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Abstract

Post-training quantization (PTQ) has emerged as a promising technique for mit-1

igating memory consumption and computational costs in large language models2

(LLMs). However, a systematic examination of various quantization schemes,3

model families, and quantization bit precision has been absent from the literature.4

In this paper, we conduct a comprehensive analysis of these factors by investigating5

the effects of PTQ on weight-only, activation-only, and weight-and-activation quan-6

tization using diverse methods such as round-to-nearest (RTN), GPTQ, ZeroQuant,7

and their variants. We apply these methods to two distinct model families with8

parameters ranging from 125M to 176B. Our contributions include: (1) a sensitivity9

analysis revealing that activation quantization is generally more susceptible to10

weight quantization, with smaller models often outperforming larger models in11

terms of activation quantization; (2) an evaluation and comparison of existing PTQ12

methods to optimize model size reduction while minimizing the impact on accuracy,13

revealing that none of the current methods can achieve the original model quality14

for quantization with either INT4-weight or INT4-weight-and-INT8-activation;15

(3) based on these insights, we propose an optimized method called Low-Rank16

Compensation (LoRC), which employs low-rank matrices to enhance model quality17

recovery with a minimal increase in model size.18

1 Introduction19

Large language models (LLMs) like Codex [15] and ChatGPT [24] have demonstrated breakthrough20

performance across various benchmarks, such as natural language understanding and generation, and21

are now integrated into everyday applications. However, efficiently serving LLMs has become a22

pressing concern due to their significant memory consumption and computational demands. Unlike23

classification or diffusion models, LLMs present unique challenges, as they involve two distinct24

phases: prompt and generation. The prompt phase is primarily compute-bound, while the generation25

phase, with low batch size and KV cache, is mainly memory-bound [26].26

As the progression of hardware bandwidth lags behind that of computational demand [14], the resource27

demands of extra-large models such as MT-NLG-530B [30]—which necessitates the deployment of28

multiple nodes for operation—escalate, adding to the complexities of cross-node communication.29

This has emphasized the urgency to curtail both the size and computational expense of Large Language30

Models (LLMs). An increasingly effective solution to these issues is post-training quantization (PTQ).31

This method aids in the reduction of training prerequisites while simultaneously lowering the bit32

precision of weights and activations to either INT4 or INT8.33

While the effectiveness of post-training quantization (PTQ) has been underscored in a number of34

recent studies [36, 12, 35, 7], a comprehensive, systematic investigation into several key dimensions35

of this technique remains to be undertaken. Specifically, the extant literature falls short in providing36
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Figure 1: The model size and quality trade-off of different quantization methods on models from
OPT and BLOOM families. Here PTQ (with fine-grained quantization) represents the method
from [36, 12], RTN means the naive round-to-nearest baseline (with fine-grained quantization as
well), and FP16/INT8 is used as the no-accuracy-loss baseline. LoRC is our proposed method that
works seamless with PTQ. Note that we drop all diverged points for better visualization. For all
detailed numbers, please see Appendix E.

thorough coverage of the functionality of various PTQ methods or the sensitivity of disparate models.37

Moreover, despite current quantization methods demonstrating promising results in the reduction of38

model sizes, the question persists as to whether these methods are achieving their optimal potential in39

minimizing Large Language Models (LLMs) sizes.40

With these observations in mind, our study sets forth to address two salient questions: (1) When41

subjected to quantization, do LLMs of varying sizes and pretraining data exhibit similar behavior? (2)42

Are existing quantization methods truly leveraging their full potential in reducing the sizes of LLMs?43

Contribution. To elucidate these queries, we undertake an exhaustive examination of the impact44

of PTQ on weight-only, activation-only, and combined weight-and-activation quantization. This45

investigation incorporates a range of PTQ methods, including round-to-nearest (RTN), GPTQ [12],46

ZeroQuant [36], and their respective variants. To broaden the scope of our analysis, we focus on47

two distinct model families, OPT [40] and BLOOM [28], spanning model sizes from 125M to a48

massive 176B. Our code will be made available for reproduction. In summary, we make the following49

contributions:50

(1) We provide a thorough sensitivity analysis to demonstrate that a) Activation quantization is51

generally more sensitive to weight quantization; Smaller models usually have better activation52

quantization performance than the relative larger model. b) Different model families show different53

INT8 activation quantization behaviors; Particularly for large models, BLOOM-176B has small54

accuracy drops (about 1 perplexity or PPL) but OPT-30B and -66B experience worse performance.55

(2) We carry out a detailed evaluation and comparison of current PTQ methods, utilizing optimal56

configurations to maximize model size reduction while minimizing accuracy impact. We found that57

the current existing method can barely achieve less than 0.1 PPL points degradation for quantization58

with either INT4-weight or INT4-weight-and-INT8-activation (W4A8). To recover the 0.1 PPL, we59

strive to push the boundaries of employing fine-grained quantization (FGQ) techniques. We observe60

FGQ is able to recovered points degradation of <0.1 PPL for large models (>13B) for INT4 weight61

quantization, but there are still non-negligible model quality drops.62

(3) Based on the above understanding, we further optimize existing methods and introduce a technique63

called Low Rank Compensation (LoRC), which employs low-rank matrix factorization on the64

quantization error matrix. Complementary to FGQ, LoRC plays a crucial role in enhancing the full65

model quality recovery, while there is little increase of the model size.66

In Figure 1, we provide model size and quality trade-offs for both OPT and BLOOM families.67

As can be seen, using LoRC on top of PTQ methods from [36, 12] and fine-grained quantization,68
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we set a new quantization Pareto frontier for LLMs. Meanwhile, we recommend the following69

setting for quantizing LLMs with LoRC (Note that activation quantization should be only applied if70

necessary): (1) For larger models (>10B), fine-grained (block size 64–256) 4-bit weight quantization71

plus 8-bit activation quantization (block size 64–256) with PTQ can be used for real deployment; (2)72

For middle-size models (<10B and >1B), per-row INT8 quantization plus fine-grained (block size73

64–256) INT8 activation quantization can be used with PTQ from [12, 36]; (3) For smaller models74

(<1B), per-row W8A8 (INT8 weight and INT8 activation) RTN is enough based on [36].75

2 Related Work76

Different quantization methods [29, 38, 9, 41, 1, 8, 31, 19] for transformer-based models [32] have77

been explored for a while. However, most of those works need quantization-aware finetuning or78

even expensive quantization-aware knowledge distillation [17]. Due to the cost of training/finetuning79

LLMs [25, 18, 31, 34, 33], it is a challenge for practitioners/researchers to do finetuning/distillation80

on those LLMs, particularly for models like GPT-3-175B [4] and BLOOM-176B [28].81

Post-training quantization (PTQ) [37, 3] is an alternative way to quantize the model with no/minimal82

finetuning requirement. Along this line, several recent works focus on LLMs (beyond the million-83

parameter scale). [36] proposes vector-based INT8 quantization with layer-by-layer knowledge84

distillation to overcome the training cost and quantization error introduced by LLMs. [6] uses similar85

vector-based INT8 quantization weight plus mixed-precision (INT8/FP16) quantization for activation86

to overcome the sensitivity of activation quantization. However, the inference speed of [6] is generally87

even slower than FP16 baseline [2] due to the difficulty of implementing mixed-precision calculation88

within a single tensor. More recently, [12] extends OBQ [10, 16, 21] on LLMs for INT4 weight-only89

quantization and shows great efficiency on quantization and latency, and [35] shows the outliers90

from activations can be smoothed out by migrating the quantization difficulty from activations to its91

associated weights. However, [35] can only work for W8A8 quantization as lower weight precision92

(INT4) itself already leads to significant accuracy degradation, and the accuracy drop is larger than93

0.1 PPL points, which as discussed in the later section is sub-optimal. [7] shows the scaling law of94

weight-only quantization with the simplest round-to-nearest baseline, but it does not consider the95

weight-and-activation quantization and/or the above PTQ optimization methods. As can be seen96

from Figure 1, by using PTQ optimization methods, the model quality can be significantly improved.97

Please also see Appendix E for more detailed numbers.98

Different than existing works, our paper extensively tests the effect of (1) different quantization99

schemes, e.g., symmetric and asymmetric quantization, (2) different PTQ methods, e.g., [36, 12],100

(3) different model families, e.g., [28, 40], (4) different quantization coverage, e.g., weight-only101

and weight-and-activation quantization, and (5) other discussions, e.g., the effect of quantization102

granularity. As such, we provide a much more comprehensive understanding of post-training103

quantization for large language models compared to the previous works.104

3 Would different model families behave similarly on quantization?105

There are mainly two categories of PTQ for LLMs, i.e., weight-only quantization [12] and weight-106

and-activation quantization [6, 36, 35]. In the latter, it is uniformly observed across all studies that107

activation quantization demonstrates greater sensitivity than weight quantization. However, prior108

research tends to concentrate on a single (family) model to emphasize the necessity of their proposed109

quantization technique. A comprehensive and systematic evaluation of this PTQ methodology,110

particularly the sensitivity of weight/activation quantization for varying model sizes and distinct111

model families, has yet to be undertaken. Hence, we conduct an examination on both the OPT [40]112

and BLOOM [28] families to elucidate the quantization sensitivity of weight and activation.113

Table 1: Classification of quantization sensi-
tivity (or quantization loss). The sensitivity
increases from Class-1 to Class-3.

Class Class-1 Class-2 Class-3

PPL Degradation ≤0.1 >0.1 & ≤0.5 >0.5

Sensitivity setting. We use the zero-shot validation114

perplexity (PPL) differential on three datasets, namely,115

Wikitext-2 [23], PTB [22], and C4 [27], before and116

after the quantization of these LLMs to illustrate their117

sensitivity, as PPL is significantly correlated to zero-118

shot/few-shot accuracy measurement [7]. Specifically,119

a higher PPL drop indicates enhanced quantization sen-120
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sitivity. For simplicity, we also categorize quantization sensitivity (or quantization loss) into three121

different classes as depicted in Table 1. Notably, the threshold is chosen because when the model122

size approximately doubles (e.g., 13B vs. 30B, and 30B vs. 66B), the PPL improvement is about 0.5123

(see Table 2). The sensitivity (or loss) incrementally increases as the class number ascends. From124

a practical standpoint, we favor lower quantization sensitivity (accuracy loss), making Class-1 the125

optimal-loss post-training quantization.126

We employ both symmetric and asymmetric quantization to gauge the quantization sensitivity and127

highlight the advantage of asymmetric quantization. Particularly, we implement per-row quantiza-128

tion [12] for weight quantization and per-token quantization for activation [36].129

Robustness of Weight-only Quantization for Large Models. The results of weight-only quanti-130

zation in OPT and BLOOM models are summarized in Table 2. INT8 weight-only quantization,131

either symmetric or asymmetric, results in negligible accuracy loss (less than 0.05, i.e., Class-1).132

Consequently, for tasks oriented towards generation, FP16 weight can simply be replaced with INT8133

weight to reduce memory usage. For INT4 quantization, the asymmetric method outperforms the134

symmetric approach in accuracy, attributable to its superior utilization of the quantization range.135

Interestingly, larger models exhibit better tolerance to low-precision quantization (i.e., INT4) than136

smaller models, with a few exceptions such as OPT-66B.1 Particularly, BLOOM-176B shows PPL137

degradation (around 0.3 points) in Class-2, which could explain why the large GLM-130B [39] can138

operate with INT4 weight-only quantization out of the box with acceptable accuracy impact.139

Table 2: Average PPL of OPT and BLOOM (BLM). See Table E.1 for all results.
Precision OPT-6.7b OPT-13b OPT-30b OPT-66b BLM-1.7b BLM-3b BLM-7.1b BLM-176b

W16-A16 11.90 11.22 10.70 10.33 20.43 17.58 14.96 10.90

W8sym-A16 11.90 11.22 10.70 10.33 20.43 17.59 14.97 10.90
W8asym-A16 11.90 11.22 10.70 10.33 20.45 17.59 14.97 10.90

W4sym-A16 14.36 12.73 11.77 97.05 23.18 19.36 16.27 11.28
W4asym-A16 13.44 12.09 11.52 31.52 22.47 19.01 15.90 11.20

W16-A8sym 26.04 3171.49 2048.21 2638.09 20.68 17.73 15.28 12.10
W16-A8asym 12.62 15.36 23.57 561.35 20.52 17.65 15.14 11.62

Challenge Encountered in Activation Quantization for Large Models. Activation quantization140

has consistently proven more difficult than weight quantization [36, 6], as illustrated in Table 2. When141

compared to weight-only quantization, activation-only quantization indicates that asymmetric quanti-142

zation can significantly improved performance over symmetric quantization. Moreover, contrary to143

weight-only quantization, smaller models typically exhibit better tolerance to activation quantization,144

as their hidden dimension is smaller and the activation dynamic range is also narrower than larger145

models [36]. It should be noted that for models larger than 10B, all fall into Class-3, indicating a146

degradation of more than 0.5 PPL points.147

The last two rows of Table 2 show that different model families exhibit significantly different148

behaviors. BLOOM does not exhibit divergence issues even up to a model size of 176B, whereas OPT149

displays very poor performance from a model size of 6.7B (larger models with INT8 activation have150

even worse PPL). This could again be attributed to the Layer Norm issue within the OPT-family1.151

Findings 1 on Sensitivity Analysis. (1) INT8 weight-only quantization can serve as a stan-
dard method for reducing memory costs in LLMs, with negligible degradation in accuracy.
(2) INT4 weight-only quantization for small models results in substantial accuracy degra-
dation (Class-3), but this effect lessens as the model size increases (Class-2). (3) Contrary
to (2), INT8 activation results in minimal accuracy drops for small models (Class-1) but
larger models exhibit greater drops (Class-3). (4) With INT8 activation, BLOOM shows no
divergence issues up to a model size of 176B, whereas OPT performs poorly from ≥ 6.7B
model sizes.

