlation of scores computed on 400 samples
of CIFAR-10 for LSI computed on all parameters of a CNN (3 convolutional layers with one fully
connected layer as head), last-layer parameters of the CNN and the probe model. Note, all except the
last require the retraining of the whole model for each data point. Computing LSI on the probe solely
requires the retraining of the probe, which can be done in a small fraction of the time. Table 1 shows
that LSI computed using the probe model is an excellent approximation to LSI computed on a full
CNN with a Spearman’s R > 0.9.

Probe-Model Parameters Last-Layer Parameters
Full CNN Parameters 0.93 0.98
Last-Layer Parameters 0.90 -

Table 1: Spearman’s R between LSI computed on all parameters of a CNN, the last layer parameters
and a probe model.
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E HUMANLY MISLABELED EXAMPLES

To extend our experiment on the effect of mislabeled data on LSI, we conduct further experiments on
CIFAR-10N with the aggregated labels setting, which assigns the label to a datapoint according to
a majority vote across several human labellers (Wei et al., 2021). CIFAR-10N introduces a set of
human labels to the original CIFAR-10 data. With this, it also introduces human mislabeling. Other
than the previously considered setting of label flipping, these mislabels should be closer to the correct
label. Exemplarily, while with label flipping, an image showing a dog on grass and thus initially
labeled as a dog is equally likely to be labeled as an airplane or a deer. With CIFAR-10N, the image
of the dog will be more likely to be mislabeled as a deer than as an airplane.

Figure 14 (left) shows the distribution of LSI across correctly labeled samples with human labeling
error. As with label flipping (Figure 14 (right)), the individual information mislabeled samples
contribute to the weights of the model is higher than for correctly labeled samples as measured with
LSI.

However, this increase in LSI due to mislabeling is smaller than for label flipping. Consequently,
mislabeling due to human misinterpretation results in data-label pairs that provide less unique
information than label flipping. This follows our intuition that, exemplarily, a brown figure (a dog)
on a green landscape labeled as deer is less unique than if it were labeled as an airplane.

Figure 14: LSI distribution on data with corrupted labels (mislabeled) vs. uncorrupted labels with
human mislabeling (left) and label flipping (right)

F LSI INCREASES WITH SMALLER DATASETS

To substantiate the findings of Section 4.2, we compare the distribution of LSI on CIFAR10 and
on a subset of CIFAR10 of 1/5 the original size (Figure 15). As discussed previously, with a
smaller sample count in the individual datasets, the information individual samples contribute to the
parameters increases (in this case, by around one order of magnitude).
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Figure 15: LSI distributions of CIFAR10 and a subset of CIFAR10. The LSI computed on the subset
is about one magnitude larger, as with fewer samples, individual samples are required to be more
informative to the model.
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G APPLICABILITY OF LSI BEFORE MODEL CONVERGENCE

To bound conditional point-wise mutual information, LSI requires the underlying model to be
converged. However, in a leave-one-out retraining setting, this can be computationally expensive.
We therefore investigate the robustness of sample order as imposed by LSI throughout the training.
Figure 16 shows, that after an initial warm-up phase, the sample ordering remains largely consistent.
This indicates, that the early stage models approximate the ordering well.

Figure 16: Correlation of the LSI sample ordering between the last epoch (1000) and during training
(blue curve). After a warm-up period, the ordering becomes and remains consistent.

H LSI UNDER DIFFERENTIAL PRIVACY

LSI quantifies the information flow from an individual sample to the neural network throughout the
training process. DP applied to model training through DP stochastic gradient descent (DP-SGD)
(Abadi et al., 2016) offers a means of limiting the influence exerted by any single sample on the
parameters of the neural network by clipping and applying noise to the per-sample gradients. LSI
lends itself as a natural choice for assessing the impact of individual samples on differentially private
training as well as the effect of DP on the contribution of each sample to the neural network’s training
process, which we investigate here. Note that, as discussed in Section 2, the KL divergence plays
an important role in assessing algorithmic stability, and DP implies a strong stability condition,
reinforcing this link.

Differential Privacy Background To show the strong connection between LSI and DP, we recall
the definition of Rényi differential privacy (RDP) (Mironov, 2017) as:
Definition 3 ((α, ϵ)-RDP). A randomized mechanism f : D → R for R as the co-domain of f
satisfies (α, ϵ)-RDP, if for all adjacent D,D′ ∈ D it holds that

Dα (f (D) || f (D′)) ≤ ϵ.

Above, the adjacency between D and D′ is defined as the two databases differing by a single entry,
which can be through adding, removing, or replacing a single sample. RDP is based on the Rényi
divergence, given as:
Definition 4 (Rényi divergence). For two probability distributions P and Q the Rényi divergence of
order α > 1 is

Dα (P ∥ Q) ≜
1

1− α
logEx∼Q

(
P (x)

Q (x)

)α

.

