A Proofs of Lemmas 2 and 4

Al Proof of Lemma 2

Lemma 2. If (My,)3L is e-dissimilar, then for every p,q € [M], and (s,a) € S x A,
‘Q;(s,a) — Qi(s,0)| < 28,

consequently, |gap,,(s,a) — gapq(s,a)’ < 4He.

Proof. For the first claim, we prove a stronger statement by backward induction on h, namely, for
every p,q € [M],every h € [1, H + 1], and (s,a) € S, x A,

@5 (s,a) = Qp(s,0)| < 2(H — b+ D)e.
Base case: For h = H + 1, we have Q5 (s,a) = 0 for every (s,a) € S, x A, and p € [M]. It
follows trivially that ‘Q;(s, a) = Qy(s,a)| =0<2(H —h+1)e.

Inductive case: Suppose by inductive hypothesis that for some & € [1, H] and, for every (s, a) €
Sps1 x Aandp,q € [M], |Q3(s,a) Q;(s,a)’ < 2(H - h)e.

We first prove the following auxiliary statement: for every s € Sp41 and p, ¢ € [M],
\vp*(s) - Vq*(s)‘ < 2(H — h)e. ©6)

Let a, = argmax,¢ 4 Q;(s,a) and a, = argmax,¢ 4 Q;(s,a). The above auxiliary statement
can be easily proven by contradiction: without loss of generality, suppose that V" (s) — V" (s) =
Qy(s,ap) — Qi (s,aq) > 2(H — h)e. Since Q;(s,a,) > Q5(s,a,) — 2(H — h)e, it follows that
Q5 (s,ap) > Q7 (s, ag), which contradicts the fact that a, = argmax, ¢ 4 Q5 (s,a).

We now return to the inductive proof, and we show that given the inductive hypothesis, for every
(s,a) € Sp x Aand p,q € [M],

|@p(s.0) = Q3s.0)

< |Rp(5,a) - Rq(s,a)| + Z []P’p(s’ | s,a)Vp*(sl) —Pu(s" | S,a)‘/q*(sl):|

s'€Sp41

<e + Z [IP’,,(S' | S,Q)VP*(SI) — Py (s | 57a>‘/p*(5/):| + Z Py(s" | s,a) (Vp*(sl) - Vq*(sl))

S/ESh+1 3/68h+1

)1 Fs.al (ma

ESht1

V(s

p

VX(s') = V(s

p

<ct By | 5,0) — By(- | 5, )l ( max
8/€8h+1

§e+%-H+2(H—h)e
—2(H — h + 1),

where the first inequality follows from Eq. (1) and the triangle inequality; the second inequality
follows from Definition 1 and the triangle inequality; the third inequality follows from Holder’s
inequality; and the fourth inequality uses Definition 1 and Eq. (6).

For the second claim, we note that from the first claim, we have for any p, ¢, s,

= maxQ max Q*(s,a
‘ ) acA p( )
therefore, for any p, g, s, a,

‘gapp(s,a) — gapq(s,a)’ < ‘Vp*(s) — Vq*(s)‘ + ’Q;(s,a) — Q;(s,a)‘ < 4He. O

< 2He,
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A.2 Proof of Lemma 4

Lemma 4. For any (s,a) € I, we have that: (1) for all p € [M), (s,a) & Z, opt, where we recall

that Zy, opt = {(s, a) : gap,(s,a) = 0} is the set of optimal state-action pairs with respect to p; (2)

forallp,q € [M], gap,(s,a) > 38ap,(s, a).

Proof. For any (s, a) € I, there exists some po such that gap,, (s, a) > 96He. Therefore, for every

p € [M],
gap,(s,a) > gap, (s, a),

From Lemma 2 we know that |gap,,(s, a) — gap,, (s, a)| < 4He. Therefore, for all p,

gap,(s,a) > gap,, (s,a) —4He > 92He > 0.
This proves the first item.

For the second item, for all p, ¢ € [M],

gapy(s:0) _ gapy(si0)—4He | AHe 4
gap,(s, a) gap,(s, a) gap, (s, a) 92

l\)\»—t

B Additional Definitions Used in the Proofs

In this section, we define a few useful notations that will be used in our proofs. For state-action pair

(s,a) € S x A, player p € [M], episode k € [K]:

1. Define n* (s, a) (resp. n’; (s, a), P¥, I@”;, RF, R’;) to be the value of n(s,a) (resp. ny(s, a),

P, I@’p, R, Rp) at the beginning of episode k£ of MULTI-TASK-EULER.

—k —k . =
. Dengte by @, (resp. Q’;,VP,K];, 1nd-b’;(s,a), agg—b’;(s,a)) the values of @), (resp.
Qp, Vp, V. ind-b,(s,a), agg-by(s,a)) right after MULTI-TASK-EULER finishes its op-
timistic value iteration (line 15) at episode k.

. Define the surplus [36] (also known as the Bellman error) of (s, a) at episode k and player

p as:
Ek(s7 a) = Qk(s, a) — Ry(s,a) — (]P’pvk)(s, a).

nkES ; be the proportion of player p on (s, a) at the beginning of

. Define wf(s,a) :=

episode k; this induces (s, a)’s mixture expected reward:

M
= Z ’UJ];(S, a)Rq($7 a)a
q=1

and mixture transition probability:

(-] s,a) = Zw (s,a)Py(- | s,0a).

. Define pli (s, a) := P((sn, an) = (s,a) | 7%(p), M) to be the occupancy measure of 7* (p)
over M, on (s,a), where h € [H] is the layer s is in (so that s € Sj). It can be seen that
p’;, when restricted to Sj, X A, is a probability distribution on this set.

Define p* (s, a) := Zgil Pk (s, a); it can be seen that p* (s, a) € [0, M]. Define 7ifi(s, a) :=

Sk pi(s,a), and ik (s, a) := Y5, p/(s,a).}

3These are the cumulative occupancy measures up to episode k, inclusively; this is in contrast with the
definition of n* (s, a) and nf (s, a), which do not count the trajectories observed at episode k.
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6. Define N¥(s) :=>" . 4 n"(s,a) and NF(s) := > . 4 nF(s, a) to be the total number of
encounters of state s by all players, and by player p only, respectively, at the beginning of
episode k.

7. Define N =~ MIn(%35), and No = In(3A5); define 7(s,a) :=
min {k : 7*(s,a) > Ny}, and 7,(s,a) := min {k : T‘L’;(s,a) > NQ}. With high proba-
bility, so long as k > 7(s, a) (resp. k > 7,(s, a)), n*(s,a) and ¥ (s, a) (resp. nllf(s, a) and
ﬁ’;(s, a)) are within a constant factor of each other; see Lemma 11.

8. Define gap,(s,a) := gapfl(;’a) v E8zmin . recall the definitions of gap,(s,a) and gap,, i,

in Section 2.

Define Reg(K, p) := Zle (Vofp — %f: (p )> as player p’s contribution to the collective regret; in
this notation, Reg(K) = Ziwzl Reg(K,p).

Define the clipping function clip(a, A) := al(a > A).

We also adopt the following conventions in our proofs:

1. As e-dissimilarity with ¢ > 2H does not impose any constraints on {./\/lp}gil, throughout
the proof, we only focus on the regime that e < 2.