152

1[12] discovered that OPT-66B has a high proportion of dead neurons in the early layers, which might
influence the compression capability. We also identify another potential reason: the Layer Norm of the OPT-
family is not well trained (except OPT-350M), with the weight and the bias being all 1’s and 0’s, respectively.
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4 Are existing quantization methods optimally harnessing the potential to153

minimize LLMs sizes?154

Numerous lightweight optimization-based methods have been proposed, which update the model155

weights during quantization. These methods such as [36, 12, 35], unlike quantization-aware training,156

only require a small portion of the training data and a limited training time. Particularly, GPTQ [12]157

and ZeroQuant [36], have proven to be effective and efficient in terms of GPU resources, time cost,158

and data usage for INT4 weight quantization.2 In this work, we focus on the variants of GPTQ and159

ZeroQuant as well as the most straightforward baseline, round-to-nearest neighborhood (RTN).160

RTN directly applies PTQ on the trained data and follows the procedure detailed in Section A to161

perform the quantization. Specifically, for symmetric quantization, we set S = max(abs(x)) and162

Z = 0; for asymmetric quantization, we set S = max(x)−min(x) and Z = min(x).163

GPTQ extends the OBQ [10]. It tries to optimize the following non-linear least square problem,164

minŴ ∥Wx−Ŵx∥22 where W is the weight, x is the activation, and Ŵ is a quantized weight. GPTQ165

employs second-order methods to obtain a closed-form solution. In addition, the quantization for each166

weight matrix is performed column-/row-wisely and the quantization errors from previous columns167

will be passed to those columns not yet quantized. See[10, 12] for more details.168

ZQ-Global is the original method proposed in [36], where authors treat each layer as a small neural169

network (a.k.a., subnetwork) and use the FP16 subnetwork as the teacher model to distill the quantized170

one with a few hundred iterations, i.e., minθ̂ |fθ(x) − fθ̂(x)|2
2, where θ is a set of weights, θ̂ is171

the quantized version, fθ is the subnetwork with parameters θ, and x is the input. Thus, it can172

significantly reduce the GPU resource requirement and time cost.173

ZQ-Local is an extension mode of ZQ-Global for further GPU requirement reduction and training174

cost reduction. Particularly, instead of using each transformer layer as the subnetwork, we treat each175

linear layer as the subnetwork. This method can be viewed as an iterative first-order optimization176

method (e.g., SGD) to solve minŴ ∥Wx− Ŵx∥22.177

Experimental Setup. We compare the four methods mentioned above on weight-only and weight-178

and-activation quantization. As weight quantization is always static (i.e., it does not change during179

inference), there is virtually no system performance difference between symmetric and asymmetric180

quantization.3 We use asymmetric quantization for better accuracy, and the conclusions would hold181

similarly for symmetric quantization. For parameters used for GPTQ, ZQ-Local, and ZQ-Global,182

please refer to Appendix B. An interesting finding for ZeroQuant is that the hyperparameters (e.g.,183

learning rate and its scheduler) provided in the original work [36] are sub-optimal. In this work,184

we find the best configurations for ZQ-Local and ZQ-Global and denote them as ZQ-Local∗ and185

ZQ-Global∗, respectively, with the best tuned results. To ensure consistent and comparable results,186

we set a fixed random seed for our experiments. In the context of post-training quantization, varying187

the random seed has minimal impact on the final results, as indicated in more detail in Table B.1.188

Evaluation of Weight-only Quantization. The results from weight-only quantization using OPT and189

Bloom are presented in Table 3. The findings indicate that the larger models tend to be less sensitive190

to INT4 weight-only quantization. This observation holds true across all methods (RTN, GPTQ,191

ZQ-Local∗, and ZQ-Global∗) with the exception of OPT-66B, which shows greater degradation than192

OPT-30B. It is noteworthy that light-weight optimization-based methods significantly outperform the193

RTN baseline in terms of accuracy. For instance, these methods substantially reduce the degradation194

in perplexity of OPT-30B/66B compared to baseline. Most quantized models with parameters greater195

than 6.7B fall under Class II, indicating their potential for real-world applications. For instance, the196

quality of INT4 OPT-30B (66B) is superior to that of INT8 OPT-13B (30B).197

Among the optimization-based methods, ZQ-Global∗ generally performs better on smaller models198

(those with fewer than 1B parameters), while GPTQ excels on larger models. ZQ-Local∗ does not199

outperform GPTQ or ZQ-Global∗-— a reasonable outcome given that GPTQ employs a closed-form200

solution to solve the non-linear quadratic problem and ZQ-Global∗ optimizes a larger subnetwork.201

The inferior performance of ZQ-Global∗ compared to GPTQ for larger models is unexpected since202

ZQ-Global∗ optimizes an entire transformer layer while GPTQ only optimizes a single linear layer.203

2We tested the method proposed by [35] but did not find it better than others for INT4 weight quantization.
3The bias term (a.k.a., the zero point) can be simply fused into the previous activation quantization kernel [36].
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Table 3: The evaluation results of different PTQ methods on OPT and BLOOM (BLM) with
asymmmetric quantization on weight or (and) activation. See more details in Table E.3 and Table E.6.

Precision Method OPT-6.7b OPT-13b OPT-30b OPT-66b BLM-1.7b BLM-3b BLM-7.1b BLM-176b

W16A16 11.90 11.22 10.70 10.33 20.43 17.58 14.96 10.90

W4A16

RTN 13.44 12.09 11.52 31.52 22.47 19.01 15.90 11.20
GPTQ 12.28 11.42 10.78 10.52 21.58 18.33 15.50 11.02

ZQ-Local∗ 12.46 11.64 11.05 10.79 21.70 18.50 15.55 11.11
ZQ-Global∗ 12.38 11.62 11.04 10.68 21.38 18.33 15.52 11.05

W4A8

RTN 14.80 26.36 86.26 815.00 22.75 19.17 16.19 12.22
GPTQ 13.88 17.28 20.71 648.69 21.71 18.44 15.75 11.86

ZQ-Local∗ 13.24 14.23 18.53 16.32 21.86 18.66 15.75 11.19
ZQ-Global∗ 13.17 13.07 14.65 37.82 21.43 18.39 15.58 11.49

A plausible explanation is that larger models are more sensitive to weight updates, necessitating more204

advanced fine-tuning methods.205

Evaluation of Weight and Activation Quantization. The evaluation results for existing methods206

using W4A8 quantization are presented in Table 3. The three light-weight optimization-based207

methods outperform RTN significantly, underscoring their efficacy. However, all of the results fall208

into either Class-2 or Class-3. This suggests that for certain applications, it might be more beneficial209

to use smaller models with fewer parameters rather than larger, quantized models.210

Among quantization-based methods, ZQ-Global∗ and ZQ-Local∗ generally outperform GPTQ, which211

is anticipated given that GPTQ was originally designed for weight-only quantization. ZQ-Global∗212

performs better than ZQ-Local∗ in most cases except for the two largest models, OPT-66B and213

Bloom-176B, despite having larger trainable parameters in one step. This again signifies the need for214

a more suitable and advanced optimization method for large language models (LLMs).215

Finding 2 on Comparisons. (1) GPTQ typically performs better for weight-only quantization,
while ZeroQuant (including both ZQ-Global∗ and ZQ-Local∗) yields superior results for
weight and activation quantization. (2) The tested optimization-based methods cannot achieve
Class-1 quantization error for either INT4 weight-only or W4A8 quantization with the
exception of GPTQ on OPT-30B with weight-only quantization.

216

4.1 Fine-grained Quantization and Its Evaluation217

With PTQ and row-wise quantization, achieving Class-1 quantization error is challenging for both218

weight-only and weight-and-activation quantization. Generally, utilizing a smaller model with INT8219

weight is more advantageous than employing a model that is twice as large with INT4 weight.220

One potential solution to this issue is the implementation of finer-grained quantization schemes [5],221

where every k elements possess their own scaling factor and/or zero point. This approach can222

significantly reduce quantization error. In the extreme case, where every single element has its own223

scaling factor, the original FP16 number can be precisely recovered. Importantly, block-k quantization224

can be implemented on modern GPUs, one of the most prevalent deep learning architectures, since225

the compute unit (streaming multiprocessor) of GPUs processes tiles of data (e.g., 128 by 128 tiling226

size) for matrix computation.227

Although fine-grained quantization can substantially narrow the gap between the quantized tensor228

and its floating-point counterpart, the application of RTN still results in a non-trivial accuracy gap.229

Consequently, we build upon fine-grained quantization by employing existing optimization-based230

methods to further enhance accuracy. Specifically, we utilize GPTQ and ZQ-Global for all models231

and settings and apply ZQ-Local to OPT-66B and Bloom-176B. For the hyperparameters used in232

ZQ-Global and ZQ-Local, we select the top three identified in Section 4 for all models, except for233

Bloom-176B, for which we only use the top-performing hyperparameter to reduce training costs.234

4-bit Weight Quantization. We hereby present the W4A16 results for OPT and BLOOM, as235

delineated in Table 4, corresponding to an array of quantization block sizes. The performance236

sees a significant improvement with smaller block sizes compared to per-row quantization. The237

point of diminishing returns, however, varies for different model sizes. For example, smaller mod-238

els (such as OPT-6.7B and BLOOM-1.7b) continue to see substantial gains until the block size239

reduces to 32. In contrast, for larger models (those exceeding 10B, with OPT-66B as the excep-240

6



Table 4: Results of W4asym-A16 quantization with various block-size out of the best result from
optimization-based methods on OPT and BLOOM (BLM). See Table E.15 and Table E.16 for full
results including RTN. N/A means that the block size is not divisible by the hidden size.

Block-size OPT-6.7b OPT-13b OPT-30b OPT-66b BLM-1.7b BLM-3b BLM-7.1b BLM-176b

W16A16 11.90 11.22 10.70 10.33 20.43 17.58 14.96 10.90
Per-row 12.28 11.42 10.78 10.52 21.38 18.33 15.50 11.02

1024 12.16 11.36 10.75 10.52 31.03 N/A 15.24 10.96
512 12.08 11.32 10.73 10.52 20.93 17.99 15.20 10.95
256 12.05 11.28 10.74 10.50 20.95 17.97 15.18 10.95
128 12.10 11.28 10.74 10.44 20.92 17.90 15.17 10.94
32 12.03 11.28 10.72 10.41 20.82 17.88 15.16 10.95

Table 5: OPT W4asym-A8 with various block-size out of the best result from GPTQ, ZQ-Local, and
ZQ-Global on OPT and BLOOM (BLM). See Table E.20 for full results including RTN.

Precision block-size (W|A) OPT-6.7b OPT-13b OPT-30b OPT-66b BLM-1.7b BLM-3b BLM-7.1b BLM-176b

W4A16 128 | NA 12.10 11.28 10.74 10.44 20.92 17.90 15.17 10.94

W4A8
Case-1: per-row | per-row 13.17 13.07 14.65 16.32 21.43 18.39 15.58 11.19
Case-2: per-row | 128 12.29 11.45 10.80 10.61 21.59 18.31 15.52 11.03
Case-3: 128 | 128 12.04 11.31 10.75 10.45 21.27 17.86 15.19 10.96

tion), the benefits derived from smaller block sizes wane rapidly around block-256/512. Most241

crucially, for models equal to or larger than 13B, a smaller quantization block size results in quanti-242

zation error being classified under Class-1, indicating virtually negligible degradation in accuracy.243

Table 6: BLOOM-176B with different quan-
tization block sizes on activation. Here
weight is asymmetrically quantized with
block size 128. See more in Table E.22.

A8 Block Size 1024 512 256 128 32

PPL 10.98 10.97 10.95 10.95 10.95

244

Activation Quantization (W4A8). To comprehend245

the benefits of fine-grained quantization on activation,246

we analyze the quantization between per-row and a247

block size of 128, with INT4 weight, as highlighted in248

Table 5. For models of considerable size, specifically249

those equal to or exceeding 1B, the application of such250

fine-grained activation quantization (Case-1) results in a251

substantial reduction in quantization error compared to per-row activation (Case-2). By implementing252

fine-grained activation quantization with weight quantization (Case-3), we are able to almost restore253

the performance to the level of their W4A16 counterparts.254

Furthermore, we detail the impacts of varying activation quantization block sizes in Table 6 on255

BLOOM-176B, with INT4 weight. A trend of superior accuracy is observed with smaller block256

sizes in contrast to larger ones. However, the enhancement in performance reaches a saturation point257

when the size smaller or equal to 256, which corresponds to the range of values INT8 can represent.258

Despite INT8’s capability to signify 256 distinct values, activation quantization errors persist due to259

the application of uniform quantization.260

Finding 3 on FGQ. (1) Larger models (≥10B) are capable of attaining Class-1 error for 4-bit
quantization. These models can leverage low-precision quantization as the model size with
INT4 is similar to an INT8 model that is half its size, with improved accuracy. On the other
hand, smaller models (≤10B) typically reach only Class-2 or Class-3 error levels. (2) For
larger models (>10B), the difference between fine-grained weight-and-activation quantization
and fine-grained weight-only quantization is insignificant. (3) The advantage of fine-grained
activation quantization fades for larger models when the block size reaches 256.

