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ABSTRACT

Maintaining legacy software requires many software and systems engineering
hours. Assembly code programs, which demand low-level control over the com-
puter machine state and have no variable names, are particularly difficult for hu-
mans to analyze. Existing conventional program translators guarantee correctness,
but are hand-engineered for the source and target programming languages in ques-
tion. Learned transpilation, i.e. automatic translation of code, offers an alternative
to manual re-writing and engineering efforts. Automated symbolic program trans-
lation approaches guarantee correctness but struggle to scale to longer programs
due to the exponentially large search space. Their rigid rule-based systems also
limit their expressivity, so they can only reason about a reduced space of programs.
Probabilistic neural language models (LMs) produce plausible outputs for every
input, but do so at the cost of guaranteed correctness. In this work, we lever-
age the strengths of LMs and symbolic solvers in a neurosymbolic approach to
learned transpilation for assembly code. Assembly code is an appropriate setting
for a neurosymbolic approach, since assembly code can be divided into shorter
non-branching basic blocks amenable to the use of symbolic methods. GUESS &
SKETCH extracts alignment and confidence information from features of the LM
then passes it to a symbolic solver to resolve semantic equivalence of the transpi-
lation input and output. We test GUESS & SKETCH on three different test sets of
assembly transpilation tasks, varying in difficulty, and show that it successfully
transpiles 57.6% more examples than GPT-4 and 39.6% more examples than an
engineered transpiler. We also share a training and evaluation dataset for this task.

1 INTRODUCTION

The increasingly heterogeneous landscape of hardware architectures and their instruction set archi-
tectures (ISAs) marks a large and growing need to develop support for cross-ISA software manage-
ment. This challenge is especially relevant for hardware-specific legacy software which must be re-
written to run on any other hardware. Many high-usage source code files also contain in-lined assem-
bly code, which requires porting to alternate hardware architectures. Automated cross-ISA software
support has been of interest in the computer architecture community for decades (Armengol-Estapé
et al., 2023; Wang et al., 2018; Bellard, 2005; Ardestani & Renau, 2013; Sanchez & Kozyrakis,
2013). Emulators, virtual machines, and containerized applications allow users to run software on
different host hardware by simulating the architecture of the hardware platform that the software is
compiled for. However, this option can be unwieldy and compute-inefficient. Assembly-to-assembly
transpilation 1 (Ami; occ, 1989), the process of automatically porting software from one ISA to an-
other, offers a way to generate software that can be natively executed on the new hardware. However,
current transpilation tools are engineered for the specific source and target hardware architecture, so
they scale poorly as new ISAs are introduced.

Neural machine learning techniques are a natural fit for transpilation. Assembly program translation
pairs can be generated by cross-compiling C or C++ programs using different existing compilers and

1“Transpiler” describes the general code translation task that our method targets, but we note that the focus
of this paper is assembly-to-assembly transpilation.
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compiler flags, providing vast amounts of training data. Pairs have the same semantics since they
originate from the same high-level program. Assembly code syntax is rigid but simple compared
to natural language and most high-level programming languages, settings that existing language
models have been shown to perform well in (Devlin et al., 2019; Feng et al., 2020; Radford &
Sutskever, 2018; Lewis et al., 2019; Chen et al., 2021). Evaluation in this setting can also be done
automatically by comparing execution of the input code and the resulting code.

However, a key weakness of language models in this setting is their inability to perform long-tail
logical reasoning (Kandpal et al., 2022; Miceli-Barone et al., 2023). Assembly code transpilation
requires reasoning about the complex semantics of programs. Additionally, specific challenging
phenomena, such as differing implementations of mathematical operations on different ISAs, are
critical and arise frequently in assembly code.

Motivated by the symbolic properties of logical reasoning in the problem of transpilation, we pro-
pose a neurosymbolic method to transpilation. Purely symbolic methods are built on correctness
guarantees, but generally can only handle short programs before encountering computational in-
tractability. Classical synthesis techniques struggle to scale past ∼ 6 lines of assembly code (Hu
et al., 2023). Purely neural language modeling approaches are powerful general translators but have
critical failure points that cause program breakdown. We argue for the value of a mixed-method,
i.e. neurosymbolic, approach that uses probabilistic language models to obtain helpful information
for transpilation, then passes such information to an ISA semantics-aware solver to complete the
transpilation process.

Our method, GUESS & SKETCH, uses core properties from the language model to extract sym-
bolic methods for transpilation. During the neural GUESS phase, a trained language model pro-
duces candidate translations for a given input, identifies potential errors in the output, and extracts
semantically-aligned subsequences from the input and output sequences. Potentially erroneous
aligned subsequences are passed to the symbolic SKETCH phase, where the input subsequence is
used as a specification to correct the output subsequence.

We demonstrate the feasibility of our method by porting assembly programs from ARMv8 to RISC-
V and vice-versa, but note that our method can generalize to various source and target languages.
In order to test our method, we introduce a new benchmark consisting of 3 transpilation problems
varying in difficulty and domain. We identify weaknesses in engineered symbolic approaches to the
task. We also find that existing neural network approaches, using both fine-tuned and pre-trained off-
the-shelf large language models, struggle with transpilation. In contrast, our method combines the
strengths of both neural and symbolic approaches and successfully transpiles 57.6% more examples
than GPT-4, 39.6% more examples than an engineered transpiler, and 13.2% more examples than
the most competitive baseline.

2 RELATED WORK

Learned code translation. Code transpilers (or transpilers) translate from one programming lan-
guage to another. The core challenge in this space is preserving operational semantics across the
source and target language, while operating within the strict syntax and vocabulary of both. One
approach to this task is to train neural machine translation systems with paired code sequences for
the task, such as language model (Lewis et al., 2019) or tree-to-tree neural networks (Chen et al.,
2018). Approaches such as Transcoder (Roziere et al., 2020) have also presented an unsupervised
approach to neural source code-to-source code translation, in which they only require monolingual
training data and take advantage of three training objectives: cross-lingual masked language mod-
eling, denoising auto-encoding, and back-translation. Follow-up works use the LLVM intermediate
representation (Roziere et al., 2022) and automatically-generated unit tests (Szafraniec et al., 2023)
to further improve this approach. Older statistical approaches have mined parallel code from repos-
itories and generated grammar-based statistical machine translation models (Nguyen et al., 2013;
Karaivanov et al., 2014; Koehn et al., 2007). These outputs of these prior learned approaches are the
generation directly extracted from the model. GUESS & SKETCH instead incorporates knowledge of
the semantics of the source and target languages in a symbolic solver that improves semantic correct-
ness the produced output. Additionally, as far as we are aware, we are the first to present a learned
approach for learning assembly translation, a lower-level programming language than higher-level
programming languages such as Python, Java, and even C.
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Emulators and engineered transpilers. Executing code on a platform different than the one for
which it was created is a long-desired task. Apple’s Rosetta (app) software was designed to ease the
transition of applications between hardwares by automatically translating binary executables from
the previously supported to the new ISA. Specifically, Rosetta in 2006 supported the transition from
PowerPC to Intel x86 processors. Rosetta 2 released in 2020 enabled translation from x86-64 based
processors to support by ARM64-based Apple silicon. Emulators and virtualizers allow users to
execute code designed for another target hardware by simulating the target hardware ISA atop the
host hardware. QEMU (Bellard, 2005) is one popular emulator and virtualizer that can emulate
various architectures on certain host architectures. Other assembly transpilers have been written to
translate assembly from one language to another, such as from ARM to RISC-V (Schorr et al., 2020).
However, these emulators and transpilers take years to develop. GUESS & SKETCH, on the other
hand, leverages the translation abilities of a learned model to perform a bulk of the transpilation.

Neurosymbolic program synthesis. Program synthesis is the task of generating computer pro-
grams according to some correctness specification (Lee et al., 2021). In the context of program
translation, the correctness specification is the semantics of the input program itself. We discuss
here some works that take a combined neural and symbolic approach to the program synthesis task,
similar to our own approach. Nye et al. (2019) train an LSTM-based model to generate program
sketches from some input specification, then use the generated sketch and specification to search
for a satisfying program. Guo et al. (2022) devise a top-down grammar-based method to selectively
expand nonterminals in a program syntax tree. The incomplete program tree is converted to a sketch
that is passed to the symbolic sketch solver to generate a full program. Unlike these previous works,
our method infers the sketch using attributes of a single autoregressive language model. The benefit
of our approach is over directly producing the sketch or generating based on a grammar is that we
avoid encoding specific sketch and language technicalities into the training process.

3 BACKGROUND

3.1 TRANSPILATION

The task of transpilation is to take an input program Px, represented as sequence of tokens x, and
produce the semantically-equivalent program Py represented as sequence of tokens y. Let D be the
domain of all program inputs. For simplicity we represent programs as functions that map inputs to a
deterministic measurable output, either an integer or program failure: P∗ : D → (Z∪⊥). Semantic
equivalence can be measured by checking that for all inputs in D, both programs produce the same
execution outputs: x ≡ y : ∀d ∈ D : Px(d) = Py(d). In practice, we test the full programs on a
feasible subset of D determined by the objective of the source program.