2. We will use 7% (p) and Tl'Ilf interchangeably. To avoid notational clutter, we will also some-

' k k
times slightly abuse notation and use V;)’TZ, Vp”k to denote V7, @)y ®) respectively.

C Proof of the Upper Bounds

This section establishes the regret guarantees of MULTI-TASK-EULER (Theorems 5 and 6). The
proof follows a similar outline as STRONG-EULER’s analysis [36], with important modifications
tailored to the multitask setting. The proof has the following structure:

1. Subsection C.1 defines a “clean” event F that we show happens with probability 1 —4. When
F happens, the observed samples are representative enough so that standard concentration
inequalities apply. This will serve as the basis of our subsequent arguments.

2. Subsection C.2 shows that when E happens, the value function upper and lower bounds are
valid; furthermore, MULTI-TASK-EULER satisfies strong optimism [36], in that all players’
surpluses are always nonnegative for all state-action pairs at all time steps.

3. Subsection C.3 establishes a distribution-dependent upper bound on MULTI-TASK-EULER’S
surpluses when E happens, which is key to our regret theorems. In comparison with
STRONG-EULER [36] in the single task setting, MULTI-TASK-EULER exploits inter-task
similarity, so that its surpluses on state-action pair (s, a) for player p are further controlled
by a new term that depends on the dissimilarity parameter €, along with n*(s, a), the total
visitation counts of (s, a) by all players.

4. Subsection C.4 uses the strong optimism property and the surplus bounds established in the
previous two subsections to conclude our final gap-independent and gap-dependent regret
guarantees, via the clipping lemma of [36] (see also Lemma 20).

5. Finally, Subsection C.5 collects miscellaneous technical lemmas used in the proofs.

C.1 A clean event

Below we define a “clean” event E in which all concentration bounds used in the analysis hold, which
we will show happens with high probability. Specifically, we will define £ = Fjnq N Eage N Esample,
where Eing, Fagg, Esample are defined respectively below.

In subsequent definitions of events, we will abbreviate Vk € [K|,h € [H],p € [M],s € Sp,a €
A, s" € Spy1as Vk, h,p, s, a,s". Also, recall that L(n) =~ In(2342),
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Define event E, 4 as:

Eing = Eind,rw N Eind,val N Eind,prob N Eind,var, 7
> L(nk(s,a))
_ k )
Skt rx N varp, (js,a) [V L(nk(s,a)) ~ 2HL(nk(s,a))
Eindal = 4 Vk, by, 5, .‘ka P, V(s ‘<4 "
d,val p,s,a.|(PV) pVy)(s,a)| < nk(s,a) + n’;(s o
9)
p L(nk(s,a)) -Py(s' | s,a) 2L(nk(s,a))
Eind,prob = Vk,h,7,’l.‘Pk’_P / , ‘<4 P\ p ) p\Ss
d,prob p,s,a,8 « |(Py —Pp)(s" | 5,a)| < (s, a) o)
(10)

1
Eind,var = {Vk7 h7p7 S, 0. nk Z (V;(S;) - (vap*)(&(l))Q - Va'er(‘|5=a) [‘/;7*] ) (11)

< 4\/H2varﬂ»p(.|sya) [VxIL(nk(s,a)) N 2H2L(n’1§(5;7 a)) }’

nk(s,a) nk(s,a

where in Equation (11), s, denotes the next state player p transitions to, for the i-th episode it
experiences (s,a). Ej,q captures the concentration behavior of each player’s individual model
estimates.

Lemma9. P(Fi,q) > 1—

c~\c>.

Proof. The proof follows a similar reasoning as the proof of e.g., [36, Proposition F.9] using Freed-
man’s Inequality. We would like to show that each of Eing rw, Find,val, Zind,probs £ind,var happens
with probability 1 — 12 , which would give the lemma statement by a union bound. For brevity, we
only show that P(Eing var) > 1 — and the other probability statements follow from a similar
reasoning.

Fix h € [H], (s,a) € Sy x A, and p € [M]. We will show

E’

n sa)

P| 3k € [K]

M

]P V )( ))2 - Varﬂ”p(-\s,a) [Vp*]
=1

(12)

- H2varp, (.js.0)[VF]L(nk(s,a))  2H?L(nk(s, a)) - 5
- nk(s,a) n’;(s,a) - 12MSA°

For every j € N, define stopping time k; as the j-th episode when (s, a) is experienced by player p,
if such episode exists; otherwise, k; is defined as oo. it suffices to show that

J
P|3jeNp kj < oo Z (PpVy)(s,0))* = varg, (s, [V;]

13)

>4

H?varp, (|s,a) [V L(j) L2PLG) | ¢
j j ~ 12MSA
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Define G; as the o-algebra generated by all observations up to time step

kj. We have that {gj};io is a filtration. It can be seen that the sequence
{Xj = (Vp*(sg-)—(Ppi/;*)(s,a))Q—varpp(.‘s’a)[Vp*]} is a martingale difference se-
Jj=1

quence adapted to {gj}jzo; in addition, for every j, |X;| < H? and E [XJQ | gj_l} <

E [(vp*(s;.) — (P, V)(s,))* | gj_l} < Hvarp, (.|, o)[V;?]. This implies that for any A > 0,

o0

1< j
V0 = exp [ A (300 = (€ =3 = 1 hzvars, 1o 171)
i=1 =0

is a nonnegative supermartingale [14], and by optional sampling theorem, E [Yj()\)l(kzj < oo)] <

E [Yo(A)] = 1. As aresult, for any fixed thresholds a,v > 0 [see 14, Theorem 1.6],

J J 2
N a
P Y Xizan) Hvarp, (V] S vAk <oo | <exp <_2+2H/3>
i=1 =1

Now, by the doubling argument of [4, Lemma 2] (observe that >/_ E [X? | G;_1] € [0, H*j]), we
have that for all j € N,.:

1 J
Pl k; < oo 7 (Vr(si) — PV )(s,a))? = varp, (.js,.a) [V,
i=1
H2varp, (5,0 [VIL(J) = 2H2L(j) J
>4 gz P <In(4j)  ————.
= \/ j T <)) 5arsa
A union bound over all j € N yields Equation (13). [
Define event E,;, as:
Eagg = Eagg,rw N Eagg,val N Eagg,prob N Eagg,vam (14)
. _ L(nk(s,a))
— k k )
Eagg,rw = Vk,h,p,s,a.‘R (S,G) —R (S,a)‘ S m N (15)
Eagg,val = {Vkah7pa57a"(]ﬁ)k‘/p* 7Pk‘/p*)(57a) 9 (16)
M *
(oL wh(s apvare, o Vi]) L0 (5,0))  2pr Lk (s, a))
<4 ;A"
n(s,a) nk(s,a)

Pk(s' | s,a) - L(n¥(s,a))  2L(n*(s,a))

Eoge prob = { Yk, h,p,s,a,s" . ’(I@’k — PR (s | s,a)‘ < 4\/

nk(s,a) nk(s,a)
(18)
1 n*(s,a) M
Eoage var = {Vk‘, h,p,s,a. "R (s.a) 2 (Vi (s) = (Pp, V)(s,a))* — ;wfj(s, a)varp, (|s,a)[Vy]| >
19)
. H? (Zgil wh (s, a)varp, (.|s,q) [Vp*]) L(n*(s,a)) 2QH2L(n*(s,a)) }
= n*(s,a) nk(s,a) 7
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where in Equation (19), s} denotes the next state for the i-th time some player experiences (s, a).
E,¢¢ captures the concentration behavior of the aggregate model estimates.