261

5 Proposed Method to Further Push the Limit of Post-training Quantization262

Building on the investigation and conclusions drawn from previous sections, it has become apparent263

that there is still a need for an advanced methodology to further refine the existing methods, with264

the objective of fully realizing the original fp16 PPL quality. In this section, we introduce a simple265

yet effective method called LoRC (Low Rank Compensation) to optimize the current existing266

quantization error and further bridge the gap between the quality of the original model and its267

quantized counterparts.268
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Table 7: W#asym-A16 quantization with # being 4-bit, 3-bit and 2-bit on OPT and BLOOM (BLM).

Bits LoRC Coarse-grained weight quantization (per-row block-size) Fine-grained quantization on weight (256 block-size )
OPT-6.7b OPT-13b OPT-30b OPT-66b BLM-176b OPT-6.7b OPT-13b OPT-30b OPT-66b BLM-176b

W8A16 11.90 11.22 10.70 10.33 10.90 11.90 11.22 10.70 10.33 10.90

W4A16 ✗ 12.28 11.42 10.78 10.78 11.02 12.05 11.28 10.74 10.50 10.95
✓ 12.10 11.36 10.76 10.34 10.98 11.99 11.29 10.70 10.29 10.93

W3A16 ✗ 14.18 12.43 11.28 17.77 49.46 12.79 11.63 10.9 11.34 11.13
✓ 13.00 11.90 11.14 10.63 11.30 12.40 11.57 10.83 10.42 11.08

W2A16 ✗ 120.56 40.17 25.74 225.45 Explode 23.13 15.55 12.68 308.49 12.64
✓ 24.17 18.53 14.39 13.01 14.15 16.27 14.30 12.37 11.54 12.21

LoRC is inspired by the employment of low-rank matrix factorization on the quantization error matrix269

E := W − Ŵ , where W represents the original weight and Ŵ is the quantized weight. LoRC270

approximates the error E with Ê = Û V̂ by using two low-rank matrices Û and V̂ . This results in a271

more accurate approximation of the original weight matrix W by Ŵlorc = Ŵ + Ê, thereby reducing272

quantization errors: ∥W − Ŵ∥ ≥ ∥W − Ŵlorc∥. LoRC consists of two steps:273

Step I: Implement Singular Value Decomposition (SVD) on the error matrix E = UΣV , where274

U ∈ Rdin×din and V ∈ Rdout×dout are unitary matrices, and Σ ∈ Rdin×dout is a diagonal matrix with its275

diagonal elements ordered in a descending manner.276

Step II: We formulate the matrix Ê = Û V̂ where Û = Um(Σm)
1
2 and V̂ = (Σm)

1
2Vm. Here,277

Um = U:,1:m ∈ Rdin×m, Vm = V1:m,: ∈ Rm×dout , and Σm = Σ1:m,1:m ∈ Rm×m.278

The objective of LoRC is to achieve a good approximation of the error matrix E using low-rank279

matrices, with minimal impact on the increase in model size. For instance, consider the standard280

transformer models [32], where each layer is comprised of a multi-headed attention (MHA) module281

and a multi-linear perception (MLP) module. Let h represent the hidden dimension and l the number282

of layers. The total number of parameters is 12lh2 as each layer contains 4h2 for MHA (for key,283

query, value, and projection matrices), and 8h2 for MLP (two matrices of sizes h× 4h and 4h× h).284

With the addition of low-rank LoRC to the six matrices in each layer, the total number of parameters285

for l layers would amount to 18hml.4 Consequently, the ratio of parameters added to the existing286

model is 3m/2h. It’s important to note that the low-rank dimension m can be as small as 4 or 8287

(which we will discuss in detail in a later section) while the standard hidden dimension h ≥ 768,288

making the number 3m/2h ≤ 0.016.289

Significantly, LoRC can be viewed as a supplementary feature to existing quantization methodologies290

such as RTN, GPTQ, and ZeroQuant-Local/Global, and can be seamlessly integrated with FGQ.291

We have conducted experiments to evaluate the performance of LoRC on both OPT and BLOOM,292

applying 4-bit, 3-bit, and 2-bit weights by setting the activation to FP16.5 Based on the discoveries293

in the preceding sections, we utilize the GPTQ quantization strategy. To gain a comprehensive294

understanding of LoRC, we include the results with and without the application of FGQ. The datasets295

and hyperparameters are consistent with those detailed in earlier sections.296

Table 8: Results of W4asym A16 quantization
with LoRC approximating Ê = Û V̂ on OPT
model family. Û and V̂ can be represented with
FP16 or INT8, of which the performance are rep-
resented below. There is hardly any difference
between FP16 and INT8.

LoRC Coarse-grained weight quantization Fain-grained weight Quantization
Û , V̂ 6.7b 13b 30b 66b 6.7b 13b 30b

FP16 12.08 11.35 10.76 10.31 11.993 11.290 10.703
INT8 12.10 11.36 10.76 10.34 11.987 11.290 10.700

Evaluation Results. The findings are showcased in297

Table 7, split into two sections: coarse-grained weight298

quantization (per-row) and fine-grained quantization299

(block-size 256). Notably, we observe that the two300

low-rank matrices, Û and V̂ , can be quantized to 8-bit301

without any performance discrepancy (Table 8). Thus,302

the two low-rank matrices for LoRC in Table 7 are303

INT8 with a low-rank dimension of m = 8.304

Several key observations can be made. Firstly, LoRC305

consistently boosts performance across all bit sizes and block sizes, as indicated by the lower306

perplexity scores when LoRC is activated. Secondly, the enhancement brought about by LoRC307

becomes more substantial as the bit size diminishes, especially noticeable for W2A16, which308

displays a markedly greater impact compared to W4A16 and W3A16 in most scenarios. Lastly, the309

4In the MHA module, LoRC contributes 2hm to each of key, query, value, and the projection matrices. In the
MLP module, LoRC contributes 8hm and 2hm respectively to the matrices of dimensions h× 4h and 4h× h.

5For INT8 Activation, please see Table E.23, the observation for FP16 holds similarly for INT8 Activation.
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combination of fine-grained quantization with LoRC yields the most impressive results, underscoring310

the efficacy of LoRC when integrated with FGQ. Overall, the results emphasize the benefits of using311

LoRC for enhanced performance in weight quantization and its compatibility with FGQ. Notably,312

recovering the last 0.05-0.1 perplexity can be challenging, but with LoRC, we are able to nearly313

recover the original model quality for INT4 quantization.314

Table 9: W4A16 quantization with LoRC
by varying the low-rank dimension m.

LoRC-dim m OPT-1.3b OPT-6.7b OPT-30b

m = 0 basline 15.95 12.06 10.73

m = 1 15.93 12.01 10.73
m = 4 15.73 12.00 10.72
m = 8 15.76 11.99 10.70
m = 16 15.74 12.00 10.69
m = 32 15.71 12.01 10.69 Figure 2: Eigenvalues of the Error matrix E for W4A16

Ablation Study on the Low Rank Dimension m. An essential aspect of the LoRC method is on the315

optimal low-rank dimension, denoted as m, explained in Step II. To explore this, we varied m in the316

range of 1, 4, 8, 16, and 32 for OPT-1.3b/6.7b/30b models, and applied W4A16 GPTQ quantization.317

The outcomes are depicted in Table 9, indicating that the enhancements achieved through LoRC318

begin to plateau as the dimension m surpasses 4. The most optimal performance for OPT-6.7b is319

realized when m = 8.320

This observation may seem counterintuitive initially, as one might anticipate that larger LoRC321

dimensions would yield more significant improvements. To gain a more comprehensive understanding,322

we conducted an analysis of the eigenvalues of the actual error matrix E = W − Ŵ for each matrix.323

By randomly selecting 20 matrices from MHA and MLP layers, we plotted the eigenvalues of E as a324

curve, depicted in Figure 2. The two plots reveal a rapid flattening of eigenvalues after index 8, which325

elucidates why increasing the LoRC dimension does not considerably enhance performance. Hence,326

a sensible dimension for Û and V̂ in the LoRC methodology could be 8.6327

6 Discussion328

Conclusion. In this work, we provide a comprehensive study of post-training quantization (PTQ) on329

large language models with different PTQ methods (e.g., RTN, GPTQ, ZeroQuant), and with different330

quantization coverage (weight-only and weight-and-activation quantization), etc. We find that PTQ331

methods are critical to improving the quantized model quality, and that fine-grained quantization332

(FGQ) can bring acceptable accuracy and model size trade-off. Finally, we introduced an optimization333

technique called Low Rank Compensation (LoRC), which works synergistically with PTQ and FGQ,334

playing a crucial role in enhancing full model quality recovery with a minimal increase in model size.335

Limitation. Despite quantizing over 10,000 experiments, our study was constrained by our com-336

puting resources. This restriction made us choose between diversifying the model sizes and varying337

the tasks. We strategically limited our datasets to WikiText, PTB, and C4 to concentrate on a broad338

range of quantization methods. Consequently, our general findings are more robust concerning the339

two model families and three datasets examined in this paper. However, caution should be exercised340

when generalizing these findings to tasks that are dissimilar to those covered in this study.341

Future Opportunity. Throughout the paper, we see several unresolved problems from current342

quantization schemes and/or algorithms, and we find potential directions for LLM compression: (1)343

Although we use fine-grained quantization schemes in the paper, the real implementation is missing.344

How to efficiently implement odd bit precision is also challenging. [12] demonstrated that 3-bit can345

achieve better throughput in the generation phase by packing all 3-bit numbers in continuous memory346

space. However, this method is sub-optimal as the dequantization step needs to connect bits from347

different bytes. One possible way to implement odd bits, e.g., 5 bits, is to use two integer matrices348

with INT4 and INT1. During the dequantization stage, we couple the two matrices together. (2) How349

to combine PTQ with other lightweight compression techniques, e.g., post-training pruning [20, 11],350

is an interesting direction to further reduce the memory consumption and compute cost.351

6Please note that this observation is only true for PTQ. If one uses quantize-aware training (QAT) and let Û
and V̂ updated during QAT, we arrive at contrasting conclusions. For more details, please refer to Appendix D.
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A Background of Quantization458

Quantization maps floating point (e.g., FP16/FP32) numbers to integer numbers (e.g., INT4/INT8) so459

that lower memory usage (weight quantization) and faster integer arithmetic (weight-and-activation460

quantization) can be achieved compared to the floating point format. In this work, we are focusing on461

uniform quantization, i.e.,462

Q(x) = INT
(
(x− Z)/S

)
− Z, (1)

where Q is the quantization function, x is a floating point input vector/tensor, S is a real valued463

scaling factor, and Z is an integer zero point. Based on different settings, the quantization method464

can be viewed as (1) symmetric vs. asymmetric quantization (Z = 0 or not), (2) fine-grained vs.465

coarse-grained quantization (how to partition the input x and get its associated scaling factor, e.g.,466

matrix wise or row wise). See [13] for more details.467

Throughout this work, we focus on post-training quantization (PTQ), i.e., no or minimal training468

effort is applied after quantization, for which large accuracy degradation usually exhibits for coarse-469

grained quantization (per matrix/tensor) due to their large quantization error. As such, we focus on470

fine-grained quantization. Particularly, we use the per-row quantization (one row of the weight matrix471

or one token for the activation) from [36] as our coarsest-grained quantization method, and we use472

block-k quantization (for every k elements, they have their own scaling factor and/or zero point) as473

our finer-grained quantization scheme.474

B Detailed Setting Used in Section 4475

Same as [12], for all methods, we use C4 dataset to randomly select 128 sentences for training and476

each of them has 2048 tokens.477

For GPTQ, we check its main hyperparameter, i.e., the dampening factor, and find out the method is478

not sensitive to it. As such, we use the hyparameter suggested by the author for all of our experiments.479

For ZQ-Global and ZQ-Local, as mentioned the in main text, the hyperparameters suggested by the480

original work [36] is suboptimal. We find that a linear decay learning rate schedule is very helpful481

in our initial test. As such, we add this as our default setting. Meanwhile, we extensively test a482

wide range (1e-3 to 5e-8) of learning rate for different models until we find the best learning rate483

(i.e., larger or smaller learning rate leads to worse accuracy performance).We employed the Adam484

optimizer and set the default batch size to 1 for our experiments.485

We conducted tests to assess whether changes in random seeds would introduce substantial variations486

in the outcomes. As per the findings detailed in Table Table B.1, the modifications in random seeds487

resulted in only minimal effects on the final quality of the models. This effect was particularly488

negligible in the context of larger models, such as OPT-30b, where the standard deviation was only489

0.01. Therefore, in consideration of these results, we elected to standardize the random seed for the490

subsequent experiments presented in this paper, setting it uniformly at 123 or 0. The code will be491

made publicly available to facilitate reproducibility of our results.492

For all three methods, we run them on a single GPU (either V100-32GB or A100-80GB). For the493

largest model tested in the paper, i.e., BLOOM-176B, the cost of all methods is lower than one494

GPU-day on A100-80G.495

Table B.1: The table on the left illustrates the outcomes of each task, evaluated using three different
random seeds. On the right, we present a table detailing the mean and standard deviation of the
Task-mean values (which can be found in the final column of the left table) over the three random
seeds, accompanied by additional quantization results. The quantization methodologies employed in
this context are based on the GPTQ algorithm.