When working with programs, we will also assume we can partition the tokens into Bx non-
overlapping subsequences x = xb1 , . . . , xb|Bx| where each b ∈ Bx defines a span over x. Sub-
sequences are defined so that they can individually be converted to programs Pxb

. Details for identi-
fying such subsequences for assembly and translating them into a program representation conducive
for symbolic reasoning in a sketch solver are shared in Appendix A.1.

3.2 GENERATIVE LANGUAGE MODELS

Let (x, y) ∈ (VL,VL) denote an input and output sequence pair where V is the shared vocabulary
of tokens and L is the maximum length. The objective of a (conditional) generative language model
is to autoregressively produce the correct output y from input x:

argmax
y∈VL

∏
t

p(yt|y<t, x)

Modern language models are based on the Transformer architecture (Vaswani et al., 2017). Trans-
formers use attention (Parikh et al., 2016), a routing mechanism that provides a distribution over the
input tokens used for predicting the next word. Intuitively, attention learns to indicate which part
of the input to weigh more for each output. We can extract the model’s attention between the input
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LM

li a5, 26094
addi a5, a5, 2029

mov   w0, 28123

li a5, 12288
addi a5, a5, -57

mov   w0, 28123
li a5, 12288
addi a5, a5, -57

x
yx

y’

attn. 
map

Figure 1: In the GUESS (top) phase, the full input sequence x (blue) is passed to a trained lan-
guage model (LM), which produces a candidate translation y (orange), identifies potential mistakes
(red), and extracts subsequence alignment (purple) from attention between the input and output (attn.
map). In the SKETCH (bottom) phase, aligned input and output subsequences are passed to a sym-
bolic solver λ to correct errors identified in the GUESS phase. The final output y′ is constructed by
recombining corrected subsequences.

sequence x and output sequence y as a series of stochastic matrices at each layer mapping every
output index to a probability distribution over input indices2: M ∈ ∆|y|×|x|.

3.3 SKETCHING

Sketching (Solar-Lezama, 2009; Solar-Lezama et al., 2006a) is an approach to program synthesis
in which a partial program outlines the high-level implementation, then a synthesizer populates the
omitted low-level details by ensuring that the resulting code passes some given correctness specifica-
tion. Partial programs are expressed in a procedural programming language augmented with a single
added construct: a symbolic constant expressed as a hole, denoted •. Programs expressed in this
form, with holes as placeholders for concrete values, are sketches. In our notation, the partial pro-
gram sequence is composed of tokens from the vocabulary and an added hole token: S = (V∪{•})∗.
Program sequences x are compiled by a semantics-aware translator into representations Px in the
procedural programming language understandable by the solver.

The correctness specification is set by source program Px. The goal of the synthesizer is to identify
the mapping ϕ : S → V∗ that populates the holes of the partial program sequence s to produce the
full program sequence ϕ(s) whose corresponding program is semantically equivalent to the source
program: ∀d ∈ D : Pϕ(s)(d) = Px(d).

The synthesis engine reduces the resulting programmatic sketch representation to a constraint sat-
isfaction problem solved using counterexample guided inductive synthesis (Solar-Lezama et al.,
2006b) to find values for the holes.

4 NEUROSYMBOLIC TRANSPILATION: GUESS & SKETCH

Given an input program Px represented as sequence x ∈ VL, our goal is to learn to generate a
semantically-equivalent output sequence y ∈ VL which represents program Py: Px ≡ Py . Programs
are comprised of function definitions that are generally independent from one another, so functions
are individually translated then stitched back together. See details in Appendix A.

The challenge of our neurosymbolic approach is that language models operate on prefixes, perform-
ing inference by producing one token at a time, while sketch-based methods reason with partially
complete sequences. To meaningfully pass information between the language model and the
symbolic solver, we must extract relevant sequence-level information from the language model

2In encoder-decoder models this comes from cross-attention, for decoder-only models by renormalizing
self-attention.
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for the solver to reason over with. Specifically, the solver needs candidate output translations and
their semantic alignment in the input.

Our method breaks the problem into stages that can be better solved by the complementary strengths
of neural and symbolic methods: a probabilistic machine learning language model produces candi-
date translations, then alignment and confidence information is extracted and passed to a semantics-
aware solver to filter the search spaces for a correct solution. The pipeline for the GUESS & SKETCH
approach is illustrated in Figure 1.

4.1 GUESS: STRUCTURED CANDIDATES FROM A GENERATIVE MODEL

The GUESS phase produces guesses as tuples. For an input sequence x, GUESS produces tuples
composed of: a candidate transpilation y, alignments between subsequences: A ∈ B|By|

x , and poten-
tial token-level errors in the prediction: E ∈ {0, 1}|y|.

Candidates. To produce candidate sequences we follow a standard generative approach. We first
train a generative language model on paired source language and target language program sequences.
Once trained, candidate transpilations are produced by querying the model:

y ∈ top k
y∈VL

p(y|x) (1)

Figure 2: True subsequence alignment
(l), attention (r), and projected subse-
quence alignment (r) from the GUESS
model.

Alignment. Since the input and target output sequences
are intended to be globally semantically equivalent, we
assume output sequences locally align to input sequences.
While there is not a one-to-one equivalence between to-
kens, subsequences of the two programs can be matched.
We use this subsequence matching and the transformer
attention to determine the alignment used by the sketch
system. A sample extracted alignment matrix, along with
the truth alignment matrix, is shown in Figure 2.

Alignment is represented as a vector between subse-
quences: A. To extract the alignment from the lan-
guage model, we average the transformer attention matri-
ces connecting x and y at single layer to form a stochas-
tic matrix M ∈ ∆|y|×|x|. We then set the alignment
Abj = bi for the input subsequence with the highest aggregate attention score. Aggregate atten-
tion score is given by norm of the submatrices i.e. ∀bj′ ∈ Bx : ∥Mbj ,bi∥ ≥ ∥Mbj′ ,bi∥.

Guesses and Errors. The generative model is also used to identify tokens where it is most likely
guessing. First we check if the output token j is predicted with probability less than some value γ:

p(yj |y<j , x) < γ (2)

These low-confidence prediction points correlate to long-tail code phenomena, i.e. instances that
arise rarely in the data distribution, and are where the model may have made a translation mistake.
The second case is if the general model is confident, but the program violates a domain specific
heuristic, specifically if the token or its aligned input subsequence reference some entity not de-
scribed in scope. If either of these conditions are satisfied, the tokens in question are marked as
potentially erroneous: E ∈ {0, 1}|y|.

4.2 SKETCH: REASON OVER ALIGNED CANDIDATES

The SKETCH phase produces a full synthesized transpilation using symbolic program solver meth-
ods and information from the GUESS phase. Note that determining full program equivalence is an
undecidable problem, so we focus on solving for errors in individual subsequences By .

Create the sketch. We create a sketch s for each subsequence b ∈ By that has an possible error
from the first stage. The sketch is created from yb by replacing each position in j ∈ b that also
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Algorithm 1 GUESS & SKETCH Pseudocode

procedure GUESS & SKETCH(x)
for y,A,E ∈ GUESS(x) do ▷ produce candidates, alignments, potential errors

for b in By do
if Py ≡ Px then return y

if Ej for any j ∈ b then ▷ identify potential error
bx ← Ab ▷ get aligned input index
s← PLACE HOLES(yb, E) ▷ produce sketch sequence
ϕ← argmaxϕ 1(Pxbx

≡ Pϕ(s)) ▷ solve for solution (synthesizer)
if ϕ success then

y ← UPDATE(b, ϕ(s)) ▷ update subseq.

satisfies Ej ̸= 0 with a hole •, i.e. potentially erroneous tokensn . The correctness specification is
set by the program represented by the aligned input subsequence xbx where Ab = bx. Correctness
specifications must be based on complete semantics, so for input subsequences with out-of-scope
references, we extract the definition of the referenced entity from the full program. The retrieved
entity definition is used to complete the semantics of the correctness specification.

A semantics-aware translator lifts the sketch and correctness specifications into their sketch solver
programmatic representations Ps and Pxbx

, respectively. Details about this translation process for
our assembly language experiments are shared in Appendix A.1.

Solve the sketch. To solve the sketch is to find a mapping ϕ that correctly populates all holes of the
partial program sequence s to satisfy the correctness specification: ∀d ∈ D : Pxbx

(d) = Pϕ(s)(d).

If a solution populating all holes of the partial program sequences is found by the sketch solver,
it is applied to s and the updated subsequence ϕ(s) replaces the subsequence in the full program
sequence. If the subsequence had an out-of-scope reference, the solver would have also resolved a
definition of the referenced entity. The resolved referenced entity definition is also updated in the
full program. In cases where a sketching solution cannot be found, GUESS & SKETCH resorts to
the original prediction. Since our method always at least defaults to the original generation, the
correctness of GUESS & SKETCH is lower-bounded by the correctness of the initial guess. This full
process is summarized in Algorithm 1.