Lemma 10. P(E,g,) >1— .

Proof. The proof follows a similar reasoning as the proof of e.g., [36, Proposition F.9] using Freed-
man’s Inequality. We would like to show that each of Eyagge 1w, Fagg vals Eagg,prob, Fage,var happen
with probability 1 — 1%, which would give the lemma statement by a union bound. For brevity, we
show that P(Egg var) > 1 — %, and the other probability statements follow from a similar reasoning.
Fix h € [H], (s,a) € S;, x A and p € [M]; denote by p; the identity of the player when (s, a) is
experienced for the i-th time for some player. It suffices to show that

P| 3k € [K]. m > (36D — V)5, = varg, (100 V7))

Wk

(S v, o V) LM 5. 0) o210k (5, 0) 5
- (nk(s,a))? nk(s,a) ~ 12MSA’

(20)

M *
Varp, (.|s,a) V)= Zq:1 wg(s, a)varp, (.|s,a)[Vy]-

,a)

k
1 n"(s
because maewn) Yo

For episode & and player index p, denote its corresponding micro-episode index as (k — 1)M + p.
For every j € N_, define stopping time k; as follows: it is the index of the j-th micro-episode
when (s, a) is experienced by some player, if such micro-episode exists; and k; is defined to be oo
otherwise. With this notation, it suffices to show:

. 1 : * * *
P3N by <oon|= (V) = V) (s, ) = vars, (o, [V

2n

<
= 72 L ~ 12MSA’

Define G; as the o-algebra generated by all observations up to micro-

episode k;. We have that {gj };io is a filtration. It can be seen that
{Xj = (Vp*(s”—(IP’ijp*)(s,a))2—varppj(.‘S’a)[v;)*]}j:1 is a martingale difference se-

j=0’
E {(Vp*(s;-) — (P, V;;*)(s,a))4 | gj_l] < H2varpp,(‘|sﬁa) [V,]. Using the same reasoning as in
the proof of Lemma 9 (and observing that 3>7_, E [X? | G;_1] € [0, H*j]), we have that for all
j S N+:

quence adapted to {G,} in addition, for every j, Xj| < H?, and E [XJQ | gj_l] <

Pk <ooA %Z ((Vp*(SQ) - (IEDPJ/;)*)(s,a))2 — VaIp,(.|s,a) [Vp*])

=1

HYY  varp As.a) VX L(g 2H2L(q )
j2 J 48j2M S A
A union bound over all j € N implies that Equation (21) holds. O
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Define
Esample = Eind,sample N Eagg,samplea

Eagg,sample = {V87 a, k. ’ﬁk(& a) > Nl g nk( ) 2

(s},

l\DM—l

1
Eind,sample = {Vsaa,kvp'ﬁ;;(saa) Z N2 - TL];(S (L) 2 5 ’;( a)}a
where we recall from Section B that Ny = M In(#45), and N, = In(#ZAK ),

Lemma 11. P(Esampie) > 1 — 5.

Proof. We first show P(Eagg sample) > 1 — &. Specifically, fix h € [H] and (s,a) € Sy x A,
define random variable X}, = 224:1 (1 ((s’g,p, aﬁyp) = (s,a)) — ph(s, a)). Also, define Gy, as the

o-algebra generated by all observations up to episode k. It can be readily seen that { X k}i(:l is a
martingale difference sequence adapted to filtration {gk}f o Freedman’s inequality (specifically,

Lemma 2 of [4]) implies that for every fixed k, with probability 1 — @,

2 2
n*(s,a) — ﬁkil(S,a)’ < 4\/nk_1(57a) - MIn <6S§K ) +4M1In <6S§K ) ) (22)

. . . e 6SAK?
If Equation (22) happens, then by AM-GM inequality that \/ nk=1(s,a) - M1n (T) <

111 (s,a) + 16M In (%), we have

"~ 1(s,a) — n*(s,a) < i L(s,a) +20M In <GSAK2> ,
implying that
n*(s,a) > Z ~1(s,a) — 20M In (6SAK2> :
Additionally, as n*~1(s,a) > n*(s,a) — M always holds, we have
nk(s,a) > g *(s,a) — 21M In <6SAK2> .

In summary, for any fixed &, with probability 1 —

& if 1(s,a) > Ny := 84M In (%),

n*(s,a) > 5" (s, a).

N)M—l

Taking a union bound over all k € [K], we have P

—~

é
Eagg,samplc) > 1- 6

It follows similarly that P(Eid sample) > 1 — 6; the only difference in the proof is that, we need
to take an extra union bound over all p € [M] - hence an additional factor of M within In(+) in the
definition of No. The lemma statement follows from a union bound over these two statements. [

Lemma 12. P(E) > 1 — 6.
Proof. Follows from Lemmas 9, 10, and 11, along with a union bound. O
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C.2 Validity of value function bounds

In this section, we show that if the clean event E happens, then for all £ and p, the value function
. —k —k . . .
estimates Qp, Q’;, Vp, K]; are valid upper and lower bounds of the optimal value functions Q%, Vp*

(Lemma 15). As a by-product, we also give a general bound on the surplus (Lemma 14) which will
be refined and used in the subsequent regret bound calculations. Before going into the proof of the
above two lemmas, we need a technical lemma below (Lemma 13) that gives necessary concentration
results which motivate the bonus constructions; its proof can be found at Section C.2.1.

Lemma 13. Fixp € [M ] Suppose E happens, and suppose that for episode k and step h, we have
that forall s' € Sp11, V. ( N<V*HE) < V];(s’). Then, for all (s,a) € Sp, x A:

1.
‘]:le"(s,a) — R, (s, )’ < brw( (s,a), O), (23)
‘Rk(&a‘) - Rp(87a)’ < brw (n (S,CL),G) . (24)
2. )

‘(PI;; P )(V*) ’ < bprob( ‘ S, a (S a) V Vk ) (25)
’(IF"’“ —P,)(V})(s, ’ < bprob( BR(- | 5,0),n5(s,a), Ve, VE, ) (26)

3. Forany Vi,Vs : Sp11 — R such that Vp <V <K< Z’;,
(B~ P,)(Va = Va)(s,0)| < b (BEC- | 5,0),mh(5,0), 7, V5,0) @D
‘(Pk ~P)(Va — Vi)(5,0)| < buur (Pk(- | s,a),nk(s,a),v’;,z’;,e) .8

Lemma 14. [If event E happens, and suppose that for episode k and step h, we have that for all
s € Spya, K’;(s’) < V() < Vl;(s’). Then, for (s,a) € Sp X A,
@l;(s, a) — (Rp(s, a) + (PPV];)(S, a)) € -0, (H—h+1)A 2ind—b’;(s, a) A 2agg—b’;(s, a)] )
) (29)

and
(Rp(s, a) + (]P’pKl;)(s, a)) — Ql;(s, a) € [O, (H—h+1)A 2ind—b§(s, a) A 2agg—b];(s, a)} ,
(30)

where we recall that

. —k ~ —k
md-bl;(s,a) = by (n];(s,a) )—|—bpr0b ( (-] s,a), nk(s,a), VP,K];,O> +bstr (IP”;(. | s,a),n’;(s,a),vp,zl;,()) ,
agg-b’;(s,a) = brw (nk(s,a),e> +bprob (IP’ (| s,a)mk(s?a),vg,zﬁ,e)—i—bm (]f”k( | s,a),nk(&a),Vf;,K’;,e) .