Precision Random Seed WikiText PTB C4 Task-mean

OPT-13b 123 10.31 12.62 11.35 11.43

W4A16 234 10.25 12.57 11.35 11.39
456 10.37 12.61 11.36 11.44

OPT-30b 123 9.56 11.95 10.79 10.77

W4A16 234 9.6 11.95 10.79 10.78
456 9.52 11.97 10.79 10.76

Precision Items OPT-1.3b OPT-13b OPT-30b

W4A16 mean over three random seeds 16.39 11.42 10.77
standard deviation 0.019 0.027 0.010

W4A8 mean over three random seeds 16.76 17.16 21.64
standard deviation 0.048 0.048 1.277
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Table C.1: Best optimization method of OPT family in Section 4.
Precision 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

Weight Only (INT4) ZQ-Global ZQ-Global GPTQ GPTQ GPTQ GPTQ GPTQ GPTQ

Weight & Activation (W4A8) ZQ-Global ZQ-Global ZQ-Global GPTQ ZQ-Global ZQ-Global ZQ-Global ZQ-Local

Table C.2: Best optimization method of BLOOM family in Section 4.
Precision 560m 1.1b 1.7b 3b 7.1b 176b

Weight Only (INT4) GPTQ ZQ-Global ZQ-Global ZQ-Global/GPTQ GPTQ GPTQ

Weight & Activation (W4A8) ZQ-Global ZQ-Global ZQ-Global ZQ-Global ZQ-Global ZQ-Local

C Best PTQ Methods with Per-row Quantization496

Table C.1 and C.2 summarize the best PTQ methods with per-row optimization.497

D Quantization-aware training with LoRC498

In order to better understand our proposed algorithm, LoRC, particularly in relation to the dimensions499

of low-rank matrices, we applied quantize-aware training alongside knowledge distillation. This500

approach builds upon the methodology of row-wise weight quantization and token-wise quantization.501

For the optimization process, we employed the Adam optimizer, setting the learning rate at 1e-4 and502

a dropout rate of 0.05. These settings were identified as the most effective in our context (additional503

details can be found in [33]). We performed fine-tuning on the WikiText dataset using pre-trained504

GPT2 models with 125M and 350M parameters, which were obtained from Hugging Face as our505

initial models. 7506

The results are illustrated in Figure Figure D.1. As observed, the quantized models tend to overfit507

swiftly. However, implementing higher dropout values, such as 0.1, does not result in a significantly508

improved performance with regards to the best perplexity over the entire training duration. Now when509

examining the best perplexity associated with each dimension of LoRC (also indicated in the figure’s510

legend), it becomes evident that the larger the dimension, the better the W4A8 models perform. This511

suggests that augmenting the dimension of LoRC can enhance the model quality for QAT, a finding512

that deviates from the trends observed in PTQ.513

Figure D.1: The graph on the left represents the results for a smaller model size (GPT2-125M), while
the one on the right corresponds to the GPT2-350M model. The dimension (refer to the legend) in the
LoRC algorithm, which is represented by different color curves, plays a pivotal role in approximating
the original quality of the fp16 model.

E Tables and Figures514

We put the full results of our evaluations in this section.515

7https://huggingface.co/gpt2
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Table E.1: OPT ppl on wikitext/ptb/c4 (full results of Table 2).
Precision 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

W16-A16 27.65/32.55/24.61 22.00/26.08/20.71 14.62/16.97/14.72 12.47/15.11/13.17 10.86/13.09/11.74 10.13/12.34/11.20 9.56/11.84/10.69 9.34/11.36/10.28

W8A8sym-A16 27.64/32.53/24.65 22.06/26.10/20.72 14.63/16.98/14.73 12.48/15.13/13.17 10.85/13.11/11.75 10.12/12.34/11.20 9.55/11.85/10.70 9.34/11.36/10.29
W8asym-A16 27.71/32.58/24.64 22.04/26.12/20.73 14.67/16.99/14.73 12.50/15.14/13.17 10.86/13.11/11.75 10.11/12.34/11.20 9.55/11.84/10.69 9.35/11.36/10.29
W4sym-A16 45.89/53.68/36.68 25.95/31.11/23.94 19.85/23.61/18.90 22.86/30.01/22.29 12.41/17.05/13.62 11.06/14.90/12.23 10.18/13.26/11.86 57.73/134.91/98.51
W4asym-A16 36.71/44.76/30.92 25.51/30.90/23.86 19.38/21.95/17.93 17.92/22.48/18.32 11.91/15.39/13.01 10.67/13.53/12.07 10.10/13.13/11.33 20.24/48.45/25.86

W16-A8sym 27.96/32.57/24.69 22.06/26.42/20.95 15.21/18.18/15.81 12.98/16.01/13.89 20.99/25.94/31.18 3341.50/2618.38/3554.59 1681.48/2221.62/2241.53 2696.91/2647.41/2569.94
W16-A8asym 27.84/32.60/24.66 22.04/26.22/20.81 15.14/17.65/15.39 12.51/15.38/13.38 11.24/14.17/12.45 11.83/18.87/15.39 14.08/31.54/25.09 442.66/524.57/716.83

Table E.2: BLOOM ppl on wikitext/ptb/c4 (full results of Table ??).
Precision 560m 1.1b 1.7b 3b 7.1b 176b

W16-A16 22.43/41.25/24.38 17.69/46.98/20.29 15.39/27.93/17.97 13.48/23.12/16.14 11.37/19.40/14.13 8.11/13.62/10.97

W8sym-A16 22.44/41.28/24.39 17.70/47.01/20.29 15.40/27.91/17.98 13.49/23.14/16.14 11.37/19.40/14.13 8.11/13.63/10.98
W8asym-A16 22.43/41.24/24.40 17.69/47.00/20.29 15.40/27.96/17.97 13.48/23.14/16.14 11.37/19.40/14.13 8.10/13.62/10.98
W4sym-A16 26.49/49.73/27.98 20.27/56.64/22.81 17.47/32.20/19.88 14.96/25.59/17.51 12.38/21.36/15.06 8.40/14.15/11.30
W4asym-A16 25.31/46.79/27.10 23.90/68.31/25.99 16.93/31.02/19.47 14.65/25.12/17.26 12.06/20.83/14.83 8.34/14.03/11.23

W16-A8sym 22.50/41.58/24.46 17.78/47.28/20.38 15.57/28.36/18.13 13.57/23.38/16.25 11.58/19.92/14.35 8.75/14.94/12.61
W16-A8asym 22.45/41.37/24.42 17.71/47.05/20.32 15.45/28.09/18.02 13.52/23.24/16.19 11.47/19.71/14.25 8.41/14.52/11.93

Table E.3: OPT ppl on wikitext/opt/c4 with W4asym-A16 (full table of Table 3). See Table E.4 for all
learning rate results of ZQ-Local and Table E.5 of ZQ-Global.

Precision 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

RTN 36.71/44.76/30.92 25.51/30.90/23.86 19.38/21.95/17.93 17.92/22.48/18.32 11.91/15.39/13.01 10.67/13.53/12.07 10.10/13.13/11.33 20.24/48.45/25.86
GPTQ 32.52/40.25/27.78 23.50/29.14/22.41 15.52/18.16/15.56 13.02/15.84/13.73 11.16/13.59/12.08 10.29/12.61/11.35 9.61/11.95/10.79 9.54/11.67/10.52
ZQ-Local∗ 33.05/39.34/28.11 24.40/29.22/22.82 15.81/18.66/15.76 13.22/16.19/13.96 11.32/13.79/12.26 10.42/12.90/11.60 9.97/12.32/11.03 9.91/11.87/10.59
ZQ-Global∗ 31.44/36.66/27.21 23.32/28.05/21.98 15.46/18.31/15.67 13.03/16.04/13.83 11.30/13.69/12.17 10.38/12.85/11.62 9.90/12.24/10.99 9.62/11.81/10.61

Table E.4: OPT ppl on wikitext/opt/c4 with W4asym-A16 and ZQ-Local.
LR (W4asym-A16) 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

0.001 33.67/39.45/29.11 26.33/31.94/24.49 16.27/19.91/16.46 14.34/17.76/14.93 11.87/15.04/13.06 13.68/18.89/14.46 171.35/151.55/46.14 814.22/601.74/308.53
0.0005 32.76/39.51/28.64 25.88/30.95/23.96 16.29/19.82/16.27 14.16/17.65/14.79 11.92/15.23/12.95 10.93/13.82/12.03 10.23/13.46/11.44 10.10/12.27/10.81
0.0001 33.86/40.01/28.29 24.64/30.26/23.33 16.07/19.25/15.93 14.36/17.38/14.41 11.85/14.64/12.74 10.93/13.48/11.88 10.18/12.67/11.13 10.12/12.01/10.67
5e-05 33.05/39.34/28.11 25.42/29.65/23.22 15.79/19.16/15.88 13.70/16.80/14.16 11.71/14.32/12.41 10.75/13.38/11.77 9.95/12.54/11.09 10.02/11.89/10.64
1e-05 33.78/40.41/28.84 24.40/29.22/22.82 15.81/18.66/15.76 13.55/16.46/13.96 11.32/13.79/12.26 10.54/13.05/11.61 9.98/12.22/10.99 9.91/11.87/10.59
5e-06 34.47/41.04/29.02 24.50/29.27/23.00 16.01/18.73/15.91 13.22/16.19/13.96 11.33/13.86/12.29 10.42/12.90/11.60 9.86/12.33/10.97 9.97/11.86/10.60
1e-06 35.88/43.69/30.35 24.54/29.87/23.17 16.77/19.45/16.47 13.60/17.02/14.46 11.41/14.10/12.41 10.53/13.01/11.70 9.97/12.33/11.04 10.01/11.93/10.66

Table E.5: OPT ppl on wikitext/opt/c4 with W4asym-A16 and ZQ-Global. NaN here means the PPL is
larger than 1e6.

LR (W4asym-A16) 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

0.001 4057.13/2718.91/1247.78 5071.35/5229.93/687.35 12105.25/10154.73/7893.43 18965.76/17112.60/16316.31 60014.66/56041.86/78085.84 232421.09/98305.32/119762.73 93917.09/70170.34/51124.06 NaN
0.0005 31.94/38.61/27.17 27.11/33.91/24.07 10900.84/8322.65/8425.10 14412.30/8676.76/10154.55 18527.46/13530.12/13029.95 109006.53/62584.41/125349.50 303235.75/230599.62/430480.03 36439.32/30554.19/33756.93
0.0001 31.44/36.66/27.21 24.08/29.08/22.27 15.91/20.08/16.35 118.38/53.47/54.08 7604.92/5339.10/5161.49 12638.86/7639.95/8243.63 16276.68/9890.26/6176.27 8367.31/4728.13/5533.59
5e-05 31.97/36.93/27.12 23.55/28.06/22.02 15.82/18.65/15.65 13.40/16.44/13.97 26.54/25.67/17.60 909.99/316.82/370.84 6238.21/3291.04/3743.01 9296.98/6687.44/5363.29
1e-05 32.31/37.93/27.38 23.32/28.05/21.98 15.60/18.42/15.64 13.09/16.05/13.78 11.41/13.82/12.20 10.80/13.16/11.66 10.06/12.44/11.07 9.73/12.09/10.98
5e-06 32.69/38.91/27.76 23.26/28.33/22.05 15.46/18.31/15.67 13.03/16.04/13.83 11.30/13.69/12.17 10.50/12.89/11.58 9.95/12.28/11.01 9.62/11.81/10.61
1e-06 34.63/41.75/29.43 23.82/28.96/22.48 16.12/19.46/16.27 13.03/16.27/14.04 11.29/13.88/12.27 10.38/12.85/11.62 9.90/12.24/10.99 9.58/12.17/10.78
5e-07 NaN NaN NaN NaN NaN 10.51/12.96/11.70 9.89/12.41/11.04 9.90/12.45/11.00
1e-07 NaN NaN NaN NaN NaN 10.63/13.29/11.89 10.02/12.82/11.18 11.03/13.91/11.73
5e-08 NaN NaN NaN NaN NaN 10.66/13.42/11.97 10.05/13.00/11.24 12.41/17.45/13.02

Table E.6: BLOOM ppl on wikitext/opt/c4 with W4asym-A16 (full table of Table 3). See Table E.4 for
all learning rate results of ZQ-Local and Table E.5 of ZQ-Global.