The sensitivity of a function is an important measure of DP. It refers to the maximal change the
output of a function can experience between adjacent databases and determines the magnitude of the
additive noise.
Definition 5 (Global Sensitivity). Given a function f : D → R for R as the codomain of f and all
adjacent databases as defined previously D,D′ ∈ D the global sensitivity with respect to the p-norm
is:

GS(f) = sup
D,D′

∥f(D)− f(D′)∥p.
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Definition 6 (Local Sensitivity). Given a function f : D → R for R as the codomain of f and a
specific databases D ∈ D and its adjacent databases D′ ∈ D the local sensitivity is with respect to
the p-norm is:

LS(f,D) = sup
D′

∥f(D)− f(D′)∥p.

DP is operationalized in DL through DP-SGD (Abadi et al., 2016). In essence, DP-SGD is different
from SGD as it privatizes the minibatch (called lot in DP) gradients by:

1. Bounding the global sensitivity of SGD by clipping the per-sample gradients gi to a pre-
determined by the clipping norm C before aggregating them across the B samples contained
in the lot to a clipped gradient gclip

gclip =
1

B

B∑
i=0

gi/max

(
1,

∥gi∥2
C

)
(5)

2. Adding zero-centered Gaussian noise with a noise multiplier σ to the minibatch gradient

gpriv = gclip + ξ, ξ ∼ N (0, C2σ2IK) (6)

Relation between LSI and DP With α → 1, Dα (P ∥ Q) = KL (P ∥ Q), which is justified by
continuity. Intuitively, LSI thus effectively measures (1, ϵ)-per instance RDP post hoc, where the
privacy of a single sample (instance) is expressed with respect to a fixed dataset (Wang, 2017; Yu
et al., 2022). Note that the DP guarantee of DP-SGD is diven with respect to the released gradients,
but since the KL (and the Rényi) divergence both satisfy the data processing inequality (equivalently,
DP is closed under post-processing), the effect translates to the model parameters. To thoroughly
investigate the impact of DP on the LSI and thus on the information flow of the individual samples to
the trained neural network, we examine the effects of clipping and noising separately. As the additive
noise in DP-SGD introduces variance in our training setup, we average the results of DP-SGD training
on CIFAR-10 across five different seeds.

Results With an increasing clipping norm, the LSI and, thus, the contribution of individual samples
to the final parameters of the neural network decreases (Figure 17). Consequently, analyzing the LSI
offers empirical support for the mathematical description that clipping gradients in DP-SGD restrict
the global sensitivity and, thus, the per-sample gradients, thereby bounding the maximal information
a sample can contribute to the final parameters of the model.

Notably, we show that reducing the clipping threshold results in the LSI becoming more similar across
samples, with the LSI across all samples becoming less variant (Figure 17). Thus, with a decreased
clipping threshold, the samples in the training data more evenly contribute their information to the
neural network parameters. This aligns with previous findings showing the importance of dataset
variability on generalization (Therrien & Doyle, 2018) and the beneficial role of DP for generalization
(Nissim & Stemmer, 2015).

Our experiments empirically show that adding zero-centered Gaussian noise scaled with respect to
the maximum gradient norm of the gradients has no observable influence on the distribution of LSI
in the dataset (Figure 17). While the clipping of individual gradients only influences those samples
whose gradients are larger than the clipping threshold, thereby changing the amount of information
individual samples contribute to the training, the noise gets added to all samples. The noise increases
the variance in the per-sample gradients. However, their average contribution to the neural network
parameters remains unchanged. This aligns with the findings of previous research, showing adding
noise solely influences the privacy risks of training the model, but not the convergence or calibration,
while the gradient clipping solely influences the convergence and calibration of the neural network
(Bu et al., 2021).
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Figure 17: The left plot shows the distribution of the LSI of CIFAR-10 across varying per-sample
gradient clipping norms with no additive noise. The right shows the distribution of the LSI with
clipping norm 0.1 and varying additive noise to achieve a (ϵ, 10−5)-DP. With diminishing clipping
norm, LSI decreases in magnitude and variance, while with increasing ϵ, the distribution of LSI
remains unchanged in magnitude and variance.
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I GENERALIZATION TO RIEMANN LAPLACE APPROXIMATION

Recently, a novel approximation of the posterior model distribution has been proposed in Bergamin
et al. (2024), which allows for sampling models while considering the true shape of the underlying
loss landscape. While computing the LSI on this Riemannian Laplace approximation (RLA) is
possible, it requires fitting a distribution via Kernel Density Estimation to the samples produced by
the RLA. These distributions are then used to compute the LSI. We show, using the same sampling
and fitting approach on the standard Laplace approximation, that while this process produces the
correct LSI values for “intermediately” spaced parameter distributions (Figure 18), it breaks down
when the distributions are very similar or very distant (Figure 19). Very similar distributions (which
is the setting in leave-one-out retraining) require many samples to be drawn to capture the slight
differences in distributions. Similarly, very distant distributions require inordinately many samples
to capture the similarities in distributions. RLA additionally requires solving a differential equation
for each sample of model parameters. Generating sufficiently many samples to adequately describe
the distributions is thus computationally infeasible, especially as the sampling would have to be
performed each retraining cycle. Due to these reasons, we use the “traditional” Laplace approximation
in our work.