5 EXPERIMENTAL SETUP

Dataset Our experiments focus on transpilation between real programs compiled to different ISAs,
specifically the ARMv8 and RISC-V assembly languages. ARMv8 and RISC-V are both reduced in-
struction set architectures (ISAs), and have some similarities in instructions (Hennessy & Patterson,
2011). We construct training and evaluation datasets for this task.

Test Dataset # Avg len In Out

Unix Commands 11 96 ✓ ✓
Project Euler 45 159 ✓
Benchmarks 16 484 ✓ ✓

Figure 3: Test sets for transpilation. Length is
measured as number of lines in the assembly file,
and is averaged across both ARMv8 and RISC-V
architectures under the -O0 optimization flag.

Training data is composed of 307,916 ARMv8
and RISC-V assembly file pairs compiled
from C code files from The Stack (Ko-
cetkov et al., 2022). All selected source C
files can be independently compiled to as-
sembly using the standard C libraries (e.g.
stdlib, stdio). The C files are compiled
to both ARMv8 and RISC-V target archi-
tecture assembly files under the -O0, -O1,
-O2, and -O3 optimization flags using cross-
compilers aarch64-linux-gnu-gcc and
riscv64-linux-gu-gcc. The resulting dataset is shared on HuggingFace3.

Inference of the system is evaluated on 3 different test sets, summarized in Table 3. Code is emulated
in Docker images with QEMU Bellard (2005). Project Euler is constructed from 45 C implementa-

3https://huggingface.co/datasets/celinelee/paired arm risc
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RISC-V to ARMv8 ARMv8 to RISC-V

Method Proj. Euler Benchmx Unix Cmds Proj. Euler Benchmx Unix Cmds

Few-shot (GPT4) 11.1% 0 18.2% 4.44% 0 27.3%
Transpiler - - - 24.4% 12.5% 54.5%
FT StarCoder 8.9% 0 36.4% 8.9% 0 36.4%
FT CodeLLaMA 11.1% 0 36.4% 2.2% 0 36.4%
Encoder-Decoder 68.9% 6.3% 36.4% 66.7% 6.25% 81.2%
GUESS & SKETCH 80% 18.8% 81.2% 75.6% 25.0% 81.2%

Table 1: Main Transpilation results on full program accuracy (Project Euler, Benchmarks, and Unix
Commands test sets). Bold shows best results with p < 0.01 significance.

tions of Project Euler mathematical challenge problems4. Benchmarks is 16 C implementations of
programs in The Computer Language 23.03 Benchmarks Game5. Unix Commands is 11 C imple-
mentations of Basic Unix commands6.

For verification, all test sets are cross-compiled to the ARMv8 and RISC-V architectures under the
-O0 flag. System performance is measured by execution output match. We sample the top 100
candidate guesses for a given full assembly file.

System We experiment with two different types of generative language models: a smaller trans-
former encoder-decoder model with a bidirectional encoder and autoregressive decoder based on the
BART architecture (Lewis et al., 2019), and a larger transformer decoder-only models pre-trained
on code (Li et al., 2023; Rozière et al., 2023). The first model class is trained from scratch where
the second is pretrained. All language models are trained on one NVIDIA RTX A6000 GPU. The
encoder-decoder models are trained for 156 hours total and the pre-trained decoder-only models are
fine-tuned for 240 hours total. Pre-trained models are fine-tuned with LoRA (Hu et al., 2022). De-
tails of training are shown in Table 4. All resulting models are shared on Huggingface 7. We use
confidence threshold γ = 0.9, although we found that it was not critical for accuracy. Additional γ
experiments are in Appendix A.

The symbolic solver is built with Rosette (Torlak & Bodik, 2013), a programming language for
synthesis and verification built on top of the Z3 (de Moura & Bjørner, 2008) SMT solver. The input
space is restricted to 16-bit bitvectors, consistent with the register sizes of the ARMv8 and RISC-V
architectures used.

Baselines We consider several alternate approaches to assembly transpilation. With Few-shot
learning (Brown et al., 2020), we prompt GPT-4 (OpenAI, 2023) with instructions and a couple
of examplar input-output assembly pairs to obtain a transpilation for a given input assembly file.
See details of the specific prompt in Appendix D.1. Transpilers are manually-engineered transpilers
that convert the given source assembly to the given target assembly. These are programmatically
written for the specified source-to-target-hardware, so for source-target hardware pairs for which we
cannot find a transpiler, we cannot obtain numbers for this baseline. We use the engineered ArmV8-
to-RISCV64 transpiler written by members of the IBM Research Haifa team 8. We did not find a
transpiler from RISC-V to ARMv8. LM only methods, FT StarCoder (Li et al., 2023), FT CodeL-
LaMA (Rozière et al., 2023), Encoder-Decoder (Lewis et al., 2019), are the purely neural approaches
to machine translation, in which we train or fine-tune a language model with the paired assembly
data. The Encoder-Decoder method is equivalent to just the GUESS method of our approach.

6 RESULTS AND ANALYSIS

Performance of our methods on the test sets are shown in Table 1. GUESS & SKETCH outper-
forms all alternative approaches with 0.01 significance level 9. The Few-shot approach, even with

4https://github.com/eagletmt/project-euler-c
5https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
6https://github.com/yadu007/Basic-Unix-Commands-Implementation
7https://huggingface.co/celinelee/bartlarge {armtorisc/risctoarm} cloze2048
8https://github.com/schorrm/arm2riscv
9According to a two sample z-test.
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Few-shot Starcoder CodeLlama Transpiler Enc-Dec GUESS &
SKETCH

Process Length 2 7 7 0 6 6
Failure 0 0 0 34 0 0

Compile ISA 62 50 57 0 2 2
References 3 5 5 0 11 1

Semantics Copying 0 0 0 0 1 1
Logic 1 5 3 0 3 3
Memory 10 10 9 0 2 2
Math 7 3 0 0 2 3

Correct 5 10 6 11 61 70

Table 2: Analysis of failures by different transpilation methods. Collected on the Project Euler test
set. Categories are listed in order of bottleneck precedence.

the largest existing language model today, GPT-4, cannot successfully perform most transpilations.
GUESS & SKETCH even outperforms the engineered Transpiler, which fails to translate programs
for which it cannot recognize even one instruction. We run several GUESS-only models, compar-
ing from-scratch training to pre-trained models. Interestingly, the fine-tuned pre-trained large lan-
guage models perform much worse than even just the trained smaller encoder-decoder model. The
best-performing baselines is the Encoder-Decoder approach, which we use for the full GUESS &
SKETCH. Further experiments testing the performance gain of GUESS & SKETCH over the Encoder-
Decoder approach on more test programs are shared in Appendix B, and support the same 10%
increase in correct transpilations.

Enc-Dec Output: 
...

  .align  3
.LC1:
  .string  "%d\n"
  .text

...
  lla    a5,.LC1
  fld    fa4,0(a5)
  fmv.d    fa1,fa4
  fmv.d    fa0,fa5
  call    pow@plt

...
<no double-word 
memory block>

...
.LC1:
  .string  "%d\n"

...
  fmov    d1, 5.0e+0
  bl pow

...

Guess & Sketch: 
...

  .align  3
.LC1:
  .string  "%d\n"
  .text

...
  lla    a5,.LC2
  fld    fa4,0(a5)
  fmv.d    fa1,fa4
  fmv.d    fa0,fa5
  call    pow@plt

...
.LC2
  .word 0
  .word 1075052544

Output: RISC-V

Target Output:
...

    lw    a5,-24(s0)
    mv    a1,a5
    lw    a5,-20(s0)
    mv    a2,a5
    sext.w    a3,a2
    sext.w    a5,a1
    bge    a3,a5,.L7

...

Enc-Dec Output: 
...

    lw    a5,-24(s0)
    mv    a4,a5
    lw    a5,-20(s0)
    sext.w    a4,a4
    sext.w    a5,a5
    bge    a4,a5,.L7

...

Output: RISC-V

Input: ARMv8 
...

ldr    w0,[sp,40]
ldr    w2,[sp,44]
ldr    w1,[sp,44]
cmp   w2,w0
csel   w0,w1,w0,ge

...

Input: ARMv8 

Figure 4: Example outputs.

Error Analysis Table 2 clas-
sifies assembly transpilation er-
rors under one of several cat-
egories, determined by bottle-
neck failure reason: mathe-
matic, copying, ISA, references,
logic, memory, and length. See
descriptions of each in Ap-
pendix C and examples in Ap-
pendix C.1.

The encoder-decoder model
(GUESS) makes few ISA mis-
takes, but runs into a number of
errors in semantics and out-of-
scope references, some of which
are resolved by the solver in
GUESS & SKETCH. However,
unless the semantics of all of
its erroneous subsequences are
resolved, an incorrect transpi-
lation is not corrected. That is, even though mathematically erroneous subsequences are being
resolved across the examples in the test sets, if the bottleneck problem is not resolved or not all
errors are properly aligned and solved, the transpilation still fails.