Precision 560m 1.1b 1.7b 3b 7.1b 176b

RTN 25.31/46.79/27.10 23.90/68.31/25.99 16.93/31.02/19.47 14.65/25.12/17.26 12.06/20.83/14.83 8.34/14.03/11.23
GPTQ 23.90/43.76/25.59 24.34/68.10/26.58 16.36/29.58/18.79 14.10/24.23/16.66 11.80/20.23/14.47 8.22/13.78/11.07
ZQ-Local∗ 24.23/44.94/26.05 19.22/52.36/21.59 16.37/29.89/18.86 14.23/24.41/16.86 11.80/20.28/14.56 8.27/13.91/11.16
ZQ-Global∗ 23.84/44.17/25.60 19.50/51.33/21.72 16.19/29.28/18.66 14.14/24.16/16.69 11.77/20.27/14.52 8.24/13.82/11.10

Table E.7: BLOOM ppl on wikitext/opt/c4 with W4asym-A16 and ZQ-Local.
LR (W4asym-A16) 560m 1.1b 1.7b 3b 7.1b 176b

0.001 25.37/47.36/27.03 19.89/53.86/22.11 16.70/31.19/19.30 14.45/25.28/17.16 12.22/21.34/15.04 8.82/15.77/11.98
0.0005 25.17/46.83/26.87 19.57/53.66/21.92 16.58/30.27/19.15 14.43/25.47/17.07 11.94/20.54/14.67 8.35/14.01/11.20
0.0001 24.59/46.11/26.32 19.22/52.36/21.59 16.41/30.29/18.90 14.35/24.81/16.87 11.83/20.34/14.58 8.28/13.92/11.14
5e-05 24.44/46.04/26.16 23.28/65.68/25.42 16.39/30.01/18.86 14.34/24.43/16.83 11.80/20.28/14.56 8.27/13.93/11.15
1e-05 24.23/44.94/26.05 23.45/66.29/25.52 16.37/29.89/18.86 14.23/24.41/16.86 11.84/20.39/14.58 8.27/13.91/11.16
5e-06 24.21/45.21/26.10 23.26/65.72/25.42 16.42/30.09/18.94 14.25/24.55/16.87 11.87/20.50/14.61 8.29/13.98/11.16
1e-06 24.71/45.86/26.50 23.45/66.28/25.56 16.64/30.52/19.15 14.46/24.76/17.04 11.94/20.55/14.70 8.29/13.97/11.18

Table E.8: BLOOM ppl on wikitext/opt/c4 with W4asym-A16 and ZQ-Global.
LR (W4asym-A16) 560m 1.1b 1.7b 3b 7.1b 176b

0.001 6853935.00/30441738.00/3222857.25 528072.88/828428.62/356031.97 597410.50/973155.88/1280478.12 878460.69/2175974.25/441401.94 nan/nan/nan NaN
0.0005 29671.52/1795030.88/4653.35 28112.96/87515.64/1826.82 141110.14/204295.86/40146.11 265457.25/741326.38/99882.45 944784.19/774538.25/395960.03 NaN
0.0001 23.92/45.68/25.72 19.34/52.78/21.63 16.35/29.22/18.76 14.27/24.46/16.80 12.17/22.16/14.80 NaN
5e-05 23.84/44.17/25.60 19.50/51.33/21.72 16.19/29.28/18.66 14.14/24.16/16.69 11.81/20.41/14.50 NaN
1e-05 23.85/44.20/25.65 22.64/56.79/23.41 16.23/29.73/18.73 14.14/24.31/16.74 11.77/20.27/14.52 8.24/13.82/11.10
5e-06 24.02/44.62/25.79 23.46/63.27/24.88 16.28/29.83/18.81 14.19/24.38/16.80 11.77/20.33/14.54 8.24/13.82/11.10
1e-06 24.46/45.41/26.20 24.62/70.16/26.64 16.48/30.15/19.02 14.35/24.56/16.95 11.89/20.54/14.67 8.23/13.82/11.12
5e-07 NaN NaN NaN NaN NaN 8.26/13.86/11.13
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Table E.9: OPT ppl on wikitext/opt/c4 with W4asym-A8sym/A8asym. See Table E.10 for all learning
rate results of ZQ-Local and Table E.11 of ZQ-Global.

Precision 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

W4asym-A8sym Block
RTN 36.69/44.34/30.60 26.59/32.13/24.81 25.31/26.89/22.01 30.84/35.73/29.01 164.51/110.85/162.94 4460.61/3145.51/4255.84 3216.45/2929.40/3570.19 3038.22/2930.92/3001.82
GPTQ 32.20/38.49/27.47 24.35/29.82/23.24 16.28/19.64/16.73 13.86/17.51/15.00 46.22/53.98/55.13 3611.71/2796.71/3820.57 1738.44/1810.08/2119.82 5992.87/4115.01/4360.16
ZQ-Local∗ 32.88/38.23/28.20 25.18/30.06/23.62 16.78/20.25/17.09 14.82/18.77/15.61 16.08/21.15/18.77 2680.33/1876.48/3052.51 1884.90/1603.23/1348.08 575.20/499.42/437.94
ZQ-Global∗ 32.04/37.48/27.23 24.01/28.81/22.57 16.12/19.15/16.23 13.98/17.70/14.87 38.27/39.77/52.26 117.83/141.63/96.83 253.71/700.40/337.15 1715.98/1546.50/1799.35

W4asym-A8asym Block
RTN 36.61/44.48/30.64 25.79/31.28/24.13 21.23/23.54/19.19 23.82/29.77/22.60 13.18/17.04/14.19 19.87/32.93/26.28 36.07/136.88/85.84 627.15/880.79/937.08
GPTQ 32.22/38.83/27.43 23.90/29.29/22.63 15.75/18.74/15.93 13.23/16.31/14.03 12.50/15.86/13.29 12.79/21.99/17.05 12.96/25.03/24.14 495.70/681.68/768.69
ZQ-Local∗ 33.60/38.57/28.02 24.57/29.27/22.98 15.98/19.13/16.20 13.44/16.81/14.26 11.76/14.97/13.00 11.69/16.98/14.01 12.38/24.25/18.96 12.19/23.31/13.47
ZQ-Global∗ 31.61/37.00/27.10 23.66/28.56/22.21 15.77/18.61/15.83 13.09/16.56/14.00 12.03/14.60/12.86 11.80/15.01/12.41 12.94/17.61/13.41 31.51/58.00/23.95

Table E.10: OPT ppl on wikitext/opt/c4 with W4asym-A8sym/A8asym and ZQ-Local.
Precision 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

W4asym-A8sym Block
0.001 34.91/40.43/29.37 26.82/32.68/25.24 17.68/21.72/18.11 19.40/27.59/20.05 36.70/59.32/45.17 7240.89/5506.67/4889.34 8229.32/5068.14/5005.13 Diverge
0.0005 34.16/39.00/28.58 26.75/32.05/24.60 17.19/21.42/17.55 19.43/25.54/19.41 29.33/48.38/43.28 56836.57/36810.64/31073.67 5448.96/3826.63/3196.49 575.20/499.42/437.94
0.0001 32.88/38.23/28.20 25.31/31.60/23.98 16.93/20.77/17.36 17.05/21.50/17.42 25.24/31.66/26.82 6125.07/3817.01/4121.70 1884.90/1603.23/1348.08 5427.12/3449.58/3289.01
5e-05 32.86/39.17/27.91 25.91/31.24/24.07 16.99/20.02/17.23 15.07/19.00/15.54 16.08/21.15/18.77 6037.51/3617.64/3819.63 3266.46/2533.64/2463.21 11631.78/10489.81/7880.43
1e-05 34.00/39.76/28.62 25.40/30.60/23.75 16.87/20.26/17.11 14.82/18.77/15.61 26.60/32.09/28.76 5346.85/3788.29/4903.31 3364.70/2372.71/3370.97 5793.44/3544.90/3925.34
5e-06 34.37/41.46/28.71 25.18/30.06/23.62 16.78/20.25/17.09 14.87/19.42/15.86 34.53/39.98/38.22 2680.33/1876.48/3052.51 3566.45/2532.54/3678.75 4916.96/3783.69/3716.49
1e-06 36.05/43.46/30.00 25.73/30.69/24.05 19.58/22.57/19.04 18.66/24.19/19.98 77.99/62.27/83.19 3893.00/2672.11/3849.59 3233.72/2944.44/3732.18 4238.57/3621.09/3541.33

W4asym-A8asym Block
0.001 33.57/40.84/29.00 27.29/32.48/24.68 17.41/20.70/17.07 15.98/20.45/16.23 12.63/17.21/14.25 9889.96/7605.54/6328.91 2009.66/1637.69/2011.15 5070.07/3124.56/2683.19
0.0005 34.58/40.45/28.69 25.81/31.56/24.09 16.89/20.66/16.93 15.00/19.47/15.61 12.55/17.00/14.29 13.18/19.65/15.18 36.51/75.89/60.58 3249.10/63.17/119.55
0.0001 33.91/38.39/28.12 25.37/31.24/23.66 16.78/20.09/16.72 14.26/18.49/14.90 12.13/15.97/13.48 13.48/20.42/16.68 110.20/117.28/257.96 12.19/23.31/13.47
5e-05 33.60/38.57/28.02 24.67/29.60/23.34 16.31/19.56/16.42 13.90/19.16/15.05 12.30/15.95/13.56 12.05/18.00/15.77 37.68/59.83/124.75 29.72/95.99/69.60
1e-05 33.80/40.21/28.56 24.57/29.27/22.98 15.98/19.13/16.20 13.44/16.81/14.26 11.76/14.97/13.00 11.69/16.98/14.01 14.39/31.47/24.45 217.93/313.13/298.24
5e-06 34.62/41.07/28.93 24.68/29.46/23.12 16.26/19.23/16.27 13.44/17.00/14.36 11.96/14.86/13.10 12.31/18.55/15.16 12.38/24.25/18.96 85.96/185.07/180.88
1e-06 35.94/43.35/30.00 24.92/30.18/23.45 17.98/20.89/17.45 14.79/18.90/15.52 12.10/15.47/13.35 15.48/22.00/17.84 14.86/31.16/26.21 411.89/620.52/652.55

Table E.11: OPT ppl on wikitext/opt/c4 with W4asym-A8sym/A8asym and ZQ-Global.
Precision 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

W4asym-A8sym Block
0.001 34.90/44.82/28.27 8988.08/5862.33/384.69 nan/nan/nan 18290.16/9784.37/12099.01 16014.50/8655.69/12304.55 248961.98/84832.78/104880.55 56675.05/23709.03/33007.17 29782.43/20410.10/23559.66
0.0005 31.78/38.56/27.20 39.24/54.15/29.76 10610.96/9438.99/6752.84 12499.29/8411.26/10677.01 nan/nan/nan 74731.13/44494.68/29286.49 51871.73/28548.95/23056.78 18717.63/11744.97/12903.33
0.0001 32.04/37.48/27.23 24.14/29.21/22.47 17.04/23.64/17.13 175.67/165.81/162.24 12305.50/11472.90/10223.89 16303.04/10731.12/10669.52 22548.81/12474.28/7405.46 7926.43/4377.36/4805.98
5e-05 32.16/37.54/27.27 24.15/28.87/22.46 16.02/19.61/16.59 13.88/20.27/14.79 5241.10/3284.47/2187.15 13297.25/7781.85/7467.30 9542.44/4543.45/5373.00 NaN
1e-05 32.57/38.43/27.53 24.01/28.81/22.57 16.12/19.15/16.23 13.98/17.70/14.87 99.27/118.19/88.74 529.82/361.44/256.46 1936.12/1388.68/947.45 10077.70/9208.34/11462.28
5e-06 32.83/38.37/27.71 24.13/29.30/22.68 16.45/19.64/16.57 14.42/18.01/15.27 70.26/62.28/54.47 373.82/494.33/170.40 820.90/847.19/543.59 1867.57/1878.76/4117.49
1e-06 34.79/41.79/29.30 24.68/30.01/23.23 17.90/21.94/18.01 14.83/18.63/15.70 38.27/39.77/52.26 117.83/141.63/96.83 261.19/844.40/272.04 1500.51/1275.54/1649.50
5e-07 NaN NaN NaN NaN NaN NaN 253.71/700.40/337.15 1715.98/1546.50/1799.35
1e-07 NaN NaN NaN NaN NaN NaN 913.95/1117.58/1065.87 2012.91/1917.48/1817.92

W4asym-A8asym Block
0.001 37.89/47.68/30.43 9023.01/4309.50/1186.96 12638.86/nan/9164.64 11285.86/6477.19/nan 12222.01/6933.34/8989.30 132962.69/73768.05/59268.76 328993.91/187752.97/163157.59 48298.52/30548.89/42797.96
0.0005 32.65/39.86/27.20 28.46/36.94/24.68 nan/nan/nan nan/nan/nan 23287.96/15508.32/16243.28 22052.30/10852.90/11588.02 63084.59/39919.41/42499.90 NaN
0.0001 31.61/37.00/27.10 24.64/29.13/22.28 16.31/19.71/16.44 43.76/29.11/33.35 22024.01/13962.04/14130.94 10171.49/7200.78/7954.12 18603.08/11639.42/10798.26 nan/nan/nan
5e-05 32.21/37.46/27.18 23.66/28.56/22.21 16.02/19.02/15.92 13.48/17.57/14.24 839.48/213.76/286.05 1035.13/nan/1472.08 8085.92/3545.21/4893.07 nan/nan/nan
1e-05 32.35/38.21/27.38 23.59/28.66/22.24 15.77/18.61/15.83 13.09/16.56/14.00 12.09/14.69/12.90 11.80/15.01/12.41 13.76/22.87/15.72 974.58/1557.95/1039.65
5e-06 32.59/38.49/27.68 23.62/28.63/22.33 15.78/18.80/15.95 13.23/16.65/14.12 12.03/14.60/12.86 12.72/16.31/13.20 12.94/17.61/13.41 83.35/137.83/128.11
1e-06 34.68/41.56/29.26 24.08/29.21/22.68 16.66/20.03/16.69 13.30/16.74/14.33 12.43/15.52/13.36 12.28/16.13/13.19 16.00/19.60/14.88 31.51/58.00/23.95
5e-07 NaN NaN NaN NaN NaN NaN NaN 31.09/73.23/24.44
1e-07 NaN NaN NaN NaN NaN NaN NaN 241.81/544.81/505.58

Table E.12: BLOOM ppl on wikitext/opt/c4 with W4asym-A8sym/A8asym. See Table E.13 for all
learning rate results of ZQ-Local and Table E.14 of ZQ-Global.