Proof. We only show Equation (29) for brevity; Equation (30) follows from an exact symmetrical
reasoning.

Recall that @ﬁ(s, a) = min (ind-Q’; (s,a), agg-Qi(s, a), H) We compare each term in the min(-)
operator with (R,(s,a) + (IF’,,VI;)(S, a)):

e For m];(s, a), using Lemma 13 and our assumption on V’; and K’; on Sp41, we have:
ind-Q, (s,0) — (Ry(s,0) + (B,V,)(s,))
= (RS = Ry)(s,0) + by ( (s, a), o)
+ ((B5 = P,)V)(5,) + bpron (A’;(. | s,a),n’;(s,a),vﬁ,z’;,o)

p

€ [0, 2ind-b) (s, a)].

- k . - —k
+ (BS —B,) (V) = V;))(5,0) + bur (BE(- | 5,0),mb(5,), V7, V5, 0)
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——k . . =k
. Eor agg-Q), (s, a), using Lemma 13 and our assumptions on V', and K’; over Sp41, we
ave:

agz-Q, (5.) = (Byls, @) + (B,V,)(s0))
= (R’; —R,)(s,a) + brw (nk(s, a), e)

A " ~ 7k
(P = Po)V;)(5,0) + bpnan (B | 5,0), 7% (5,0), V), VE )

+ (BF —B,) (Ve — V9)(5,0) + baer (ﬁvk(. | 5,a),n%(s,0), Vo, VE, e)
€ [0, 2agg-by (s, a)),
e For H — h + 1, we have:
(H—h+1) = (Ry(s,a) + (P,Vo)(s,0) € [0, H — h + 1],

where we use the observation that R(s,a) € [0,1], and (IE”,,V’;)(S, a) € [0, H — h], and
their sum is in [0, H].

Combining the above three establishes that
Qi(s,a) — (R(s,a) + (P,V1)(s,0)) € [o, (H — h+ 1) A 2ind-bf (s, a) A 2agg-bE (s, a)] . O

Lemma 15. Under event E, for every k € K], and every p € [M)], and for every h € [H), For all
(s,a) € Sp x A,

Q(s,0) < Q' (5,0) < Q}(s,0) < Qy(s,0), 31
and . .
Vi(s) S VI (s) S Vi(s) <V, (s), (32)

Proof. The proof of this lemma extends [36, Proposition F.1] to our multitask setting.

For every k and p, we show the above holds for all layers h € [H] and every (s,a) € S, X A; to this
end, we do backward induction on layer h.

Base case: For layer h = H + 1, we have K’;(J_) =y (L)y=Vvy (L) =V

p

Inductive case: By our inductive hypothesis, for layer » + 1 and every s € Sp41,
k ok * 7k
Kp(s) <V, (s) < v, (s) < Vp(s).

We will show that Equations (31) and (32) holds holds for all (s, a) € Sj, x A.
We first show Equation (31). First, ng (s,a) < Qp(s,a) forall (s,a) € Sp x Ais trivial.

To show Q5 (s,a) < @l;(s, a) for all (s,a) € Sj, x A, by Lemma 14 and inductive hypothesis, we
have:

Q;(57a) = RP(Sv a’) + (vap*)(s’ a) S RP(Sa a) + (PPV];)(Sv a’) S @I;(&a)'

Likewise, we show ng (s,a) > Q’;(s, a) for all (s,a) € Sp x A, using Lemma 14 and inductive
hypothesis:

ok ak —k .
QF (s.0) = Ry(s.0) + B,V )(s.0) = Ry(s.0) + (B, Vo) (s,a) > Q¥ (s, a).
This completes the proof of Equation (31) for layer h.

We now show Equation (32) for layer h. Again Vp“k (5) <V (s) forall s € Sy, is trivial.
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To show V1 (s) < V];(s) for all s € Sp,, observe that

Vy () = max Qp(s,a) < maxQ, (s,a) =

p acA

To show V;j“k (s) > K’;(s) for all s € S, observe that

Vi (s) = Qp (5,7 (p)(s)) = QF(s, 7 (p) (s)

This completes the induction.

C.2.1 Proof of Lemma 13

Proof of Lemma 13. Equations (23), (25), and (27) essentially follow the same reasoning as in [36];
we still include their proofs for completeness. Equations (24), (26), and (28) are new, and require a
more involved analysis. Our proof also relies on a technical lemma, namely Lemma 16; we defer its
statement and proof to the end of this subsection.

1. Equation (23) follows directly from the definition of Ej,q4 rw. Equation (24) follows from
the definition of Egg rw, and the fact that | R¥ (s, a) — Ry (s, a)| <.

2. We prove Equation (25) as follows:

](ﬁ»’;v* — P, V)(s,a)

<0

<0

I

Varp, (.|sa) [V*]L(n’;;(s, a))

HL(n’;,(s,a))

n’;(s, a)

VaTpk (.|s,0) [V*]L(ns(s,a))

ny(s,a)

HL(n’;(s,a))

nk(s,a) nk(s,a)
—k % —k
varp (s o) V) L(ny(s, a)) Ve — Vp“]%nk(.\&a) L(ng(s, a)) HL(nk(s,a))
P + P P
nk(s,a) nk(s,a) nk(s,a)
—k —k k
Var]j”;(-|s,a) [Vp} L(nlg(s»a)) I ||VI) _Kp||I¥P”g(<|s,a) L(nlli((%a)) HL(TLI;(S,G,))

nk(s,a)

nk(s,a)

o —k
SbPTOb (P];;( | s,a),n];(s,a),vp,zﬁ,o) ’

nk(s,a)

where the first inequality is from the definition of Fi,q val; the second inequality is from
Equation (33) of Lemma 16; the third inequality is from Lemma 23; the fourth inequality

is from our assumption that for all s’ € Sp.11, K’;(s') < V) < Vﬁ(s’), and thus

|V = V()

<|7) = Vi)
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We prove Equation (26) as follows:
(B = P,)(V;)(s,a)]
<e+|(B* — ) (1) (s, a)

(S0 wh(s, apvars, (o) [Vir]) L (s, ) . HL(n(s,0)

<
se+0 nk(s,a) nk(s,a)

<10 \/V&rw<.|s,a>[‘/p*} L(nk(s,a)) L(n*(s,a) . HL(n(s.a)  HL(n*(s,a))

nk(s,a) nk(s,a) nk(s,a) nk(s,a)
vars, . [VY] L(nk (s, a)) IV, ~ Vi oy L0F(5:0) HL(n¥(s,a))
. Pr(-|s,a)lY p (-]s,a) )
<2e+0 nk (s, a) + n*(s,a) - n* (s, a)
Varge o Vo Lk (s,) | 1V = VEIZe o0 ZOF(5,0) Bk (s, 0)
. PE(-|s,a)lY p (]s,a) )
S2e4+0 nk(s,a) * nk(s,a) " n*(s, a)