Interestingly the other approaches fail to transpile or compile before even reaching semantics. For
few-shot, the model generates invalid instructions, despite the prompt including a translation instruc-
tions as well as multiple exemplar transpilations. Fine-tuning models generate invalid assembly from
pretraining despite the fine-tuning phase. On the other hand, the manually engineered transpiler is
unable to process many examples at all.

Figure 4 shows two example outputs. The left shows a guess that is resolved. The language model
output (bottom, left) predicts tokens for the incorrect global memory reference, highlighted in yel-
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Project Euler
RISC-V to ARMv8 ARMv8 to RISC-V

Encoder-Decoder 30.1 34.3
GUESS & SKETCH 21.3 25.3

Table 3: Average number of samples used by the encoder-decoder and GUESS & SKETCH ap-
proaches for the Project Euler test set. The range is [1, 100]. (Lower is better.)

low. According to the model cross-attention, these tokens most align to those of the corresponding
fmov instruction in the input assembly (top), highlighted in purple. However, in the predicted full
assembly program, no memory location is produced with the double-word IEEE representation for
the desired float 5.0e+0. After resolution with GUESS & SKETCH, a correct memory location is
generated and the memory reference is updated (bottom, right), highlighted in green. The example
on the right shows a problem that GUESS & SKETCH does not resolve. The LM output (bottom, left)
predicts tokens for the register values with low confidence, highlighted in red. A correct solution is
shown (bottom, right). The register use and logic flow is inconsistent.

Sampling Aside from solving more examples in the test dataset, GUESS & SKETCH also reduces
the number of samples needed from the underlying LM. For a set of test examples, they are correctly
transpiled using the encoder-decoder approach only after sufficiently many samples. Using GUESS
& SKETCH, a handful of these are successfully transpiled with fewer samples. Table 3 shows the
average number of samples from the LM used by the encoder-decoder approach and the GUESS &
SKETCH approach during evaluation of the Project Euler test set. Examples that achieve a correct
transpilation after the kth sample are logged to use k samples, and examples that do not achieve a
correct transpilation within 100 samples use 100 samples.

7 LIMITATIONS

While GUESS & SKETCH is significantly more effective than the baseline approaches, there are still
several remaining open challenges.

• The SKETCH method is dependent on alignment with the source sequence. If GUESS fails to
provide an accurate alignment than the sketch may be unable to correct the output issue.

• Memory management issues are hard for the sketch solver. These include reasoning about val-
ues on the stack at any given point in the program, register choice decisions that are incorrectly
propagated during autoregressive generation, and loading memory addresses into the register.

• The best performing model is a mid-size encoder-decoder, which is strong at pattern matching,
but likely cannot perform programmatic reasoning. Potentially larger code models could better
solve some of the symbolic transpilation issues, if instruction hallucinations could be reduced.

• GUESS & SKETCH is limited in length by the context length of generative language models. Using
convolutional methods such as SLeD (Ivgi et al., 2022) could resolve these mistakes in practice.

• We have no formal proof of equivalence, only checking on a small finite set of inputs.

8 CONCLUSION

In this work, we present GUESS & SKETCH, a neurosymbolic approach to assembly-to-assembly
transpilation. GUESS & SKETCH extracts alignment and confidence information from a language
model to guide a symbolic solver. We demonstrate the efficacy of this approach on three different
test sets of assembly programs in the ARMv8 and RISC-V architectures. Future work to build on
this approach is to identify and use patterns in the decoder attention of the language model that may
be helpful for the solver, such as live variable analysis (Aho et al., 2006) patterns. Other future work
may include transpiling to or from higher levels of code optimization and devising a mechanism to
reason about more elements of the machine state, such as values on the stack.
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jar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical ma-
chine translation. In Proceedings of the 45th Annual Meeting of the Association for Com-
putational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pp.
177–180, Prague, Czech Republic, June 2007. Association for Computational Linguistics. URL
https://aclanthology.org/P07-2045.

Celine Lee, Justin Gottschlich, and Dan Roth. Toward code generation: A survey and lessons from
semantic parsing, 2021.

11

https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/2020.findings-emnlp.139
https://aclanthology.org/2020.findings-emnlp.139
https://openreview.net/forum?id=q79uMSC6ZBT
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.1145/3563943
https://doi.org/10.1145/3563943
https://doi.org/10.1145/2661136.2661148
https://doi.org/10.1145/2661136.2661148
https://aclanthology.org/P07-2045


Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461, 2019.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Lo-
gesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra
Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luc-
cioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor,
Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex
Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes,
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A IMPLEMENTATION DETAILS OF GUESS & SKETCH FOR ASSEMBLY

Function boundaries. The length of assembly files often well exceeds the context window size
of the language model. To handle this issue, we perform translation through the language model by
separating functions from one another and translating them individually. This decision is grounded
in the fact that for the ISAs tested, most information in the functions is independent of instructions
in other functions. This is especially true with regard to the general structure of the computations
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assembly functions. In inference, the models are passed separated assembly functions, and the
resulting function translations are concatenated back together to compose the full assembly program.
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Confidence threshold: γ The underlying language model can be very confident about incorrect
predictions (Johnson et al., 2023; Vasconcelos et al., 2023). In the assembly translation setting,
this often happens for example when referencing out-of-scope entities, as described at the end of
Section 4.1. This is why domain specific heuristics can help the GUESS & SKETCH system iden-
tify which basic blocks to correct. To evaluate the effect of γ on system performance, we sweep
γ = [0.8, 0.9, 0.95] with the Project Euler test set. A lower γ would flag fewer potential errors for
correction, which may reduce or maintain the number of instances of sketching. Fewer sketching
instances may result in fewer corrections, but has the benefit of reduced computation time. We find
that across these γ values, the number of corrected programs is the same, but the inference runtime
increases with γ. From 0.8 to 0.95, the inference time increases by 2.2x.

A.1 ALIGNED SEQUENCES IN ASSEMBLY: PURE BASIC BLOCKS

Assembly basic blocks are sequences of code lines that have a single entry point and single exit
point. That is, there are no branching operations within the code sequence (Patterson & Hennessy,
1990). We introduce pure basic blocks, a subset of basic blocks defined as sequences of assembly
code lines that have a single entry point, a single exit point, and no memory or stack management
within the code sequence. This constrains pure basic blocks to be code sequences in which all data is
either passed in via values already loaded into registers, or constant values coded into the sequence.
This decision to remove memory operations and other control flow instructions greatly simplifies
the equivalence relation between source and target subsequences.

Identifying out-of-scope references. In the context of assembly, out-of-scope references as po-
tential mistakes are classified as any piece of code that use or reference global memory. Examples
include the lla instruction in the RISC-V architecture or custom string or function definitions.

Extract pure basic blocks. From a given token in the sequence, we identify the surrounding
pure basic block by inspecting the neighboring assembly lines. We greedily search lines upward and
downward from the given token until one matches a section boundary definition, branching, memory
management, or stack management operation. The enclosing lines comprise the pure basic block.

We identify pure basic block inputs and outputs as values in relevant registers upon input and upon
exit. Free registers in the basic block are registers that are read from before they are assigned to,
and are considered inputs to the pure basic block. Values in the final registers of aligned pure basic
blocks are considered the outputs of the pure basic block.

For pure basic blocks with global references, semantics of the referenced entities are extracted from
the full program sequence by performing a string-matching search for the referenced label and its
following definition.

Translating pure basic blocks. We lift assembly blocks from their corresponding hardware lan-
guages into an intermediate form usable by the synthesis engine. In this work, pure basic blocks
that may be marked as potentially erroneous can be marked due to either global references or low-
confidence token predictions.

Potential errors due to global references are solved using a custom solver designed for resolving
global references. Pure basic blocks with global references must include the definition of the refer-
enced entity in its semantics. The aligned entity on the input side, whether retrieved from its global
definition or directly obtained from the input pure basic block, is translated into its bitvector repre-
sentation. The pure basic block sequence and the bitvector representation of the correct entity value
are passed to the global reference solver.

Potential errors due to low-confidence token predictions are solved using the Rosette (Torlak &
Bodik, 2013) program synthesis engine. Aligned input and output sketch subsequences xpx

and s
are lifted into Rosette functions Pxpx

and Ps, where Ps is a partial program with holes replaced
by Rosette symbolic constants. The lifting is done by mapping each assembly line to its Rosette
counterpart according to the semantics of the corresponding assembly hardware ISA.

Solving the sketch. The global reference solver solves for hole mappings in output pure basic
block sketch by either resolving the global reference label used or directly translating the entity
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                           ARMv8 to Rosette

f?mov rd,imm        [rd (imm)]
sxtw rd,rs          [rd (sign-extend rs (bitvector 64))]
movk rd,hex,lsl imm [rd (concat (extract 63 32 rd) (bvor 

         (extract 31 0 rd) (bvshl hex imm)))] 
lsl rd,rs,imm       [rd (bvshl rs imm)]
lsr rd,rs,imm       [rd (bvlshr rs imm)]
asr rd,rs,imm       [rd (bvashr rs imm)]
f?add rd,rs1,rs1    [rd (bvadd rs1 rs2)]

...