Precision 560m 1.1b 1.7b 3b 7.1b 176b

W4asym-A8sym Block
RTN 25.56/47.53/27.31 24.80/70.99/26.71 17.36/31.95/19.89 14.82/25.63/17.47 12.33/21.62/15.13 9.12/15.58/14.04
GPTQ 24.13/44.79/25.86 25.69/68.65/27.08 16.63/30.54/19.12 14.18/24.42/16.82 12.04/21.07/14.75 8.92/15.16/13.56
ZQ-Local∗ 24.45/45.73/26.22 19.50/52.67/21.73 16.71/30.23/19.09 14.37/24.72/16.99 12.00/20.79/14.78 8.52/14.29/11.41
ZQ-Global∗ 23.93/44.31/25.68 19.71/51.98/21.85 16.34/29.36/18.82 14.13/24.34/16.76 11.84/20.58/14.59 8.76/14.60/11.68

W4asym-A8asym Block
RTN 25.37/46.99/27.16 24.08/68.95/26.17 17.12/31.46/19.67 14.74/25.38/17.37 12.22/21.36/15.00 8.73/15.10/12.83
GPTQ 24.09/44.29/25.66 24.50/67.37/26.62 16.39/29.83/18.91 14.13/24.47/16.73 11.91/20.72/14.62 8.55/14.74/12.31
ZQ-Local∗ 24.29/45.19/26.10 19.13/52.89/21.63 16.54/30.11/18.92 14.32/24.73/16.94 11.94/20.63/14.68 8.33/14.01/11.22
ZQ-Global∗ 23.86/44.16/25.62 19.54/51.72/21.79 16.23/29.40/18.68 14.15/24.29/16.72 11.80/20.37/14.56 8.62/14.40/11.49

Table E.13: BLOOM ppl on wikitext/opt/c4 with W4asym-A8sym/A8asym and ZQ-Local.
Precision 560m 1.1b 1.7b 3b 7.1b 176b

W4asym-A8sym Block
0.001 25.51/47.89/27.15 19.73/54.63/22.18 16.96/31.47/19.44 14.59/25.69/17.32 12.51/21.85/15.34 8.62/14.42/11.50
0.0005 25.18/47.35/26.95 19.62/53.64/22.03 16.98/31.75/19.47 14.52/25.22/17.18 12.03/21.01/14.82 8.59/14.38/11.45
0.0001 24.79/46.37/26.44 19.50/52.67/21.73 16.68/30.51/19.18 14.44/25.12/17.05 12.00/20.79/14.78 8.52/14.29/11.41
5e-05 24.56/46.29/26.34 23.93/69.17/26.19 16.71/30.23/19.09 14.37/24.72/16.99 12.05/20.92/14.82 8.55/14.34/11.44
1e-05 24.45/45.73/26.22 23.65/66.73/25.80 16.66/30.69/19.16 14.40/24.94/17.02 12.12/21.14/14.86 8.65/14.97/12.01
5e-06 24.48/45.66/26.33 23.87/67.26/25.84 16.78/30.72/19.23 14.44/24.91/17.07 12.15/21.23/14.88 8.70/15.04/12.37
1e-06 24.91/46.35/26.72 24.09/68.13/26.05 17.03/31.28/19.52 14.60/25.18/17.24 12.22/21.31/14.99 8.91/15.25/13.35

W4asym-A8asym Block
0.001 25.26/46.43/26.98 19.69/54.26/22.14 16.88/32.16/19.40 15.15/26.58/17.76 12.40/22.29/15.28 8.40/14.06/11.26
0.0005 24.89/47.99/26.82 19.54/53.57/21.98 16.73/31.02/19.29 14.50/25.52/17.11 11.94/20.70/14.76 8.33/14.01/11.22
0.0001 24.60/45.75/26.44 19.13/52.89/21.63 16.54/30.36/19.10 14.37/24.91/16.93 11.94/20.63/14.68 8.35/14.04/11.24
5e-05 24.41/45.08/26.23 23.59/67.14/25.79 16.54/30.11/18.92 14.29/24.83/16.92 11.95/20.71/14.71 8.36/14.10/11.25
1e-05 24.29/45.19/26.10 23.35/65.26/25.38 16.51/30.20/19.00 14.32/24.73/16.94 11.97/20.93/14.74 8.44/14.30/11.45
5e-06 24.31/45.25/26.15 23.41/66.18/25.48 16.63/30.37/19.09 14.33/24.74/16.96 12.03/20.95/14.78 8.52/14.66/11.86
1e-06 24.76/45.92/26.62 23.52/66.38/25.66 16.81/30.71/19.30 14.53/24.92/17.14 12.10/21.07/14.87 8.62/14.92/12.41
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Table E.14: BLOOM ppl on wikitext/opt/c4 with W4asym-A8sym/A8asym and ZQ-Global.
Precision 560m 1.1b 1.7b 3b 7.1b 176b

W4asym-A8sym Block
0.001 174250016.00/201477664.00/1348168.88 423532.56/906908.06/322995.69 573201.81/1089364.38/498071.91 544376.56/696942.56/540949.06 nan/nan/nan NaN
0.0005 70978.52/29214230.00/1151.72 2880.81/15732.60/309.13 505479.44/629035.56/29283.36 140595.53/181082.25/33785.79 378033.53/789890.00/191543.91 NaN
0.0001 24.04/45.38/25.83 19.44/52.38/21.77 16.34/29.36/18.82 14.32/24.74/16.88 12.12/22.00/14.80 249.47/26690.76/26.96
5e-05 23.93/44.31/25.68 19.71/51.98/21.85 16.18/29.71/18.71 14.13/24.34/16.76 11.84/20.58/14.59 9.00/15.57/11.61
1e-05 23.99/44.44/25.77 22.75/58.31/23.63 16.28/29.96/18.81 14.29/24.53/16.87 11.87/20.57/14.64 8.76/14.60/11.68
5e-06 24.14/44.77/25.90 23.90/64.81/25.29 16.36/30.03/18.91 14.32/24.68/16.95 11.91/20.60/14.71 9.07/15.12/11.98
1e-06 24.62/45.70/26.33 25.55/71.49/27.44 16.61/30.47/19.17 14.51/24.91/17.11 12.06/20.93/14.86 11.25/19.93/15.76

W4asym-A8asym Block
0.001 9059092.00/2932002.50/131873960.00 499829.19/393190.53/346682.47 1260531.12/2019747.88/460627.16 1022130.19/872164.88/679662.62 nan/nan/nan NaN
0.0005 7633.14/378055.53/1032.16 4271.83/85847.50/1555.66 87087.04/217513.30/37000.13 575008.56/814032.50/230285.80 1212241.00/2389840.25/1504266.50 NaN
0.0001 23.96/45.36/25.80 19.37/52.25/21.88 16.29/29.36/18.81 14.32/24.66/16.86 12.05/22.30/14.77 1400.84/11880.12/392.79
5e-05 23.86/44.16/25.62 19.54/51.72/21.79 16.23/29.40/18.68 14.15/24.29/16.72 11.82/20.44/14.54 8.73/20.30/11.41
1e-05 23.96/44.24/25.72 22.55/58.10/23.49 16.27/29.82/18.78 14.16/24.35/16.80 11.80/20.37/14.56 8.62/14.40/11.49
5e-06 24.01/44.68/25.83 23.67/64.20/25.08 16.30/29.96/18.85 14.24/24.49/16.86 11.81/20.50/14.60 8.69/14.56/11.58
1e-06 24.53/45.60/26.26 24.82/71.17/26.84 16.55/30.35/19.10 14.40/24.76/17.01 11.97/20.83/14.77 9.14/16.63/17.69

Table E.15: OPT full results of Table 4.
Method 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

BS=1024
RTN N/A 25.42/30.62/23.61 16.90/19.78/16.59 N/A 11.63/14.41/12.65 10.47/13.09/11.75 9.97/12.40/11.09 9.83/12.31/10.77

N/A 26.55 17.76 N/A 12.90 11.77 11.15 10.97
GPTQ N/A 23.65/29.09/22.43 15.16/18.00/15.34 N/A 11.10/13.40/11.99 10.28/12.49/11.29 9.58/11.91/10.75 9.56/11.61/10.44

N/A 25.05 16.17 N/A 12.16 11.36 10.75 10.54
ZQ-Global∗ N/A 23.27/27.97/21.93 12.93/15.90/13.64 N/A 10.98/13.60/12.04 10.33/12.69/11.50 9.78/12.16/10.90 9.52/11.58/10.46

N/A 24.39 16.18 N/A 12.21 11.50 10.95 10.52

BS=512
RTN N/A 25.05/29.74/23.21 15.71/19.05/16.09 13.67/16.93/14.23 11.32/14.22/12.50 10.45/12.99/11.68 10.03/12.27/11.03 9.83/12.15/10.67

N/A 26.00 16.95 14.94 12.68 11.71 11.11 10.89
GPTQ N/A 23.33/28.48/22.13 15.15/17.95/15.26 12.65/15.61/13.53 10.94/13.37/11.94 10.18/12.49/11.29 9.58/11.87/10.75 9.53/11.59/10.43

N/A 24.65 16.12 13.93 12.08 11.32 10.73 10.52
ZQ-Global∗ N/A 23.41/27.67/21.92 14.91/17.73/15.25 12.92/15.59/13.55 11.08/13.51/11.99 10.29/12.68/11.46 9.79/12.16/10.87 9.51/11.65/10.44

N/A 24.34 15.97 14.02 12.19 11.48 10.94 10.53

BS=256
RTN 31.62/38.19/27.62 24.76/29.44/22.96 15.54/18.96/15.90 13.56/16.62/14.02 11.19/14.12/12.40 10.39/12.93/11.61 9.95/12.24/10.98 9.70/12.09/10.62

32.48 25.72 16.80 14.73 12.57 11.64 11.06 10.80
GPTQ 30.56/37.20/26.68 23.37/28.33/21.97 14.95/17.63/15.16 12.59/15.60/13.49 10.93/13.29/11.92 10.15/12.43/11.27 9.58/11.91/10.74 9.49/11.60/10.40

31.48 24.56 15.91 13.89 12.05 11.28 10.74 10.50
ZQ-Global∗ 30.45/35.35/26.24 23.06/27.72/21.74 14.93/17.45/15.15 12.99/15.47/13.50 10.96/13.45/12.00 10.25/12.61/11.43 9.73/12.14/10.89 9.49/11.58/10.42

30.68 24.17 15.84 13.99 12.14 11.43 10.92 10.50

BS=128
RTN 30.62/36.67/27.10 24.12/29.34/22.70 15.35/18.52/15.66 13.19/16.24/13.88 11.11/13.94/12.28 10.31/12.82/11.54 9.93/12.12/10.93 9.56/11.85/10.56

31.47 25.39 16.51 14.43 12.44 11.56 11.00 10.65
GPTQ 30.76/36.13/26.52 23.29/27.94/21.98 14.93/17.51/15.10 12.49/15.59/13.46 10.87/13.34/11.90 10.11/12.47/11.27 9.60/11.88/10.73 9.44/11.53/10.40

31.14 24.40 15.85 13.85 12.03 11.28 10.74 10.45
ZQ-Global∗ 29.52/34.63/25.98 22.78/27.56/21.65 15.02/17.50/15.07 12.67/15.37/13.45 10.92/13.42/11.96 10.16/12.61/11.41 9.74/12.01/10.82 9.43/11.49/10.40

30.04 23.99 15.86 13.83 12.10 11.39 10.86 10.44

BS=64
RTN 30.74/36.68/26.87 24.28/28.95/22.59 15.21/18.15/15.47 13.20/16.13/13.75 11.01/13.71/12.17 10.27/12.79/11.49 9.82/12.05/10.89 9.46/11.70/10.49

31.43 25.27 16.28 14.36 12.30 11.52 10.92 10.55
GPTQ 30.25/35.72/26.43 23.39/27.55/21.75 14.81/17.40/15.06 12.54/15.54/13.44 10.87/13.29/11.89 10.09/12.44/11.27 9.55/11.89/10.72 9.33/11.49/10.38

30.80 24.23 15.76 13.84 12.02 11.27 10.72 10.40
ZQ-Global∗ 29.69/34.24/25.72 22.94/27.49/21.54 14.90/17.43/15.01 12.80/15.47/13.44 10.92/13.33/11.93 10.21/12.58/11.38 9.69/12.01/10.81 9.41/11.49/10.39

29.88 23.99 15.78 13.90 12.06 11.39 10.84 10.43

BS=32
RTN 30.48/36.32/26.64 23.88/28.66/22.36 14.99/17.87/15.32 12.89/16.00/13.67 10.89/13.70/12.13 10.32/12.73/11.45 9.76/12.00/10.85 9.56/11.55/10.44

31.14 24.97 16.06 14.18 12.24 11.50 10.87 10.52
GPTQ 29.13/34.89/25.90 23.09/27.59/21.65 14.80/17.41/15.04 12.45/15.55/13.42 10.89/13.32/11.89 10.08/12.48/11.27 9.51/11.92/10.73 Diverge

29.97 24.11 15.75 13.81 12.03 11.28 10.72 Diverge
ZQ-Global∗ 28.93/34.29/25.63 22.85/27.23/21.50 14.80/17.34/14.99 12.74/15.32/13.40 10.82/13.36/11.91 10.23/12.61/11.37 9.68/11.95/10.80 9.37/11.47/10.38

29.62 23.86 15.71 13.82 12.03 11.41 10.81 10.41

17



Table E.16: BLOOM W4asym-A16 with various block-size out of the best result from GPTQ and
ZQ-Global.