<bprob (If”k( | s,a)7nk(s,a)77§,zlg,e) ,

where the first inequality is from the observation that |[P*(- | 5,a) — P, (- | s,a)|1 < 5
and Lemma 24; the second inequality is from the definition of E.gg va1; the third inequality
is from Equation (34) of Lemma 16; the fourth inequality is from Lemma 23 and the

observation that for constant ¢ > 0, ¢4/ % eH < e+ & L(ni(i(:a))) by AM-GM
inequality; the fifth inequality is from our assumption that for all s’ € Sy, 1, K’; (s") <
V*(s') < Va(s'), and thus‘(Vp* —Vh(s)] < ‘(ij — VE) ()
PE(- | s, a).
3. We prove Equation (27) as follows:
@5 —By)(va - v1><s,a>]

for all s in the support of

= Z ‘ 8 |3a)"(VQ—V1)(3’)
§'E€EShy1
L(nk(s,a)) ']PP(S/ | S,Cl) L(nk‘(57a))
<0 Z \/ p - kp ' (V2 B Vl)(s’)
s'€Sn41 np(s>a) np(s,a)
L(nj(s,a)) - Ph(s' | s,a)  L(nk(s,a))
<0 p p i » (Ve V(e
5'€§h:+1 \/ ny(s, a) nk(s,a) (V2 = V1)(s")
a )
< k(! _k (n s, a i
<ol Y \/m ) T s e
8'€Sh+t1 S5
<0 SV 7Kp”§”'£(‘|5»a) L(ng (s, a)) SHL(nk(s,a))
) (s, a) 5.0

Sbstr (IAPI;( | 5,0)7”(57(1),V];7K§70) ’
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where the first inequality is from the elementary fact that ‘ Yoy ai| <>, las|; the second
inequality is from the definition of Ej,q prob; the third inequality is from the definition of
Eindg,prob and Lemma 25; the fourth inequality is by algebra and 0 < (V5 — V3)(s') <

min(H, (V; - K’;) (s")) forall ' € Sp1; the fifth inequality is by Cauchy-Schwarz.
We now prove Equation (28):

(B —P,)(V2 — Vi) (s,0)|
<|(B — B,)(Va = Va)(s, )| +|(BF — B¥)(V2 = Vi) (s,0)

Set D |BF PR |5, a)] - (Ve — VA)(S)

s'€Spq1
L(n*(s,a)) -P*(s' | s,a) = L(n*(s,a))
< i
<e+O0 Z \/ k(5. ) + (s, a) (Vo = V1)(
s'€Sh41
L(n*(s,a)) - Pk(s' | s,a)  L(nF(s,a))
< _
<e+ 0 Z \/ ok (s, ) + (s, a) (Vo = Vi)(
S’GSh+1
/ & L(nk(s HL(n*(s,a))
<e+ O Z k(s" | s,a)( V —V nksa Z nk(sa
s'E€ESh41 s'€Sht1 ’
—k
S|V, = V32 L(n*(s,a)) k
<40 P pllpr (s, N SHL(n"(s,a))

nk(&a) nk(s,a)

Sbstr <]fbk( | s,a),n(s,a),vlg,zlg,e> )

where the first inequality is triangle inequality; the second inequality is from the elementary
fact that |Y7 | a;| < 7 as], along with [|[By(- | s,a) — Pp(- | s,a)]1 < § and
Lemma 24; the third inequality is from the definition of E,gg prob; the fourth inequality
is from the definition of Fagg prob and Lemma 25; the fifth inequality is by algebra and

0< (Vo —V1)(s') < min(H, (V]; - Kl;)(s’)) for all s’ € Sj,11; the last inequality is by
Cauchy-Schwarz. O

Lemma 13 relies on the following technical lemma on the concentrations of the conditional variances.
Specifically, Equation (33) is well-known (see, e.g., [2, 30]); Equations (34) and (35) are new, and
allow for heterogeneous data aggregation in the multi-task RL setting. We still include the proof of
Equation (33) here, as it helps illustrate our ideas for proving the two new inequalities.

Lemma 16. If event E happens, then for any s, a, k, p, we have:

1.
L (5,0)
‘\/var]@,;(_&a) [Vp*} — \/Var]pp(.&a) [Vp*} < nkp(s P (33)
p b)
M
\/varpk(‘sa) V* Z {;savar]pﬁsa){ *} <\/7+H1/
34

€+H1/ (35)

|\/Var]13’k(~s,a) [VP*} - \/Varpp('sva) [VP*}
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Proof. 1. By the definition of E, we have

k
n,(s,a)

1 H?varp (.50 [VF]1L(nk(s,a)) H?L(n (s a))
V* AN IP) V* 2 Isa V* < P ) p p
nk(s,a) ; (Vy (s2) = (Bp V)3, 0))" = varp, (0.0 [V N\/ nk(s,a) nk(s,a)
this, when combined with Lemma 25, implies that
S P . L(n}(5,0))
m Z (Vp (si) — (PP‘/p )(s,a))? — Varp, (.|s,a) [Vp] <H W (36)
=1 p
Now, observe that
nk(s,a)
1 — . -
s o (%] = ey 2o 5 (60 = BV (s,0))? = (BRV)(5,0) = (BV;) (s,0))™
P i=1
Recall that by the definition of event F, we have
. H2L(nk(s,a)) HL(nk(s,a)) L(nk(s,a))
Pry> — (P,V* ’<H/\ P ASE of | e
( P p)(’S?a) ( P p)(57a) — ng(&a) ng(&a) = nz(&a) )
where the second inequality uses Lemma 26. Using the elementary fact that| A — B| < C' = VA<
VB + \/a we get that
nk(s,a)
vatpy (10 [Vir] (B,V;)(s.a))?
=1 (37)
. L(nk(s,a))
<[ BV ) = BV (s,0)| S Hy =R
P K
Combining Equations (36) and (37), using algebra, we get
L(nk(s,a))
s 8]~ o ]| 1 )
\/V&r“”’z?('“va) { P \/Vam ‘ nk(s,a)
establishing Equation (33).
2. We first show Equation (34). By the definition of E, we have
nk(s,a)
]P’in )(s,a))* — Z w];(s, a)varp, (.|s,a) [V;)*]
i=1 p=1
_ H?2 (Zp L WE(8, a)Varp, (.s.q) [V;]) L(n*(s,a)) H2L(n*(s,a))
~ nk(s,a) nk(s,a)
this, combined with Lemma 25, implies that
nk(s,a) M
| ) ) . L(n*(s,a))
nk(s, CL) Z:l (Vp (S;) - (Ppl‘/p )(S,G))z - pz::lwlg(sv a)varpp(<|s,a) [‘/;7] S H nk(s, Cl) .
(38)
Py, V) (s,a) — ( Vi )(s;a)| <
H+ = e, we therefore have’(‘/;,*(s;) — (Pp, V) (s,a))* — (Vi (sh) — (PRV)( ‘ < 2He by