                      RISC-V to Rosette

li rd,imm         [rd (imm)]
sext.w rd,rs      [rd (sign-extend rs (bitvector 64))]
slti rd,rs,imm    [rd (bool->bitvector (bvslt rs imm))]
slli rd,rs,imm    [rd (bvshl rs imm)]
srli rd,rs,imm    [rd (bvlshr rs imm)]
srai rd,rs,imm    [rd (bvashr rs imm)]
f?add rd,rs1,rs1  [rd (bvadd rs1 rs2)]
f?neg rd,rs       [rd (bvneg rs)]

...

<src_rosette_sequence>

<tgt_rosette_sequence>

<src_input_regs>
<src_output_reg>

<src_lang>

<tgt_input_regs>
<tgt_output_reg><tgt_lang>

Figure 5: Assembly instructions are mapped to Rosette instructions according to the semantics of
the corresponding assembly hardware ISA (sample shown at top). Holes in the sequence (indicated
in dashed red rectangles) are translated into Rosette symbolic constants. The resulting Rosette in-
structions, along with the input and output registers, are plugged into a Rosette function template
(bottom) to generate a full Rosette program whose solution produces a corrected mapping from
holes to values.

Model (# params) L.R. Batch No. Steps LoRA r LoRA Modules Quant.

Enc-Decoder (400M) 3e-5 8 520k - - -
Starcoder-Base (15.5B) 5e-6 16 2.9k 16 c_proj,c_attn,q_attn int8
CodeLlama (13B) 5e-6 16 2.9k 16 q_proj,v_proj int8

Table 4: Training details for language models used.

in the block. If the erroneous token in the output pure basic block is a reference label, the solver
searches for entity definitions in the full generated program sequence whose bitvector representation
matches the desired bitvector value set by the input sequence. If it finds a match, the label of the
identified definition replaces the hole left in the sketch. If the solver does not find a match, it creates
a new global definition with a unique label, and uses that label to replace the hole left in the sketch.
If the erroneous token in the output pure basic block is a numerical value, the solver translates the
desired bitvector value set by the input sequence into the representation expected by the ISA and
replaces the hole left in the sketch with the resulting value.

Sketches for errors due to low-confidence tokens are solved by Rosette. Rosette solves for the hole
mappings by ensuring that for all program inputs, the two functions are equivalent. This process is
shown in Figure 5.

A.2 MODEL TRAINING DETAILS

Details about training the generative language models are shared in Table 4

B ADDITIONAL EXPERIMENTS

To further test the benefit of GUESS & SKETCH over just the language model approach, we run
experiments with more Project Euler examples. We collect solutions to 82 additional unique Project
Euler problems implemented in C 10, and compile them to the ARMv8 and RISC-V ISAs under

10https://github.com/LaurentMazare/ProjectEuler/tree/master
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Method RISC-V to ARMv8 ARMv8 to RISC-V

Encoder-Decoder 34.1% 37.8%
GUESS & SKETCH 41.5% 51.2%

Table 5: Performance on More Project Euler problems.

the -O0 optimization flag. The average number of lines in these programs is 246. The results of
running the strongest baseline and our method are shown in Table 5. GUESS & SKETCH continues
to provide performance gains averaging approximately 10%.

C CATEGORIZATION OF FAILED TRANSPILATIONS

Failed transpilations are categorized under one of several bottleneck failure reasons, listed in order
of precedence. Process failures include length and process failure, in which the very process of
transpilation fails on the given input. If an example does not encounter process failure, the next
category is compilation failures including using the incorrect ISA instructions or global references.
If the example successfully compiles, the next category of failures it may encounter is semantic
failures including mathematic reasoning, copying, operational logic, and memory mis-management.
These categories are further described below.

Length. Some transpilation methods suffer from long input and output sequences. For example,
current attention-based language models generally have a context window limit, so sequences that
exceed that context window length will not be able to be processed by the language model.

Process failure. Examples that fall under this category are ones where the transpilation process
fails when processing the input, such as the rules-based transpiler that breaks down upon receiving
an input that it cannot parse.

Incorrect ISA. In assembly transpilation, the produced sequences must use exactly the instruc-
tions and entities available to the hardware in question. Failure examples that fall under this category
produce sequences mistakenly use syntax that is incorrect or that actually belongs to a different ISA.

Global references. Assembly programs might make references to entities that are invalid, or oth-
erwise use or define global reference labels incorrectly. In these cases, the program will fail.

Mathematic. Math errors are ones in which the translation process fails to correctly perform the
required mathematic reasoning for a translation. Examples include translating code idioms such as
different implementations of division (Möller & Granlund, 2011), addition and subtraction of large
constants, and translation of float values to their IEEE 754 representations (iee, 1985).

Copying. Copying errors are ones in which part of the input sequence fails to be copied to the out-
put sequence. Examples include copying of constant strings, constant numeric values, and custom
function names.

Incorrect operation or register logic. The produced assembly sequence may use syntactically
valid but semantically incorrect logic. These logical errors involve incorrect register or operation
use, and the subsequent propagation of such mistakes.

Memory mis-management. Assembly code must be able to reason about values in memory and
manage memory access. Errors in this category are indicated by attempts to access memory at
incorrect or invalid stack or memory locations, which may yield stash smashing, stack overflow, or
segmentation faults in the latter, and unexpected values in either case.

C.1 EXAMPLE ERRONEOUS TRANSPILATIONS

In this section, we include more example erroneous transpilations from different methods.
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LLM output: RISC-V 
...

    addi  a4,s0,-40
    lbu   a5,0(a4+a5)
    sub   a5,a5,64
    lw    a4,-64(s0)

...

(a) Arguments are invalid.

...
  main:    
    addi sp,sp,-8272
    sd   ra,8264(sp)
    sd   r0,8256(sp)
    sd   s1,8248(sp)
    addi s0,sp,8272

...

(b) Offset values are out of range.

Figure 6: The fine-tuned pre-trained code models tend to use instructions from ISAs other than the
one which it is directed to use. Underlined arguments indicate invalid productions.

Mistakes from fine-tuned code LLMs. Pre-trained code language models, even after fine-tuning
with examples in domain, tend to make more ISA mistakes than do other methods. Figure 6 shows
two examples of erroneous generated code from a fine-tuned Starcoder-Base method. Figure 6a
shows an example of the fine-tuned Starcoder-Base method producing code that is largely correct,
but violates syntactic rules of the target hardware (RISC-V) by using added-register offsets for the
lbu instructions. The syntax of RISC-V 64 does not allow register value addition for loading
unsigned bytes by address. It also only allows subtraction by a specified register value rather than
an immediate. Figure 6b shows code that allocates then uses a large stack space, but in doing
so actually violates syntactic rules of the target hardware (RISC-V) by using an immediate value
outside the legal 12-bit immediate ranges for the addi and sd instructions.

D BASELINE IMPLEMENTATION DETAILS

D.1 PROMPTING GPT-4

The prompt used to extract translations from GPT-4 for Arm to RISC-V is as follows. For function
translations:

You a r e a b l e t o t r a n s l a t e as sembly code from ARMv8 t o RISC−V 6 4 .

ARMv8:
main :\ n . LFB0 :\ n\ t . c f i s t a r t p r o c \n\ t s t p \ tx29 , x30 , [ sp , −48]!\ n\ t .

c f i d e f c f a o f f s e t 48\n\ t . c f i o f f s e t 29 , −48\n\ t . c f i o f f s e t 30 , −40\n
\ tmov\ tx29 , sp\n\ t a d r p \ tx0 , : g o t : s t a c k c h k g u a r d \n\ t l d r \ tx0 , [ x0 ,
# : g o t l o 1 2 : s t a c k c h k g u a r d ]\ n\ t l d r \ tx1 , [ x0 ]\ n\ t s t r \ tx1 , [ sp , 40]\ n
\ tmov\ tx1 , 0\n\ t a d r p \ tx0 , . LC0\n\ t a d d \ tx0 , x0 , : l o12 : . LC0\n\ t b l \
t p r i n t f \n\ t a d d \ tx0 , sp , 24\n\ tmov\ tx1 , x0\n\ t a d r p \ tx0 , . LC1\n\ t a d d \
tx0 , x0 , : l o12 : . LC1\n\ t b l \ t i s o c 9 9 s c a n f \n\ t l d r \ tw0 , [ sp , 24]\ n\ tmov
\ tw1 , 34953\n\ tmovk\ tw1 , 0x8888 , l s l 16\n\ t s m u l l \ tx1 , w0 , w1\n\ t l s r \
tx1 , x1 , 32\n\ t a d d \ tw1 , w0 , w1\n\ t a s r \ tw1 , w1 , 4\n\ t a s r \ tw0 , w0 , 31\n
\ t s u b \ tw1 , w1 , w0\n\ tmov\ tw0 , 1500\n\ tmul \ tw0 , w1 , w0\n\ t s t r \ tw0 , [ sp
, 28]\ n\ t l d r \ tw1 , [ sp , 24]\ n\ tmov\ tw0 , 34953\n\ tmovk\ tw0 , 0x8888 , l s l
16\n\ t s m u l l \ tx0 , w1 , w0\n\ t l s r \ tx0 , x0 , 32\n\ t a d d \ tw0 , w1 , w0\n\ t a s r