Method 560m 1.1b 1.7b 3b 7.1b 176b

BS=1024
RTN 24.90/46.37/26.68 N/A 16.57/30.14/19.00 N/A 1019.51/1351.45/601.35 53.41/160.05/43.64

32.65 N/A 21.90 N/A 990.77 85.70
GPTQ 23.90/43.99/25.47 N/A 16.12/29.13/18.61 N/A 11.57/19.82/14.33 8.16/13.70/11.02

31.12 N/A 21.29 N/A 15.24 10.96
ZQ-Global 23.62/43.90/25.41 N/A 15.98/28.67/18.44 N/A 11.91/20.84/14.58 8.23/13.94/11.09

30.98 N/A 21.03 N/A 15.78 11.09

BS=512
RTN 24.78/46.07/26.45 19.41/53.64/21.85 16.47/29.84/18.88 14.29/24.84/17.05 142.38/314.10/100.09 33.88/103.57/31.02

32.44 31.63 21.73 18.73 185.52 56.16
GPTQ 23.63/43.96/25.36 18.52/49.73/20.91 16.07/29.87/18.50 13.79/23.77/16.41 11.54/19.75/14.30 8.14/13.70/11.02

30.98 29.72 21.48 17.99 15.20 10.95
ZQ-Global 23.50/43.53/25.23 18.31/49.06/20.82 15.93/28.47/18.38 13.82/23.92/16.47 11.85/20.17/14.42 8.20/13.86/11.07

30.75 29.40 20.93 18.07 15.48 11.04

BS=256
RTN 24.09/45.13/26.02 18.87/52.29/21.44 16.27/29.72/18.76 14.16/24.42/16.90 121.09/281.67/88.59 12.55/27.29/15.60

31.75 30.87 21.58 18.49 163.78 18.48
GPTQ 23.31/43.43/25.12 18.36/49.13/20.79 16.07/29.10/18.46 13.76/23.61/16.38 11.55/19.72/14.29 8.14/13.70/11.01

30.62 29.42 21.21 17.92 15.18 10.95
ZQ-Global 23.17/43.16/25.13 18.24/48.78/20.75 15.81/28.71/18.32 13.79/23.69/16.42 11.59/19.92/14.36 8.17/13.80/11.06

30.49 29.26 20.95 17.97 15.29 11.01

BS=128
RTN 23.82/44.78/25.75 18.62/51.31/21.17 16.13/29.89/18.66 14.00/24.19/16.71 23.90/49.80/24.15 8.84/15.62/11.70

31.45 30.37 21.56 18.30 32.62 12.06
GPTQ 23.27/43.10/24.99 18.14/48.72/20.73 16.03/28.96/18.41 13.72/23.65/16.34 11.52/19.73/14.26 8.14/13.67/11.01

30.45 29.20 21.13 17.90 15.17 10.94
ZQ-Global 23.14/42.95/24.97 18.17/48.53/20.70 15.75/28.71/18.29 13.73/23.65/16.37 11.56/19.77/14.32 8.17/13.78/11.03

30.35 29.13 20.92 17.92 15.22 10.99

BS=64
RTN 23.65/44.04/25.51 18.53/50.02/21.03 16.06/29.57/18.60 13.93/23.95/16.60 11.85/20.51/14.65 8.31/14.14/11.18

31.07 29.86 21.41 18.16 15.67 11.21
GPTQ 23.11/42.95/24.94 18.14/48.87/20.65 16.00/28.91/18.38 13.72/23.68/16.33 11.51/19.70/14.27 8.14/13.69/11.00

30.33 29.22 21.10 17.91 15.16 10.94
ZQ-Global 23.00/42.80/24.91 18.10/48.30/20.64 15.68/28.55/18.25 13.70/23.63/16.36 11.53/19.67/14.27 8.17/13.72/11.02

30.24 29.01 20.82 17.90 15.16 10.97

BS=32
RTN 23.60/43.91/25.50 18.63/50.13/21.04 15.98/29.56/18.56 13.92/23.90/16.53 11.65/20.01/14.43 8.20/13.86/11.07

31.00 29.93 21.37 18.12 15.36 11.04
GPTQ 23.10/43.19/24.91 18.17/48.35/20.66 15.95/28.95/18.36 13.76/23.60/16.33 11.53/19.71/14.27 8.14/13.70/11.00

30.40 29.06 21.08 17.89 15.17 10.95
ZQ-Global 23.07/42.63/24.82 18.07/48.07/20.59 15.66/28.58/18.21 13.72/23.59/16.33 11.52/19.71/14.26 8.16/13.69/11.01

30.18 28.91 20.82 17.88 15.16 10.95

Table E.17: OPT full results of three-bit weight with various block-size.
Method 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

Full Row
RTN 2095.20/1848.83/1222.00 47.43/53.38/36.93 4399.18/4400.98/3551.88 8326.78/4208.57/4895.83 878.00/735.86/910.10 1953.43/1953.60/1669.76 439.39/691.94/437.96 1465.06/1564.59/1282.58

1722.01 45.91 4117.35 5810.40 841.32 1858.93 523.09 1437.41
GPTQ 845.81/599.71/496.14 30.65/34.09/26.15 20.23/27.39/19.45 15.91/19.26/16.01 12.69/15.90/13.96 11.36/13.71/12.21 10.10/12.54/11.20 16.77/21.16/15.39

647.22 30.30 22.36 17.06 14.18 12.43 11.28 17.77
ZQ-Global∗ 46.47/58.55/35.45 29.64/36.51/25.55 32.48/94.57/28.97 60.91/116.22/36.45 23.87/29.75/23.88 44.70/60.78/46.18 13.16/20.49/13.48 28.93/75.91/27.28

46.82 30.57 52.01 71.19 25.83 50.55 15.71 44.04

BS=1024
RTN N/A 44.57/49.58/35.09 1950.00/2317.55/1913.55 3810.79/2563.06/3054.91 50.01/70.17/99.21 265.62/417.03/261.93 362.47/252.33/364.45 523.81/846.60/1021.17

N/A 43.08 2060.37 3142.92 73.13 314.86 326.42 797.20
GPTQ N/A 29.78/33.76/25.66 19.03/23.32/18.14 N/A 11.69/14.31/12.70 10.56/12.96/11.70 9.89/12.19/11.02 12.84/16.17/13.02

N/A 29.73 20.16 N/A 12.90 11.74 11.03 14.01
ZQ-Global∗ N/A 29.19/34.57/25.11 19.83/29.77/19.79 N/A 13.99/18.82/14.76 13.43/19.28/13.76 11.10/14.46/11.94 11.87/14.86/12.13

N/A 29.62 23.13 N/A 15.86 15.49 12.50 12.95

BS=512
RTN N/A 37.74/45.10/31.85 1777.53/1304.55/852.03 1604.07/1407.49/1487.78 25.13/40.56/40.08 130.75/175.33/135.67 620.53/340.68/416.28 198.01/457.78/426.15

N/A 38.23 1311.37 1499.78 35.26 147.25 459.16 360.65
GPTQ N/A 28.46/32.54/25.14 18.02/21.35/17.46 14.38/17.24/14.79 11.57/14.33/12.57 10.41/12.97/11.64 9.77/12.18/10.97 11.89/14.48/12.40

N/A 28.71 18.94 15.47 12.82 11.67 10.97 12.92
ZQ-Global∗ N/A 27.81/33.57/24.55 18.31/23.54/17.99 18.10/29.47/17.15 12.54/16.60/13.62 11.82/15.98/12.81 10.48/13.36/11.66 11.26/13.95/11.79

N/A 28.65 19.95 21.57 14.25 13.54 11.83 12.33

BS=256
RTN 4349.14/2907.61/2510.75 35.36/42.07/30.81 127.17/358.19/142.49 670.51/550.66/531.80 19.10/32.39/27.26 42.52/56.35/43.32 32.84/60.38/33.48 210.01/478.13/413.00

3255.84 36.08 209.28 584.32 26.25 47.40 42.23 367.05
GPTQ 41.81/49.95/32.48 27.60/33.73/24.88 16.97/20.19/16.70 13.69/17.06/14.54 11.65/14.24/12.48 10.35/12.93/11.61 9.66/12.10/10.93 11.60/13.98/11.92

41.41 28.74 17.95 15.10 12.79 11.63 10.90 12.50
ZQ-Global∗ 38.60/46.57/31.36 26.88/32.79/24.08 16.82/21.21/17.05 14.86/19.63/15.37 11.86/15.87/13.10 11.33/14.95/12.48 10.41/12.95/11.41 10.26/12.66/11.08

38.85 27.92 18.36 16.62 13.61 12.92 11.59 11.34

BS=128
RTN 3446.89/2156.26/1484.15 33.13/41.23/29.51 49.40/88.45/45.07 153.68/155.21/113.98 16.34/26.86/21.98 17.80/25.95/18.28 45.83/43.91/57.50 106.84/241.02/212.94

2362.43 34.62 60.97 140.96 21.72 20.67 49.08 186.93
GPTQ 40.00/45.73/31.15 27.68/34.04/25.18 16.47/19.90/16.47 13.81/16.96/14.37 11.57/14.10/12.41 10.35/12.84/11.58 9.73/12.08/10.91 10.96/13.27/11.45

38.96 28.97 17.61 15.05 12.69 11.59 10.91 11.90
ZQ-Global∗ 36.57/43.88/29.94 25.75/31.59/23.57 16.28/20.20/16.67 14.27/18.41/14.90 11.70/15.05/12.68 11.13/15.07/12.17 10.31/12.99/11.32 10.12/12.66/11.01

36.80 26.97 17.72 15.86 13.14 12.79 11.54 11.27

BS=64
RTN 708.02/477.13/287.03 32.61/42.14/29.09 25.43/38.84/24.63 72.84/69.27/48.07 14.11/21.71/16.56 14.13/20.08/15.25 20.55/32.74/24.49 30.66/70.73/65.57

490.73 34.61 29.63 63.39 17.46 16.48 25.93 55.65
GPTQ 37.15/42.59/30.07 27.68/33.55/25.12 16.25/19.80/16.32 13.66/16.69/14.37 11.42/13.98/12.37 10.37/12.90/11.58 9.68/12.17/10.92 10.39/12.65/11.15

36.60 28.78 17.46 14.91 12.59 11.62 10.92 11.40
ZQ-Global∗ 35.82/40.98/29.65 25.31/31.60/23.38 16.05/19.77/16.39 13.33/16.92/14.31 11.56/14.70/12.59 10.88/13.64/12.04 10.04/12.70/11.27 10.04/12.06/10.81

35.48 26.76 17.40 14.85 12.95 12.19 11.34 10.97

BS=32
RTN 72.83/88.62/54.25 32.36/40.76/29.06 20.22/27.31/19.81 31.12/42.01/26.83 13.38/18.56/15.44 13.06/18.35/14.38 11.12/15.05/12.35 19.29/43.61/34.10

71.90 34.06 22.44 33.32 15.79 15.26 12.84 32.33
GPTQ 38.26/45.01/30.92 27.16/33.65/24.97 16.13/19.83/16.45 13.66/17.06/14.50 11.43/14.08/12.42 10.48/12.96/11.65 9.78/12.24/10.96 Diverge

38.06 28.59 17.47 15.07 12.64 11.70 10.99 Diverge
ZQ-Global∗ 33.44/39.48/28.33 25.19/30.73/23.22 15.62/19.52/16.20 13.35/16.64/14.18 11.56/14.38/12.61 10.86/13.64/12.03 10.25/12.86/11.28 9.99/12.05/10.81

33.75 26.38 17.11 14.73 12.85 12.17 11.46 10.95
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Table E.18: BLOOM W3asym-A16 with various block-size out of the best result from GPTQ and
ZQ-Global.

Method 560m 1.1b 1.7b 3b 7.1b 176b
Full row
RTN 68.45/132.83/59.22 118.61/317.41/99.65 31.15/67.23/34.02 31.07/59.03/32.17 66140.72/78568.16/44504.19 100371.84/166012.19/137892.34

86.83 178.56 44.14 40.76 63071.02 134758.79
GPTQ 46.92/84.69/39.50 49.78/142.95/43.84 19.70/41.35/21.74 22.84/46.49/22.90 52966.59/52979.88/37115.48 Diverge

57.04 78.85 27.59 30.74 47687.32 Diverge
ZQ-Global 33.20/64.61/32.30 34.16/100.05/29.22 19.22/36.30/21.25 18.41/33.10/20.79 273.55/439.59/100.79 27.19/75.74/45.45

43.37 54.48 25.59 24.10 271.31 49.46

BS=1024
RTN 47.00/86.57/43.37 70.81/230.74/70.78 35.41/65.75/33.54 22.12/40.65/24.55 25654.77/25531.66/15868.46 141324.41/183583.73/200436.33

58.98 124.11 44.90 29.11 22351.63 175114.82
GPTQ 31.25/58.80/30.94 N/A 19.11/37.07/20.90 N/A 12.59/21.95/15.21 8.31/13.96/11.17

40.33 N/A 25.69 N/A 16.58 11.15
ZQ-Global 28.91/55.81/29.59 N/A 18.20/34.13/20.40 N/A 30.94/119.98/21.39 15.98/32.85/19.85

38.10 N/A 24.24 N/A 57.44 22.89

BS=512
RTN 41.58/79.83/39.41 33.83/116.88/37.34 25.95/49.65/26.77 19.94/38.58/22.58 9777.49/8000.29/5407.46 202051.34/273707.81/279776.97

53.61 62.68 34.12 27.03 7728.41 251845.38
GPTQ 28.08/53.15/29.05 21.20/61.42/23.33 18.41/34.47/20.43 15.08/26.14/17.53 12.32/21.29/15.01 8.30/13.98/11.16

36.76 35.32 24.44 19.58 16.21 11.15
ZQ-Global 26.80/50.49/28.31 20.77/57.57/22.89 17.64/33.19/19.91 15.16/26.51/17.57 16.35/28.75/15.76 11.38/20.36/14.66