1.80

1.85

1.90

1.95

2.00

2.05

K
D

E
-L

ap
la

ce
 L

SI

10 KDE samples

0.10

0.15

0.20

0.25

K
D

E
-L

ap
la

ce
 L

SI

50 KDE samples

0.20

0.25

0.30

0.35

0.40

0.45

K
D

E
-L

ap
la

ce
 L

SI

100 KDE samples

0.05

0.10

0.15

0.20

K
D

E
-L

ap
la

ce
 L

SI

500 KDE samples

0.000 0.025 0.050
LSI

1.8

1.9

2.0

2.1

K
D

E
-R

LA
 L

SI

0.000 0.025 0.050
LSI

0.08

0.10

0.12

0.14

K
D

E
-R

LA
 L

SI

0.000 0.025 0.050
LSI

0.20

0.25

0.30

K
D

E
-R

LA
 L

SI

0.000 0.025 0.050
LSI

0.030

0.035

0.040

0.045

0.050

0.055
K

D
E

-R
LA

 L
SI

Figure 18: Correlation between LSI computed on the kernel density estimate drawn from Riemann
Laplace approximation, the kernel density estimate drawn from Laplace approximation and LSI
computed on the gaussian distributions estimated by the Laplace approximation without kernel
density estimation. The figure shows LSI computed on distributions with intermediate LOO
distribution shift.
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Figure 19: Correlation between LSI computed on the kernel density estimate drawn from Riemann
Laplace approximation, the kernel density estimate drawn from Laplace approximation and LSI
computed on the gaussian distributions estimated by the Laplace approximation without kernel
density estimation. The figure shows LSI computed on distributions with small LOO distribution
shift.

J ADDITIONAL RESULTS ON TRANSFERRING LSI FROM LINEAR PROBE TO
FULL MODEL

In this section, we provide additional results on transferring the LSI ordering computed on the probe
(called proxy in the figures) to other architectures. We are considering the following models: the
probe, an MLP, a three-layer CNN, a ResNet-9 and a ResNet-18 for CIFAR10 and CIFAR100, and a
ResNet-18 for the ImageNet subsets and the pneumonia dataset.
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Figure 20: Accuracy of LSI based subsets of CIFAR10 across an MLP (flattened input), CNN,
ResNet-9, ResNet-18
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Figure 21: Accuracy of LSI based subsets of CIFAR100 across an MLP (flattened input), CNN,
ResNet-9, ResNet-18
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Figure 22: Accuracy of LSI based subsets of Imagenette across ResNet-18
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Figure 23: Accuracy of LSI based subsets of Imagewoof across ResNet-18
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Figure 24: Accuracy of LSI based subsets of the Pneumonia dataset across ResNet-18

K EXEMPLARY IMAGES OF IMAGENET WITH LOW AND HIGH LSI

We show the applicability of LSI on ImageNet (Deng et al., 2009) using two popular subsets, Ima-
genette and Imagewoof (Howard, 2019). While Imagenette contains a subset of easily distinguishable
classes, Imagewoof solely contains classes of dogs and is considered more difficult. Computing the
LSI allows the detection of mislabeled examples (e.g. the image of the car in the class radio). The
following figures show samples of high and low LSI, with mislabeled examples indicated by a red dot
(to the best of our knowledge) and with a yellow dot if an instance of another class is present in the
image.

Low LSI High LSILow LSI High LSI

Figure 25: Exemplary images of the highest and lowest LSI of the Australian terrier class. Note the
presence of images of dogs with different breeds and images of non-dogs (e.g. the mushroom) in the
high LSI parition.
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Low LSI High LSILow LSI High LSI

Figure 26: Exemplary images of the highest and lowest LSI of the Border terrier class. Note again
the presence of different breeds and atypical images (e.g. the shirt with a small dog logo) in the high
LSI parition.

Low LSI High LSILow LSI High LSI

Figure 27: Exemplary images of the highest and lowest LSI of the church class. Note that low
LSI images mostly show outside views of churches, while high LSI images show churches from
uncommon perspectives and indoor views, which could be confused with other indoor spaces).
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Figure 28: Exemplary images of the highest and lowest LSI of the radio class. Note that the the high
LSI partition includes several uncommon-looking radios (e.g. the children’s radio in the bottom row
or the antique radio in the third row, and at least one image of a different class (the red car).