\ tw2 , w0 , 4\n\ t a s r \ tw0 , w1 , 31\n\ t s u b \ tw2 , w2 , w0\n\ tmov\ tw0 , w2\n\
t l s l \ tw0 , w0 , 4\n\ t s u b \ tw0 , w0 , w2\n\ t l s l \ tw0 , w0 , 1\n\ t s u b \ tw2 , w1 ,
w0\n\ tmov\ tw0 , w2\n\ t l s l \ tw0 , w0 , 2\n\ t a d d \ tw0 , w0 , w2\n\ t l s l \ tw0 , w0
, 3\n\ t s t r \ tw0 , [ sp , 32]\ n\ t l d r \ tw1 , [ sp , 28]\ n\ t l d r \ tw0 , [ sp , 32]\ n\
t a d d \ tw0 , w1 , w0\n\ t s t r \ tw0 , [ sp , 36]\ n\ t l d r \ tw1 , [ sp , 36]\ n\ t a d r p \
tx0 , . LC2\n\ t a d d \ tx0 , x0 , : l o12 : . LC2\n\ t b l \ t p r i n t f \n\ tmov\ tw0 , 0\n\
tmov\ tw1 , w0\n\ t a d r p \ tx0 , : g o t : s t a c k c h k g u a r d \n\ t l d r \ tx0 , [ x0 , # :
g o t l o 1 2 : s t a c k c h k g u a r d ]\ n\ t l d r \ tx3 , [ sp , 40]\ n\ t l d r \ tx2 , [ x0 ]\ n\
t s u b s \ tx3 , x3 , x2\n\ tmov\ tx2 , 0\n\ t b e q \ t . L3\n\ t b l \ t s t a c k c h k f a i l \n
. L3 :\ n\ tmov\ tw0 , w1\n\ t l d p \ tx29 , x30 , [ sp ] , 48\n\ t . c f i r e s t o r e 30\n\ t
. c f i r e s t o r e 29\n\ t . c f i d e f c f a o f f s e t 0\n\ t r e t \n\ t . c f i e n d p r o c \n
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RISC−V 6 4 :
main :\ n\ t a d d i \ t s p , sp , −48\n\ t s d \ t r a , 4 0 ( sp ) \n\ t s d \ t s 0 , 3 2 ( sp ) \n\ t a d d i \ t s 0 , sp

, 4 8\ n\ t l a \ t a5 , s t a c k c h k g u a r d \n\ t l d \ t a4 , 0 ( a5 ) \n\ t s d \ t a4 , −24( s0 ) \n
\ t l i \ t a4 , 0\n\ t l l a \ t a0 , . LC0\n\ t c a l l \ t p r i n t f @ p l t \n\ t a d d i \ t a5 , s0 , −40\n\
tmv\ t a1 , a5\n\ t l l a \ t a0 , . LC1\n\ t c a l l \ t i s o c 9 9 s c a n f @ p l t \n\ t l w \ t a5 , −40(
s0 ) \n\ tmv\ t a4 , a5\n\ t l i \ t a5 , 3 0\ n\ t d ivw \ t a5 , a4 , a5\n\ t s e x t .w\ t a4 , a5\n\
t l i \ t a5 ,1500\ n\ tmulw\ t a5 , a4 , a5\n\ t sw\ t a5 , −36( s0 ) \n\ t l w \ t a5 , −40( s0 ) \n\
tmv\ t a4 , a5\n\ t l i \ t a5 , 3 0\ n\ tremw\ t a5 , a4 , a5\n\ t s e x t .w\ t a5 , a5\n\ tmv\ t a4 ,
a5\n\ tmv\ t a5 , a4\n\ t s l l i w \ t a5 , a5 , 2\ n\ taddw\ t a5 , a5 , a4\n\ t s l l i w \ t a5 , a5
, 3\ n\ t sw\ t a5 , −32( s0 ) \n\ t l w \ t a5 , −36( s0 ) \n\ tmv\ t a4 , a5\n\ t l w \ t a5 , −32( s0 )
\n\ taddw\ t a5 , a4 , a5\n\ t sw\ t a5 , −28( s0 ) \n\ t l w \ t a5 , −28( s0 ) \n\ tmv\ t a1 , a5\n
\ t l l a \ t a0 , . LC2\n\ t c a l l \ t p r i n t f @ p l t \n\ t l i \ t a5 , 0\ n\ tmv\ t a4 , a5\n\ t l a \ t a5
, s t a c k c h k g u a r d \n\ t l d \ t a3 , −24( s0 ) \n\ t l d \ t a5 , 0 ( a5 ) \n\ t x o r \ t a5 , a3
, a5\n\ t l i \ t a3 , 0\n\ t b e q \ t a5 , ze ro , . L3\n\ t c a l l \ t s t a c k c h k f a i l @ p l t \n
. L3 :\ n\ tmv\ t a0 , a4\n\ t l d \ t r a , 4 0 ( sp ) \n\ t l d \ t s 0 , 3 2 ( sp ) \n\ t a d d i \ t s p , sp
, 4 8\ n\ t j r \ t r a \n

ARMv8:
main :\ n . LFB6 :\ n\ t . c f i s t a r t p r o c \n\ t s t p \ tx29 , x30 , [ sp , −64]!\ n\ t .

c f i d e f c f a o f f s e t 64\n\ t . c f i o f f s e t 29 , −64\n\ t . c f i o f f s e t 30 , −56\n
\ tmov\ tx29 , sp\n\ t a d r p \ tx0 , : g o t : s t a c k c h k g u a r d \n\ t l d r \ tx0 , [ x0 ,
# : g o t l o 1 2 : s t a c k c h k g u a r d ]\ n\ t l d r \ tx1 , [ x0 ]\ n\ t s t r \ tx1 , [ sp , 56]\ n
\ tmov\ tx1 , 0\n\ t a d r p \ tx0 , . LC0\n\ t a d d \ tx0 , x0 , : l o12 : . LC0\n\ t b l \
t p r i n t f \n\ t a d d \ tx0 , sp , 20\n\ tmov\ tx1 , x0\n\ t a d r p \ tx0 , . LC1\n\ t a d d \
tx0 , x0 , : l o12 : . LC1\n\ t b l \ t i s o c 9 9 s c a n f \n\ t l d r \ tw0 , [ sp , 20]\ n\ tmov
\ tw1 , w0\n\ t a d r p \ tx0 , . LC2\n\ t a d d \ tx0 , x0 , : l o12 : . LC2\n\ t b l \ t p r i n t f \n
\ t a d r p \ tx0 , . LC3\n\ t a d d \ tx0 , x0 , : l o12 : . LC3\n\ t b l \ t p r i n t f \n\ t a d d \ tx0 ,

sp , 19\n\ tmov\ tx1 , x0\n\ t a d r p \ tx0 , . LC4\n\ t a d d \ tx0 , x0 , : l o12 : . LC4\n
\ t b l \ t i s o c 9 9 s c a n f \n\ t l d r b \ tw0 , [ sp , 19]\ n\ tmov\ tw1 , w0\n\ t a d r p \ tx0
, . LC5\n\ t a d d \ tx0 , x0 , : l o12 : . LC5\n\ t b l \ t p r i n t f \n\ t a d r p \ tx0 , . LC6\n\
t a d d \ tx0 , x0 , : l o12 : . LC6\n\ t b l \ t p r i n t f \n\ t a d d \ tx0 , sp , 24\n\ tmov\ tx1 ,

x0\n\ t a d r p \ tx0 , . LC7\n\ t a d d \ tx0 , x0 , : l o12 : . LC7\n\ t b l \
t i s o c 9 9 s c a n f \n\ t l d r \ td0 , [ sp , 24]\ n\ t a d r p \ tx0 , . LC8\n\ t a d d \ tx0 , x0
, : l o12 : . LC8\n\ t b l \ t p r i n t f \n\ t a d r p \ tx0 , . LC9\n\ t a d d \ tx0 , x0 , : l o12 : .
LC9\n\ t b l \ t p r i n t f \n\ t a d r p \ tx0 , : g o t : s t d i n \n\ t l d r \ tx0 , [ x0 , # : g o t l o 1 2
: s t d i n ]\ n\ t l d r \ tx1 , [ x0 ]\ n\ t a d d \ tx0 , sp , 32\n\ tmov\ tx2 , x1\n\ tmov\ tw1
, 20\n\ t b l \ t f g e t s \n\ t a d d \ tx0 , sp , 32\n\ tmov\ tx1 , x0\n\ t a d r p \ tx0 , .
LC10\n\ t a d d \ tx0 , x0 , : l o12 : . LC10\n\ t b l \ t p r i n t f \n\ tmov\ tw0 , 0\n\ tmov\
tw1 , w0\n\ t a d r p \ tx0 , : g o t : s t a c k c h k g u a r d \n\ t l d r \ tx0 , [ x0 , # :
g o t l o 1 2 : s t a c k c h k g u a r d ]\ n\ t l d r \ tx3 , [ sp , 56]\ n\ t l d r \ tx2 , [ x0 ]\ n\
t s u b s \ tx3 , x3 , x2\n\ tmov\ tx2 , 0\n\ t b e q \ t . L3\n\ t b l \ t s t a c k c h k f a i l \n
. L3 :\ n\ tmov\ tw0 , w1\n\ t l d p \ tx29 , x30 , [ sp ] , 64\n\ t . c f i r e s t o r e 30\n\ t
. c f i r e s t o r e 29\n\ t . c f i d e f c f a o f f s e t 0\n\ t r e t \n\ t . c f i e n d p r o c \n