26

7



2H-Lipschitzness of function f(x) = 22 on [~ H, H|. By averaging over all i’s and taking square

root, we have

n’“(s,a) nk(s,a)
1
> BV~ Ty 2 (56 = BV (e £ Ve
(39)
Furthermore,
1 nk(s,a)
i (] = miiay 2o (60 = BV (@) = (BFV;) () = (BV;) (s, 0))”
’ i=1
and
. L(nk(s,a))
kY7 * * )
BV (s,0) = (BN (s0)| S e+ H St
Together with our assumption that e < 2H (which implies that ¢ < v/ He), this gives
nk(s,a)
L(nk(s,a))
VAL ([ 0) [vp*] e (P,Vy)(s,0))2| S VEHe + H )
=1 )
(40)
Equation (34) is a direct consequence of Equations (38), (39) and (40) along with algebra.
We now show Equation (35) using Equation (34). By Lemma 24, for ev-
ery ¢, |Varp,(|sa) {V;,*] — VAIp,(.|s,0) [V*} < 3H? - § = 3He Therefore,
‘Zf}”l wg(s, a)varp, (.|s,a)[Vy] — Vare, (|s.q) [Vp*} ‘ < 3H?. + = 3He, and
M
Zw'(f(s’a)varpqus,a) V] =4/ vare, (|s,q) {Vp*} S VHe
qg=1
This, together with Equation (34), implies
L(nk(s,
\/V&rI@’k(-|s,a) [Vp*} — \/V&I‘[Pp(.|37a) {Vp*} <VHe+ H EZC((:GO;)),
establishing Equation (35). O

C.3 Simplifying the surplus bounds

In this section, we show a distribution-dependent bound on the surplus terms, namely Lemma 19,
which is key to establishing our regret bound. It can be seen as an extension of Proposition B.4
of [36] to our multitask setting using the MULTI-TASK-EULER algorithm, under the e-dissimilarity
assumption. Before we present Lemma 19 (Section C.3.1), we first show and prove two auxiliary
lemmas, Lemma 17 and Lemma 18.
Lemma 17 (Bounds on V’; — K’;, generalization of [36], Lemma E.8). If E happens, then for all
pe[M],ke[K,he[H+1]ands e Sy,
. H
vV, — Kl;)(s) < 4E Z (H/\ ind—b’;(st,at) /\agg—b’;(st,at)) | s = s, 7"(p), M, | ; (41)
t=h

consequently,

SL(ng(st,at))

H
V' _vEs <HS E||1
(Vp Zp)(S)N Z : n’;(shat)

t=h

| sp = s,7"(p), M, | . (42)
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Proof. First, Lemmas 15 and 14 together imply that if E' holds, Equations (29) and (30) holds for all
p, k, s, a. Under this premise, we show Equation (41) by backward induction.

Base case: for h = H + 1, we have that LHS is (V’; - K];)(J_) = 0 which is equal to the RHS.

inductive case: Suppose Equation (41) holds for all s € Sp11. Now consider s € Sj;,. By the
definitions of V’; and K’;,

(Vy = VE)(s)
=Q (5, (5)) — Q" (5,7 (5))
<(Bp(Vy — VE) (s, 75 (5) + A(H A ind-bE (s, 75 (s)) A age-bh (s, 75 (5))
—E [4min(H, ind-b} (s, a), age-bh (s, @) + (Vy = VE)(sn41) | s = 5,78, M, |

p —Pp »Up?

H
<E |4(H A ind-b’;(s,a) A agg:{—b];(s7 a)) +E Z (H A 2ind-b’;(st,at) A Qagg-bg(st, at)) | sh1l| | sh = s,7rp,./\/l
t=h+1

H
<4E Z (H/\ ind-by (s4, a;) A agg—bﬁ(st,at)) |sn = s, 78, M, |,
t=h

where the first inequality is from Equations (29) and (30) for (s, a) and player p at episode k, and the
second inequality is from the inductive hypothesis; the third inequality is by algebra. This completes
the induction.

We now show Equation (42). By the definition of ind—b’;(s7 a) and algebra,

ind-b’;(s, a)

VATSK ([5.0) [Vﬂ L(nf(s,a))  [L(nk(s,q)) S|V, V. VilZe foa) LOE(S @) gSL(nk (s, a)
~ n’;(&a) n’;(s,a) n’;(s,a) n’;(s,a)
< SL(nk(sy,ar))  HSL(n(se, ar))
~ nk(s¢, a) nk(se,ae)

where the second inequality uses VATBK ([ a) [V } < H? and ||V — Vk” < H?.

As a consequence, using Lemma 26,

SL(n’;(st,at)) HSL(n’;(st,at))

nlg(shat) ng(staat)

H /\ind-b];(st,at) A agg-b’;(st,at) SHA|H

SL(nk(s,ar))

SH|1A O
nk(ss, az)
Lemma 18. If E happens, we have the following statements holding for all p, k, s, a:
1. For two terms that appear in ind-b’; (s, a), they are bounded respectively as:
2 k
oy < . H2SL(ny (s, 0))
HVp KPH]P”;(-\S,(}) ~ ||V -V ||IP’ (+|s,a) n};(s’a) 43)
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—k
VAT (| a) {Vp} L(n’;(s,a)) Varp, (.[s,q) [Vpﬂk} L(n’;(s,a))

nk(s,a) nk(s,a)

—k
IV 7KZ||12P>p(-\s,a)L(n§(sva)) HVSL(nk(s,a))

nk(s,a) nk (s, a)
(44)
2. For two terms that appear in agg—b’;(s7 a), they are bounded respectively as:
2 k
7 k|2 7k k2 H?SL(ng(s,a))
||Vp - KpH]jDk(.‘S’a) S 2HVp - K;lo||113)p(-|s,a) W + He (45)
—k . —k
VaTpk (|5 q) {Vp} L(nk(s,a)) _ Varp, (.[s,a) [Vg‘k} L(nk(s,a)) 1V, — KI;HJ%I,(.|S,(I)L(”I€(37@))
nk(s,a) ~ nk(s,a) nk(s,a)
H+/SL(nF HeL(nk
VBL(H(5,0) | [HeL(n(s.a) o)

nk(s,a) nk(s,a)

Proof. First, Lemmas 15 and 14 together imply that if £ happens, the value function upper and lower
bounds are valid. Conditioned on E happening, we prove the two items respectively.

1. For Equation (43), using the definition of E},4, prot, and AM-GM inequality, when F happens, we
have for all p, k, s, a, s,

P
nk(s,a)

L(ny (s, a))

PE(s' | 5,a) SPy(s' | s,0) + (47)

This implies that
—k
||Vp - KZH]%’?;(-\s,a)
= Y B | s,a)(Vy(s') — VE(s)?
s'€Sp41

. L(nk(s,a))

S Y B )~V Y SR
5'€Shi1 §'E€ESp41 P
I SH2L(nk(s,a))

Sy = Volle, (1s.a) + T nk(s,a)

where the first inequality is from Equation (47), and the fact that Vl;(s’ ) — K’;(s’ ) € [0, H] for any
s' € Sp41; the second inequality is by algebra.