L EXEMPLARY IMAGES OF CIFAR-10 WITH LOW AND HIGH LSI

Low LSI High LSILow LSI High LSI

Figure 29: Exemplary images of the highest and lowest LSI of the airplane class. Note the differences
in perspective and background color.
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Figure 30: Exemplary images of the highest and lowest LSI of the automobile class. Note the
differences in background and subject size in the frame.

Low LSI High LSILow LSI High LSI

Figure 31: Exemplary images of the highest and lowest LSI of the bird class. Note the overrepresen-
tation of close-crop (“portrait”) images of bird heads in the high LSI partition compared to the mostly
whole-bird images in the low LSI partition.

Low LSI High LSILow LSI High LSI

Figure 32: Exemplary images of the highest and lowest LSI of the cat class. Note the heterogeneity
of the high LSI partition, including atypical backgrounds and different cropping.
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Figure 33: Exemplary images of the highest and lowest LSI of the deer class. Note the heterogeneity
of the high LSI partition, including atypical backgrounds and different cropping.

Low LSI High LSILow LSI High LSI

Figure 34: Exemplary images of the highest and lowest LSI of the dog class. Note the presence of at
least one non-dog (the fox in the top row) and the inconsistent framing and subject size in the high
LSI paritition compared to the high homogeneity of the low LSI paritition.

Low LSI High LSILow LSI High LSI

Figure 35: Exemplary images of the highest and lowest LSI of the frog class. Note the heterogeneity
of the high LSI partition, including atypical backgrounds and different cropping, the presence of an
albino frog and at least two images where the subject is camouflaged (bottom row).
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Figure 36: Exemplary images of the highest and lowest LSI of the horse class. Note the heterogeneity
of the high LSI partition, including different framing, cropping and backgrounds, as well as white
horses, whereas the low LSI partition contains mostly brown horses.

Low LSI High LSILow LSI High LSI

Figure 37: Exemplary images of the highest and lowest LSI of the ship class. Note the heterogeneity
of the high LSI partition and the different backgrounds compared to the standard backgrounds in the
low LSI partition.
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Figure 38: Exemplary images of the highest and lowest LSI of the truck class. Note the atypical
perspectives in the high LSI partition, as well as the inclusion of at least one ambiguous image (the
trailer in the third row).

M EXEMPLARY IMAGES OF MEDICAL IMAGING DATA (PNEUMONIA) WITH
LOW AND HIGH LSI

Examples carrying low LSI are similar to each other and are captured with a very symmetrical view.
Samples carrying high LSI are angled, have a different exposure, or contain samples that are not
supposed to be in the dataset (images of adult females in a dataset of child pneumonia x-ray images).

Low LSI High LSILow LSI High LSI

Figure 39: Exemplary images of the highest and lowest LSI of the bacterial class.

35



Published as a conference paper at ICLR 2025

Low LSI High LSILow LSI High LSI

Figure 40: Exemplary images of the highest and lowest LSI of the normal class.

Low LSI High LSILow LSI High LSI

Figure 41: Exemplary images of the highest and lowest LSI of the viral class.

N TRAINING PARAMETERS FOR THE EXPERIMENTS

Table 2: Training parameters for each of the experiments

Parameter LSI-Distribution
Sample Difficulty/

Generalization
LSI under

Differential Privacy

Learning rate 0.04 0.04 0.04
Weight decay (L2) 0.01 0.01 0.01
Nesterov Momentum 0.9 0.9 0.9
Dataset Full 1/3 Subsets 1/5 Subsets
Epochs/ Steps 1000 1000 700
Averaged across n Seeds 3 3 5

O HARDWARE SETUP AND COMPUTATIONAL RESSOURCES

All experiments described in this paper and its appendix are performed on an NVidia H100 GPU
(80GB VRAM) with 2 AMD EPYC 9354 32-Core CPUs. While we employ an 80GB GPU, the
required VRAM is far smaller, such that LSI can easily be computed on GPUs of solely 24GB of
VRAM. Table 3 shows the time it took to compute the LSI for each sample in each dataset used in
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this publication. Note, that the retraining requires the repeated transfer of data from the CPU Memory
to the GPU Memory. Thus, computing the LSI on the GPU rather than the CPU provides solely a
speedup of around 2, which potentially provides room for improvement.

Table 3: Training parameters for each of the experiments
CIFAR-10 CIFAR-100 Pneumonia Imagenette Imagewoof

Compute (h) ~18 ~18 ~0.5 ~1.7 ~1.7

The computation of LSI under differential privacy was performed on subsets of 10000 samples
on CIFAR-10 and required ~12h of compute. All other experiments required <1h of compute.
Preliminary experiments required a total compute of about 5× the computational time that yielded
the results that are shown in this manuscript.
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