RISC−V 6 4 :
main :\ n\ t a d d i \ t s p , sp , −64\n\ t s d \ t r a , 5 6 ( sp ) \n\ t s d \ t s 0 , 4 8 ( sp ) \n\ t a d d i \ t s 0 , sp

, 6 4\ n\ t l a \ t a5 , s t a c k c h k g u a r d \n\ t l d \ t a4 , 0 ( a5 ) \n\ t s d \ t a4 , −24( s0 ) \n
\ t l i \ t a4 , 0\n\ t l l a \ t a0 , . LC0\n\ t c a l l \ t p r i n t f @ p l t \n\ t a d d i \ t a5 , s0 , −60\n\
tmv\ t a1 , a5\n\ t l l a \ t a0 , . LC1\n\ t c a l l \ t i s o c 9 9 s c a n f @ p l t \n\ t l w \ t a5 , −60(
s0 ) \n\ tmv\ t a1 , a5\n\ t l l a \ t a0 , . LC2\n\ t c a l l \ t p r i n t f @ p l t \n\ t l l a \ t a0 , . LC3\
n\ t c a l l \ t p r i n t f @ p l t \n\ t a d d i \ t a5 , s0 , −61\n\ tmv\ t a1 , a5\n\ t l l a \ t a0 , . LC4\n
\ t c a l l \ t i s o c 9 9 s c a n f @ p l t \n\ t l b u \ t a5 , −61( s0 ) \n\ t s e x t .w\ t a5 , a5\n\ tmv\
t a1 , a5\n\ t l l a \ t a0 , . LC5\n\ t c a l l \ t p r i n t f @ p l t \n\ t l l a \ t a0 , . LC6\n\ t c a l l \
t p r i n t f @ p l t \n\ t a d d i \ t a5 , s0 , −56\n\ tmv\ t a1 , a5\n\ t l l a \ t a0 , . LC7\n\ t c a l l \
t i s o c 9 9 s c a n f @ p l t \n\ t f l d \ t f a 5 , −56( s0 ) \n\ t fmv . x . d\ t a1 , f a 5 \n\ t l l a \ t a0
, . LC8\n\ t c a l l \ t p r i n t f @ p l t \n\ t l l a \ t a0 , . LC9\n\ t c a l l \ t p r i n t f @ p l t \n\ t l a \
t a5 , s t d i n \n\ t l d \ t a4 , 0 ( a5 ) \n\ t a d d i \ t a5 , s0 , −48\n\ tmv\ t a2 , a4\n\ t l i \ t a1
, 2 0\ n\ tmv\ t a0 , a5\n\ t c a l l \ t f g e t s @ p l t \n\ t a d d i \ t a5 , s0 , −48\n\ tmv\ t a1 , a5\n
\ t l l a \ t a0 , . LC10\n\ t c a l l \ t p r i n t f @ p l t \n\ t l i \ t a5 , 0\ n\ tmv\ t a4 , a5\n\ t l a \
t a5 , s t a c k c h k g u a r d \n\ t l d \ t a3 , −24( s0 ) \n\ t l d \ t a5 , 0 ( a5 ) \n\ t x o r \ t a5 ,

a3 , a5\n\ t l i \ t a3 , 0\n\ t b e q \ t a5 , ze ro , . L3\n\ t c a l l \
t s t a c k c h k f a i l @ p l t \n . L3 :\ n\ tmv\ t a0 , a4\n\ t l d \ t r a , 5 6 ( sp ) \n\ t l d \ t s 0
, 4 8 ( sp ) \n\ t a d d i \ t s p , sp , 6 4\ n\ t j r \ t r a \n

ARMv8:

18



b :\ n\ t . z e r o \ t 8 \n\ t . g l o b a l \ t c \n\ t . a l i g n \ t 3 \n\ t . t y p e \ t c , %o b j e c t \n\ t . s i z e \
t c , 8\n

RISC−V 6 4 :
b :\ n\ t . z e r o \ t 8 \n\ t . g l o b l \ t c \n\ t . a l i g n \ t 3 \n\ t . t y p e \ t c , @object\n\ t . s i z e \ t c

, 8\n

ARMv8:
foo :\ n . LFB0 :\ n\ t . c f i s t a r t p r o c \n\ t s t p \ tx29 , x30 , [ sp , −16]!\ n\ t .

c f i d e f c f a o f f s e t 16\n\ t . c f i o f f s e t 29 , −16\n\ t . c f i o f f s e t 30 , −8\n\
tmov\ tx29 , sp\n\ t a d r p \ tx0 , g l o b a l \n\ t a d d \ tx0 , x0 , : l o12 : g l o b a l \n\ t b l \
t b a r \n\ t a d r p \ tx0 , g l o b a l 2 \n\ t a d d \ tx0 , x0 , : l o12 : g l o b a l 2 \n\ t b l \ t b a r \
n\ t a d r p \ tx0 , : g o t : g l o b a l 3 \n\ t l d r \ tx0 , [ x0 , # : g o t l o 1 2 : g l o b a l 3 ]\ n\
t b l \ t b a r \n\ t a d r p \ tx0 , g l o b a l 5 \n\ t a d d \ tx0 , x0 , : l o12 : g l o b a l 5 \n\ t b l \
t b a r \n\ t a d r p \ tx0 , g l o b a l 6 \n\ t a d d \ tx0 , x0 , : l o12 : g l o b a l 6 \n\ t b l \ t b a r \
n\ t nop \n\ t l d p \ tx29 , x30 , [ sp ] , 16\n\ t . c f i r e s t o r e 30\n\ t . c f i r e s t o r e
29\n\ t . c f i d e f c f a o f f s e t 0\n\ t r e t \n\ t . c f i e n d p r o c \n

RISC−V 6 4 :
foo :\ n\ t a d d i \ t s p , sp , −16\n\ t s d \ t r a , 8 ( sp ) \n\ t s d \ t s 0 , 0 ( sp ) \n\ t a d d i \ t s 0 , sp

, 1 6\ n\ t l l a \ t a0 , g l o b a l \n\ t c a l l \ t b a r @ p l t \n\ t l l a \ t a0 , g l o b a l 2 \n\ t c a l l \
t b a r @ p l t \n\ t l a \ t a0 , g l o b a l 3 \n\ t c a l l \ t b a r @ p l t \n\ t l l a \ t a0 , g l o b a l 5 \n\
t c a l l \ t b a r @ p l t \n\ t l l a \ t a0 , g l o b a l 6 \n\ t c a l l \ t b a r @ p l t \n\ t nop \n\ t l d \ t r a
, 8 ( sp ) \n\ t l d \ t s 0 , 0 ( sp ) \n\ t a d d i \ t s p , sp , 1 6\ n\ t j r \ t r a \n

ARMv8:
{ i n s e r t i n p u t code t o t r a n s l a t e }

RISC−V 6 4 :

For outer file translations:

You a r e a b l e t o t r a n s l a t e as sembly code from ARMv8 t o RISC−V 6 4 .

ARMv8:
\ t . a r c h armv8 −a\n\ t . f i l e \ t ” program19928025 . c ”\n\ t . t e x t \n\ t . s e c t i o n \ t .

r o d a t a \n\ t . a l i g n \ t 3 \n . LC0 :\ n\ t . s t r i n g \ t ” E n t e r your age : ”\n\ t . a l i g n \
t 3 \n . LC1 :\ n\ t . s t r i n g \ t ”%d ”\n\ t . a l i g n \ t 3 \n . LC2 :\ n\ t . s t r i n g \ t ”You a r e %
d y e a r s o l d .\\ n ”\n\ t . a l i g n \ t 3 \n . LC3 :\ n\ t . s t r i n g \ t ” E n t e r your g r a d e :
”\n\ t . a l i g n \ t 3 \n . LC4 :\ n\ t . s t r i n g \ t ”%c ”\n\ t . a l i g n \ t 3 \n . LC5 :\ n\ t . s t r i n g
\ t ” Your g r a d e i s : %c ”\n\ t . a l i g n \ t 3 \n . LC6 :\ n\ t . s t r i n g \ t ” E n t e r your gpa
: ”\n\ t . a l i g n \ t 3 \n . LC7 :\ n\ t . s t r i n g \ t ”% l f ”\n\ t . a l i g n \ t 3 \n . LC8 :\ n\ t .
s t r i n g \ t ” Your gpa i s : %l f \\n ”\n\ t . a l i g n \ t 3 \n . LC9 :\ n\ t . s t r i n g \ t ” E n t e r

your name : ”\n\ t . a l i g n \ t 3 \n . LC10 :\ n\ t . s t r i n g \ t ” Your name i s %s ”\n\ t .
t e x t \n\ t . a l i g n \ t 2 \n\ t . g l o b a l \ tma in \n\ t . t y p e \ tmain , %f u n c t i o n \n{main } .
LFE6 :\ n\ t . s i z e \ tmain , . − main\n\ t . i d e n t \ t ”GCC: ( Ubuntu 11 .3 .0 −1 ubuntu1
˜ 2 2 . 0 4 ) 1 1 . 3 . 0 ”\ n\ t . s e c t i o n \ t . n o t e .GNU− s t a c k , ” ” , @progb i t s \n