35.20 33.75 23.58 19.75 20.29 15.47

BS=256
RTN 36.13/70.37/36.29 28.65/95.72/31.80 21.67/42.59/23.80 17.64/32.82/20.69 1322.61/1864.55/946.92 166006.80/187829.98/198052.83

47.60 52.06 29.35 23.72 1378.02 183963.20
GPTQ 27.10/51.11/28.24 20.60/56.57/22.77 17.97/33.28/20.04 14.82/25.79/17.31 12.27/21.24/14.93 8.27/13.99/11.14

35.48 33.31 23.76 19.31 16.15 11.13
ZQ-Global 25.96/49.75/27.59 20.21/54.83/22.33 17.43/32.14/19.67 14.85/25.79/17.33 12.85/22.00/15.04 9.07/15.88/11.88

34.43 32.46 23.08 19.32 16.63 12.28

BS=128
RTN 34.71/66.56/35.27 24.43/73.77/26.90 19.59/37.22/21.98 16.11/28.81/18.89 108.32/252.15/74.42 111057.84/101926.99/105339.26

45.51 41.70 26.26 21.27 144.96 106108.03
GPTQ 26.29/49.86/27.54 20.26/55.76/22.42 17.77/32.65/19.92 14.58/25.25/17.11 12.18/21.06/14.86 8.26/13.92/11.12

34.56 32.81 23.45 18.98 16.03 11.10
ZQ-Global 25.28/48.24/26.96 19.79/54.04/22.03 17.12/31.42/19.31 14.62/25.73/17.17 12.04/21.02/14.82 8.43/14.44/11.29

33.49 31.95 22.62 19.17 15.96 11.39

BS=64
RTN 30.88/59.01/32.08 23.04/67.93/25.49 19.35/37.67/21.80 15.64/27.56/18.39 37.15/65.22/33.22 198.66/488.11/128.62

40.66 38.82 26.27 20.53 45.20 271.80
GPTQ 26.31/49.91/27.17 20.11/55.06/22.23 17.94/32.42/19.76 14.62/25.39/17.07 12.13/21.07/14.83 8.26/13.93/11.11

34.46 32.47 23.37 19.02 16.01 11.10
ZQ-Global 25.17/48.01/26.59 19.51/53.27/21.75 16.88/31.14/19.22 14.51/25.18/17.05 12.00/20.85/14.74 8.35/14.06/11.20

33.26 31.51 22.41 18.91 15.86 11.21

BS=32
RTN 30.15/57.55/31.51 23.49/70.15/25.56 18.96/36.54/21.42 15.56/27.48/18.32 13.06/23.77/16.05 10.28/18.90/13.27

39.74 39.73 25.64 20.46 17.62 14.15
GPTQ 25.96/49.99/27.06 19.97/54.79/22.16 17.60/32.24/19.76 14.55/25.76/17.06 12.20/21.01/14.85 8.28/13.95/11.13

34.33 32.31 23.20 19.12 16.02 11.12
ZQ-Global 25.09/47.36/26.34 19.43/52.95/21.64 16.86/30.49/19.11 14.50/25.36/16.99 12.00/20.84/14.72 8.35/14.04/11.20

32.93 31.34 22.15 18.95 15.85 11.20

Table E.19: Full results of BLOOM-176B with different quantization bits
Bits 3 4 5 6 7 8

Per-row 27.19/75.74/45.45 8.16/13.70/11.02 8.13/13.67/10.99 8.11/13.63/10.98 8.11/13.62/10.97 8.10/13.62/10.98
1024 8.31/13.96/11.17 8.14/13.70/11.02 8.11/13.62/10.97 8.11/13.62/10.97 8.11/13.63/10.97 N/A
64 8.26/13.93/11.11 8.14/13.69/11.00 8.11/13.62/10.96 N/A N/A N/A

Table E.20: OPT full results of Table 5.
Method 125m 350m 1.3b 2.7b 6.7b 13b 30b 66b

W4asym full row and A8sym 128
RTN 36.64/44.84/30.90 25.58/31.06/23.99 19.96/22.31/18.20 18.42/23.01/18.56 12.04/15.92/13.20 10.79/13.65/12.11 10.10/13.17/11.37 20.50/45.58/25.37

37.46 26.88 20.16 20.00 13.72 12.18 11.54 30.48
GPTQ 31.82/38.82/27.54 23.78/28.96/22.61 15.56/18.27/15.62 13.02/15.88/13.76 11.22/13.59/12.11 10.25/12.65/11.37 9.56/11.94/10.79 9.62/11.72/10.54

32.73 25.12 16.48 14.22 12.31 11.42 10.76 10.63
ZQ-Local 9.79/11.94/10.65

10.79
ZQ-Global 31.69/36.66/27.19 23.47/28.18/22.03 15.53/18.35/15.73 13.02/16.11/13.82 11.29/13.70/12.19 10.43/12.91/11.64 9.86/12.28/11.00 9.62/11.84/10.63

31.85 24.56 16.54 14.32 12.39 11.66 11.05 10.70

W4asym 128 and A8sym 128
RTN 30.61/36.57/27.08 24.14/29.47/22.80 15.46/18.68/15.77 13.24/16.36/13.95 11.16/14.08/12.35 10.35/12.89/11.57 9.95/12.15/10.95 9.58/11.90/10.58

31.42 25.47 16.64 14.52 12.53 11.60 11.02 10.69
GPTQ 30.47/36.45/26.45 23.43/28.12/22.06 14.90/17.62/15.17 12.51/15.63/13.48 10.88/13.35/11.93 10.17/12.48/11.28 9.58/11.86/10.74 9.35/11.54/10.40

31.12 24.54 15.90 13.87 12.05 11.31 10.73 10.43
ZQ-Local 9.40/11.63/10.51

10.51
ZQ-Global 29.59/34.68/25.91 22.59/27.93/21.68 14.87/17.55/15.11 12.65/15.45/13.48 10.88/13.40/11.94 10.20/12.67/11.43 9.74/12.03/10.83 9.40/11.51/10.42

30.06 24.07 15.84 13.86 12.08 11.43 10.87 10.44

W4asym full row and A8asym 128
RTN 36.61/44.71/30.85 25.50/30.93/23.88 19.58/22.08/18.01 19.53/24.38/19.68 11.91/15.35/13.01 10.68/13.50/12.02 10.13/13.21/11.37 17.90/32.15/20.02

37.39 26.77 19.89 21.20 13.42 12.07 11.57 23.36
GPTQ 32.15/39.58/27.65 23.48/28.92/22.46 15.43/18.24/15.55 12.92/15.94/13.74 11.17/13.59/12.09 10.35/12.63/11.36 9.65/11.95/10.79 9.58/11.71/10.55

33.13 24.95 16.40 14.20 12.29 11.45 10.80 10.61
ZQ-Local 10.05/11.91/10.61

10.86
ZQ-Global 31.55/37.49/27.25 23.34/28.33/22.08 15.52/18.55/15.61 13.07/16.09/13.82 11.32/13.65/12.16 10.42/12.86/11.63 9.86/12.30/11.00 9.67/12.22/10.86

32.10 24.58 16.56 14.33 12.37 11.64 11.05 10.91

W4asym 128 and A8asym 128
RTN 30.59/36.56/27.07 24.11/29.43/22.74 15.38/18.57/15.69 13.22/16.32/13.91 11.13/13.97/12.30 10.34/12.82/11.55 9.98/12.15/10.96 9.57/11.86/10.58

31.41 25.43 16.55 14.49 12.47 11.57 11.03 10.67
GPTQ 30.47/36.19/26.40 23.35/27.96/21.94 14.92/17.57/15.12 12.48/15.60/13.46 10.87/13.34/11.91 10.20/12.45/11.28 9.62/11.88/10.74 9.39/11.55/10.41

31.02 24.42 15.87 13.85 12.04 11.31 10.75 10.45
ZQ-Local 9.37/11.70/10.49

10.52
ZQ-Global 29.85/34.52/26.10 22.70/27.72/21.64 14.96/17.55/15.09 12.64/15.40/13.47 10.93/13.43/11.95 10.18/12.68/11.42 9.74/12.02/10.83 9.39/11.53/10.42

30.16 24.02 15.86 13.84 12.10 11.42 10.86 10.45
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Table E.21: BLOOM full results of Table 6.
Method 560m 1.1b 1.7b 3b 7.1b 176b

W4asym full row and A8sym 128
RTN 25.32/46.98/27.12 23.87/68.29/25.97 16.99/31.15/19.51 14.69/25.22/17.30 12.07/20.86/14.84 8.34/14.05/11.24

33.14 39.38 22.55 19.07 15.92 11.21
GPTQ 24.00/44.47/25.66 24.14/66.95/26.17 16.38/29.64/18.79 14.10/24.19/16.67 11.77/20.22/14.48 8.20/13.82/11.07

31.37 39.09 21.61 18.32 15.49 11.03
ZQ-Local 8.30/14.01/11.20

11.17
ZQ-Global 23.92/44.23/25.69 22.53/57.71/23.51 16.25/29.72/18.74 14.12/24.26/16.74 11.78/20.30/14.53 8.24/13.82/11.10

31.28 34.58 21.57 18.38 15.53 11.05

W4asym 128 and A8sym 128
RTN 23.84/44.94/25.79 18.65/51.54/21.21 16.18/30.03/18.70 14.04/24.32/16.77 23.05/48.33/23.69 8.87/15.68/11.72

31.53 30.46 21.64 18.38 31.69 12.09
GPTQ 23.22/43.24/25.01 18.25/48.89/20.74 16.00/29.44/18.41 13.77/23.68/16.35 11.54/19.76/14.27 8.13/13.69/11.01

30.49 29.29 21.29 17.93 15.19 10.95
ZQ-Local 8.20/13.87/11.08

11.05
ZQ-Global 23.12/43.22/25.03 18.19/48.96/20.72 15.75/28.81/18.30 13.73/23.65/16.39 11.57/19.85/14.32 8.17/13.76/11.03

30.45 29.29 20.95 17.92 15.25 10.99

W4asym full row and A8asym 128
RTN 25.30/46.87/27.10 23.90/68.31/25.98 16.96/31.09/19.48 14.68/25.19/17.28 12.07/20.86/14.84 8.34/14.06/11.24

33.09 39.39 22.51 19.05 15.92 11.21
GPTQ 23.97/44.15/25.62 24.61/68.19/26.53 16.36/29.77/18.81 14.10/24.17/16.66 11.78/20.32/14.49 8.20/13.82/11.07

31.24 39.78 21.65 18.31 15.53 11.03
ZQ-Local 8.32/13.97/11.20

11.16
ZQ-Global 23.88/44.40/25.68 22.63/57.91/23.39 16.25/29.77/18.74 14.17/24.24/16.74 11.77/20.28/14.52 8.25/13.82/11.10

31.32 34.64 21.59 18.38 15.52 11.06

W4asym 128 and A8asym 128
RTN 23.83/44.89/25.77 18.63/51.46/21.19 16.16/29.95/18.68 14.03/24.27/16.75 23.51/49.07/23.96 8.85/15.65/11.72

31.50 30.43 21.60 18.35 32.18 12.08
GPTQ 23.26/43.24/25.00 18.18/48.84/20.73 16.05/29.34/18.42 13.69/23.56/16.34 11.54/19.75/14.28 8.14/13.71/11.02

30.50 29.25 21.27 17.86 15.19 10.96
ZQ-Local 8.19/13.90/11.07

11.06
ZQ-Global 23.12/43.14/25.01 18.18/48.99/20.73 15.71/28.73/18.30 13.74/23.68/16.39 11.56/19.85/14.31 8.17/13.78/11.04

30.42 29.30 20.91 17.94 15.24 11.00

Table E.22: Full results of Table 6.
Block SIze 1024 512 256 128 64 32

PPL 8.16/13.75/11.04 8.15/13.75/11.02 8.15/13.70/11.01 8.13/13.69/11.01 8.14/13.69/11.01 8.14/13.69/11.01

Table E.23: Results of applying LoRC on top of ZQ-Global for INT8 Activation.
Learning Rate

model-size precision LoRC-dim 0.0005 0.0001 5.00E-05 1.00E-05 5.00E-06 Best

125m W4A8
0 4482.1 31.15 30.40 30.55 30.72 30.40
8 5996.14 30.96 30.24 30.37 30.61 30.24
16 3577.12 31.02 30.26 30.2 30.37 30.20

125m W3A8
0 4283.28 41.03 40.93 55.74 86.34 40.93
8 2396.92 37.25 36.65 37.85 39.06 36.65
16 1787.74 36.66 36.55 37.46 38.21 36.55

125m W2A8
0 3473.18 583.72 996.76 2480.69 3203.11 583.72
8 3815.37 144.85 160.71 362.17 466.98 144.85
16 3324.23 135.25 156.28 295.78 372.7 135.25

Learning Rate
LoRC-dim 5.00E-05 1.00E-05 5.00E-06 1.00E-06 5.00E-07 best

350m W4A8
0 25.65 24.38 24.34 24.55 24.75 24.34
8 25.56 24.3 24.24 24.45 24.66 24.24
16 25.45 24.39 24.21 24.39 24.63 24.21

350m W3A8
0 30.59 28.45 28.94 31.51 32.39 28.45
8 30.1 28.22 28.71 30.81 32.09 28.22
16 30.64 28.02 28.50 30.62 31.69 28.02

350m W2A8
0 97.40 177.43 257.61 668.19 722.19 97.4
8 95.79 139.68 194.36 437.18 459.92 95.79
16 106.51 137.81 172.93 400.91 421.59 106.51
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