For Equation (44), we have:

7](;_
vargs 1) |V L(nk(s,a))
\ nk(s,a)
. & 7k k|2 k
Valpe (|5 q) Vy L(np(‘S?a’)) ||Vp_KpHI@I€(.‘S a)L(np(s,a))
< P ’ L B + D ’
~ nk(s,a) nk(s,a)
(/%] —k ,
e [ e o) 1) = VIR 1 L) | VBB L5 0)
~ nk(s,a) nk(s,a) nk(s,a)
- —k
N ) [Vpk} L(ng(s, a)) N IV = VRI2 (joayL(nf(s,a)  VSHL(nk(s,a))
~ ny(s,a) n(s, a) ny(s,a)
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where the first inequality is from Lemma 23 and the observation that when E happens,
(Vl; — V;)*)(s’)’ < ‘(V]; - Kﬁ)(s’)‘ for all s’ € S}, 1; the second inequality is from Equation (33)
of Lemma 16 and Equation (43); the third inequality again uses Lemma 23 and the observation that
(V= vy < ‘(V’; — VEY(&)| forall s € Spy1.

when F happens,

2. For Equation (45), using the definition of E,gg prot, and AM-GM inequality, when F happens, we
have for all p, k, s, a, s,

- — L(nk(s,a))
Pk / <Pk / ) ) 48
R @9)
This implies that
7k k2
||Vp - Kp||[@>k(.|57a)
= Y B s a)(Vy(s) - V()
s'€Sp41
. —k L(nk(s,a))
2 Y PG W) -V e S SR
s'€Sht1 s'€Sht1 P
—k SH2L(nk(s,a))
2 Y B (s a)Vy) - VP et 4 S
p )

s'€Sp41
SH2L(nk(s,a))

ok k2
SV _KPHPP(-\M) T nk(s,a)

+ eH,

where the first inequality is from Equation (48) and the fact that V,’; (s") — K’; (s') € [0, H] for any

s' € Sp41; the second inequality is from the observation that |[P,(- | s,a) — P*(- | 5,a)|l; < 5 the
third inequality is by algebra.

For Equation (46), we have:

—k
VaTpk (|5 q) [Vp} L(nk(s,a))
ng(s,a)
r —k
_ v [V ] Dk @) | 170 = Ve g B0
~ nk(s,a) nk(s,a)
[ X —k
<. | VB Clsa) _Vp*} L(n (s, a)) N Ve *KZ||%»F(.|SV(L)L(”§(S,G)) N VSHL(nk(s, a)) HeL(nk(s,a))
~ ng(s,a) np(s,a) ng(s,a) np(s,a)
var 'Vﬂk] L(nk(s, a)) VE vk Lnk " P
< Pp(-[s,a) | Vp p\S v, prpPHS,a) (ng(s,a)) \/EHL(np(s,a)) HeL(nk(s,a))
~ n’;(&a) n’;(s,a) n’;(&a) n’;(s,a)

where the first inequality is from Lemma 23 and the observation that when E happens,
‘(V]; - Vp*)(s')’ < ‘(V’; - Kﬁ)(s’)‘ for s’ € Sj41; the second inequality uses Equation (35) of
Lemma 16 and Equation (45); the third inequality is from Lemma 23 and the observation that when

E happens, (V; - pr’“)(s/) < ‘(V’; - Kﬁ)(s’) for s’ € Spy1. O

C.3.1 Distribution-dependent bound on the surplus terms

Lemma 19 (Surplus bound). If E happens, then for all p, k, s, a:

H
Ef(s,a) SBY'*(s,a) + B | Y BE™(sy,a0) | (sn,an) = (s,a), 7 (p), My | ,
t=h
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where

(1 + varp, (.s,a) [Vp”k]> L(n*(s,a))

nk(s,a)

Byl*d(s,a) = HA | 5e+ O

(1 + varp_ (.|s,q) [Vp”k]) L(nk(s,a))

nk(s,a)

ANO

nk(s,a)

k,fut _ g3
By (s,a) = H° NO (
P

H3SL(nk(s, a)))

Proof of Lemma 19. First, Lemmas 15 and 14 together imply that if £ holds, for all p, k, s, a,

k : k k : k k
Ej(s,a) <2 (H A ind-bj; (s, a) A agg-by (s, a)). We now bound ind-b;; (s, a) and agg-b; (s, a) re-
spectively.

Bounding ind-b}(s,a): We have

ind-b’;(s, a)

—k 7k k
-0 Varpe (|s,a) [Vp] L(nk(s,a)) L(nk(s,a)) SV 721)“1%?;(.\5@) L(ng (s, a)) SHL(nk(s,a))
ny(s, a) ny (s, a) ny (s, a) ny(s, a)
k . 7k k
<0 varp, (.|s,a) [V;" | L(nk(s, a)) N L(nk(s,a)) SV, 7Kp||[2P’p(.|5,a) L(n}(s,a)) N SHL(nk(s,a))
a ng (s, a) ng (s, a) ny(s, a) ng (s, a)
, —k
0 (1 + Varp, (.|s,q) [Vp”k]) L(nk(s,a)) . SIVy = VIR (eay L(nk(s,a) . SHL(nk(s,a))
- ny(s, a) ny(s, a) ng (s, a)
- (1 -+ vare, (o V1) Z(nb(s,a) LTy SHLOEG.)
> n’;(s,a) p =plIPp(-]s,a) TL’;(S,G)

where the first inequality is by expanding the definition of ind—b’;(s7 a) and algebra; the second

inequality is from Equations Equation (43) and (44) of Lemma 18, along with algebra; the third
inequality is by the basic fact that VA + vB < /A + B; the fourth inequality is by AM-GM
inequality.
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Bounding agg-b’; (s,a): We have:

agg-by (s, a)

—k 7k k
ctes 0| o R CVy) L(n*(s,a))  [L(n¥(s,a)) ) SIVp = VilEeoay L*(s:0) | SHL(n*(s,a))
~ nk(s,a) n*(s,a) nk(s,a) nk(s,a)
- —k
et 0 varg, (s, [V L(nk (s, a)) L(n*(s,a)) . SIVy = V3lE (s L0F(s.0)  SHL(n* (s, a))
~ n*(s, a) n*(s, a) n*(s, a) n*(s,a)
ok —k
<50 (1+Vapr<-\s,a>[Vp ]) L(nk(s,a)) . SIVy = V3l (aa LE(s,0))  SHL(n*(s,a))
~ nk (s, a) nk (s, a) nk (s, a)
oo | (o) Linte) V5~ VR (o + SHE(5 )
S0€ nk(37a) p —Pp PP('lsra) nk(s,a)

where the first inequality is by expanding the definition of agg-b’];(s7 a) and algebra; the second
inequality is from Equations (46) and Equation (45) of Lemma 18, along with the observation that

\/ SSH#((Z iﬁ‘;’“)) < SHZ‘,S?:E;’)“)) + € by AM-GM inequality; the third inequality is by the basic fact
that vA + v/ B < /A + B; the fourth inequality is from AM-GM inequality.