RISC−V 6 4 :
\ t . f i l e \ t ” program19928025 . c ”\n\ t . o p t i o n p i c \n\ t . t e x t \n\ t . s e c t i o n \ t . r o d a t a

\n\ t . a l i g n \ t 3 \n . LC0 :\ n\ t . s t r i n g \ t ” E n t e r your age : ”\n\ t . a l i g n \ t 3 \n .
LC1 :\ n\ t . s t r i n g \ t ”%d ”\n\ t . a l i g n \ t 3 \n . LC2 :\ n\ t . s t r i n g \ t ”You a r e %d
y e a r s o l d .\\ n ”\n\ t . a l i g n \ t 3 \n . LC3 :\ n\ t . s t r i n g \ t ” E n t e r your g r a d e : ”\n
\ t . a l i g n \ t 3 \n . LC4 :\ n\ t . s t r i n g \ t ”%c ”\n\ t . a l i g n \ t 3 \n . LC5 :\ n\ t . s t r i n g \ t ”
Your g r a d e i s : %c ”\n\ t . a l i g n \ t 3 \n . LC6 :\ n\ t . s t r i n g \ t ” E n t e r your gpa :
”\n\ t . a l i g n \ t 3 \n . LC7 :\ n\ t . s t r i n g \ t ”% l f ”\n\ t . a l i g n \ t 3 \n . LC8 :\ n\ t .
s t r i n g \ t ” Your gpa i s : %l f \\n ”\n\ t . a l i g n \ t 3 \n . LC9 :\ n\ t . s t r i n g \ t ” E n t e r

your name : ”\n\ t . a l i g n \ t 3 \n . LC10 :\ n\ t . s t r i n g \ t ” Your name i s %s ”\n\ t .
t e x t \n\ t . a l i g n \ t 1 \n\ t . g l o b l \ tma in \n\ t . t y p e \ tmain , @func t ion \n{main}\ t
. s i z e \ tmain , . − main\n\ t . i d e n t \ t ”GCC: ( Ubuntu 11 .3 .0 −1 ubuntu1 ˜ 2 2 . 0 4 )
1 1 . 3 . 0 ”\ n\ t . s e c t i o n \ t . n o t e .GNU− s t a c k , ” ” , @progb i t s \n

ARMv8:
\ t . a r c h armv8 −a\n\ t . f i l e \ t ” program12490936 . c ”\n\ t . t e x t \n\ t . s e c t i o n \ t .

r o d a t a \n\ t . a l i g n \ t 3 \n . LC0 :\ n\ t . s t r i n g \ t ” E n t e r t h e d i s t a n c e t h e van
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has t r a v e l l e d : ”\ n\ t . a l i g n \ t 3 \n . LC1 :\ n\ t . s t r i n g \ t ”%d ”\n\ t . a l i g n \ t 3 \n .
LC2 :\ n\ t . s t r i n g \ t ”Amount = %d ”\n\ t . t e x t \n\ t . a l i g n \ t 2 \n\ t . g l o b a l \ tma in
\n\ t . t y p e \ tmain , %f u n c t i o n \n{main } . LFE0 :\ n\ t . s i z e \ tmain , . − main\n\ t .
i d e n t \ t ”GCC: ( Ubuntu 11 .3 .0 −1 ubuntu1 ˜ 2 2 . 0 4 ) 1 1 . 3 . 0 ”\ n\ t . s e c t i o n \ t .
n o t e .GNU− s t a c k , ” ” , @progb i t s \n

RISC−V 6 4 :
\ t . f i l e \ t ” program12490936 . c ”\n\ t . o p t i o n p i c \n\ t . t e x t \n\ t . s e c t i o n \ t . r o d a t a

\n\ t . a l i g n \ t 3 \n . LC0 :\ n\ t . s t r i n g \ t ” E n t e r t h e d i s t a n c e t h e van has
t r a v e l l e d : ”\ n\ t . a l i g n \ t 3 \n . LC1 :\ n\ t . s t r i n g \ t ”%d ”\n\ t . a l i g n \ t 3 \n . LC2 :\
n\ t . s t r i n g \ t ”Amount = %d ”\n\ t . t e x t \n\ t . a l i g n \ t 1 \n\ t . g l o b l \ tma in \n\ t .
t y p e \ tmain , @func t ion \n{main}\ t . s i z e \ tmain , . − main\n\ t . i d e n t \ t ”GCC: (
Ubuntu 11 .3 .0 −1 ubuntu1 ˜ 2 2 . 0 4 ) 1 1 . 3 . 0 ”\ n\ t . s e c t i o n \ t . n o t e .GNU− s t a c k
, ” ” , @progb i t s \n

ARMv8:
\ t . a r c h armv8 −a\n\ t . f i l e \ t ” program14079072 . c ”\n\ t . t e x t \n\ t . g l o b a l \ t b \n\ t .

b s s \n\ t . a l i g n \ t 3 \n\ t . t y p e \ tb , %o b j e c t \n\ t . s i z e \ tb , 8\n{b}{ c}{d}{ e}{ f
} . LFE0 :\ n\ t . s i z e \ t f , . − f \n\ t . i d e n t \ t ”GCC: ( Ubuntu 11 .3 .0 −1 ubuntu1
˜ 2 2 . 0 4 ) 1 1 . 3 . 0 ”\ n\ t . s e c t i o n \ t . n o t e .GNU− s t a c k , ” ” , @progb i t s \n

RISC−V 6 4 :
\ t . f i l e \ t ” program14079072 . c ”\n\ t . o p t i o n p i c \n\ t . t e x t \n\ t . g l o b l \ t b \n\ t . b s s

\n\ t . a l i g n \ t 3 \n\ t . t y p e \ tb , @object\n\ t . s i z e \ tb , 8\n{b}{ c}{d}{ e}{ f }\ t .
s i z e \ t f , . − f \n\ t . i d e n t \ t ”GCC: ( Ubuntu 11 .3 .0 −1 ubuntu1 ˜ 2 2 . 0 4 ) 1 1 . 3 . 0 ”\
n\ t . s e c t i o n \ t . n o t e .GNU− s t a c k , ” ” , @progb i t s \n

ARMv8:
\ t . a r c h armv8 −a\n\ t . f i l e \ t ” program17748089 . c ”\n\ t . t e x t \n\ t . s e c t i o n \ t .

r o d a t a \n\ t . a l i g n \ t 3 \n . LC0 :\ n\ t . s t r i n g \ t ”%f \\n%f \\n%f ”\n\ t . a l i g n \ t 3 \n .
LC1 :\ n\ t . s t r i n g \ t ”% l f ”\n\ t . t e x t \n\ t . a l i g n \ t 2 \n\ t . g l o b a l \ tma in \n\ t .
t y p e \ tmain , %f u n c t i o n \n{main } . LFE0 :\ n\ t . s i z e \ tmain , . − main\n\ t . i d e n t \
t ”GCC: ( Ubuntu 11 .3 .0 −1 ubuntu1 ˜ 2 2 . 0 4 ) 1 1 . 3 . 0 ”\ n\ t . s e c t i o n \ t . n o t e .GNU−
s t a c k , ” ” , @progb i t s \n

RISC−V 6 4 :
\ t . f i l e \ t ” program17748089 . c ”\n\ t . o p t i o n p i c \n\ t . t e x t \n\ t . s e c t i o n \ t . r o d a t a

\n\ t . a l i g n \ t 3 \n . LC0 :\ n\ t . s t r i n g \ t ”%f \\n%f \\n%f ”\n\ t . a l i g n \ t 3 \n . LC1 :\ n
\ t . s t r i n g \ t ”% l f ”\n\ t . t e x t \n\ t . a l i g n \ t 1 \n\ t . g l o b l \ tma in \n\ t . t y p e \ tmain
, @func t ion \n{main}\ t . s i z e \ tmain , . − main\n\ t . i d e n t \ t ”GCC: ( Ubuntu
11 .3 .0 −1 ubuntu1 ˜ 2 2 . 0 4 ) 1 1 . 3 . 0 ”\ n\ t . s e c t i o n \ t . n o t e .GNU− s t a c k , ” ” ,
@progb i t s \n

ARMv8:
{ i n s e r t i n p u t code t o t r a n s l a t e }

RISC−V 6 4 :

The reverse direction reverses source and target language specifications accordingly.
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