(n*(s,a)) < L(n’; (s,a))

Combining the above upper bounds, and using the observation that Lnk o) R sy 0 We get
ind-bg(s, a) A agg-b’;(s, a) NH
(1 + varp_(.|s,q) [Vp”k]) L(nk(s,a)) (1 + varp, (.|s,a) [Vpﬂk]) L(n*(s,a))
<0 - A | be+ O T
nk (s, a) nk(s,a)
k
—k k2 SHL(n,(s,a))
+ 0 va —KPH]PP(-Is}a)—i_ (WAH

_ SHL(nk(s,a
gBmmmm+ovbwﬁﬁwm+<(“”AH)

nk(s,a)

‘We now show that

SHL(nk(s,a)) . H)

—k k112
|Vp—Vp|In»p<-s,a>+< n(s, a)

t=h

(49)
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which will conclude the proof. To this end, we simplify the left hand side of Equation (49) using
Lemma 17:

—k k2 SHL(n(5,a))
Ve = Y3llE, (1s,a) (n’f(sa) i
2

H
<E H E 1A
~ Z nk(se, ar)

s | | 1 (snean) = (5.0). 7). My +<SHL§”WAH>
t=h+1 nk(s,a)

2

nk (s, ay
L) |y | (sman) = (5,00, 74 (0), M, +<

H
<H’E E|ll1A
~ Z n’;(st,at)

SHL(n*(s,a)) A H)
t=h+1

nk(s,a)

H3SL(nk(s¢,a1))

nk(s¢, ar)

i
<E Y HPA

t=h

| (Shvah> = (57a)777k(p)aMp

[ =
SE ZBk’fut(stvat) ‘ (Shaah) = (Saa)77rk(p)7Mp )
t=h

where the first inequality is from Equation (42) of Lemma 17; the second inequality is by Cauchy-
Schwarz and E[X]? < E[X?] for any random variable X; and the third inequality is by the law of
total expectation and algebra. O

C.4 Concluding the regret bounds

In this section, we present the proofs of Theorems 5 and 6.

To bound the collective regret of MULTI-TASK-EULER, we first recall the following general result
from [36], which is useful to establish instance-dependent regret guarantees for episodic RL.

Lemma 20 (Clipping lemma, [36], Lemma B.6). Fix player p € [M]; suppose for each episode k,
it follows 7" (p), the greedy policy with respect to @p. In addition, there exists some event F/ and a

collection of functions {B]’;’lcad, B;f"f“t} K] C (8§ x A = R), such that if E happens, then for
ke[K

allk € [K], h € [H] and (s,a) € S, x A, the surplus of@;j satisfies that
H

0 < Ef(s,a) < BE(s,0) + E | Y BE (s, a0) | (s, an) = (5,0), 7" (p), M, | ,
t=h

then, on E:
. ea x . u gap ,min
Reg(K.p) S . 3 ph(s,a) clip (B (s,a), gip, (s,0) ) +H 3 > pl(s, a) clip (B{;f “(s,a), SSAH) ,

s,a k s,a k

here, recall that clip(a, A) = al(a > A), and gap, (s, a) = gapﬁ;’a) \Y gai‘};[""“.

Remark 21. Our presentation of the clipping lemma is slightly different than the original one [36,
Lemma B.6], in that:

1. We consider layered MDPs, while [36] consider general stationary MDPs where one state
may be experienced at multiple different steps in [H|. Specifically, in a layered MDP, the
occupancy distributions wy, , defined in [36] is only supported over Sy, x A. As a result, in
the presentation here, we no longer need to sum over h — this is already captured in the sum
over all s across all layers.

2. Our presentation here is in the context of multitask RL, which is with respect to a player p €

[M], its corresponding MDP M,,, and its policies used throughout the process {7rk (p) }le.
As a result, all quantities have p as subscripts. /
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We are now ready to prove Theorems 5 and 6, MULTI-TASK-EULER’s main regret theorems.

C.4.1 Proof of Theorem 5

Proof of Theorem 5. From Lemma 20 and Lemma 19, we have that when I happens,

M
Reg(K ZReg K, p)
p=1
. ca . . » gap. ,min
<SS b, a)elip (B (s, a), g, (s,0) ) + H S D pl(s, a) clip (B’“’f (s,), 85AH>
s,a kp s,a k,p

(4) (B)
(50)

We bound each term separately. We can directly use Lemma 22 to bound term (B) as:

2
u gap. ,min MSAK
HZZpP s,a) clip (ka (s, a), 8S£H2> < MH*S?A <ln< 5 )) . (3D

s,a k,p

For term (A), we will group the sum by (s,a) € Z, and (s, a) ¢ Z. separately.

Case 1: (s,a) € Z.. Inthis case, we have that for all p, gap,,(s,a) = gap”(s o) > 24e. We simplify
the corresponding term as follows:

Z Z p];(s, a) clip (Bk’lead(s, a), gap,(s, a))

(s,a)€Zc k,p

1+ 15y [V D) L(nk (s, i ,
S S pks,a)clip [ HA [ 5e+0 \/( vare, (fs.a) V' DL (s a))) ,miny gap, (5 0)

ooz m nk(s,a) 4H

S S pk(s,a) | Haclip | 5e+0 \/(”V&W’p('s7a>[Vp’TkDL(”k(S’“)))  oiny gap, (s, a)

(s,a)€Z. k.p nk(s,a) 4H
14+ varp (1s.a) [V L(nk(s,a
Z ZPI;(S’G) H/\\/( Vi Pp(‘w]j[p ]) ( ( ))
(S,CL)EIE k,p n (570,)

where the first inequality is from the definition of B*12d; the second inequality is from the basic
fact that clip(A A B,C) < A A clip(B, C); the third inequality uses Lemma 27 with a; = Be,

(14varp, (.|s,0) [V D) L(n*(s,0)) and A — miny, gap,,(s,a)

az = T (5,a) ) — g~ along with the observation that
clip(5e, min"f’;%) = 0, since for all (s,a) € Z. and all p € [M], gap,,(s,a) > 96¢H.
We now decompose the inner sum over k, ZkK:l, to ;(_fia)_l and Zf:T(S)a). The first part is

bounded by:

Tp(s,a)—1

M ok R ( mp(s,a)—=1 M
& (1 +var]pp(.|s,a) [V;D ])L(TL
E g pp(s,a) H/\\/ nE (s, a) g g E pp s,a)H < SAHNy,

(s,a)eZ. k=1 p=1 (s a)EZ.

which is S MHSAIn (S45).
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For the second part,

K M 1+ varp, (fo.0) [VF* ) L(n* (s, a
SO S a) H/\\/( P(lnk)([&a)] ( )))

(s,a)€Z. k=7(s,a) p=1

KoM (14 varp, (.s,0) V7)) L(7* (s, a))
k P > p
DD pr(s,a)\/ nk (s, a)

(s,a)€Ze k=7(s,a) p=1

(7(s,a)) S
S Z Z pr (s,a) nk(s a) Z ZZP (1'~_VMIP (ls, a)[Vka])7

(s,a)€Zc k=7(s,a) p=1 (s,a)€Z. k=1p=1

where the first inequality is by dropping the “H A” operator; the second inequality is by Cauchy-
Schwarz.

‘We bound each factor as follows: for the first factor,

L(i* (s, a)) = L(ii* (s, )
Z Z prs“ nk(s a) Z Z P nk(s,a)

(s,a)€Z. k=7(s,a) p=1 (s,a)EZ. k=7(s,a)

<ZLMK / fdu
1

(s,a)EZ.
2
<IT LMK S| (m (M*S;AKD ,

where the first inequality is because L is monotonically increasing, and 7n*(s,a) < MK, the
second inequality is from the observation that p*(s,a) € [0, M], @i*(s,a) > 2M, and u — = is
monotonically decreasing; the last two inequalities are by algebra.

For the second factor,

K M M K
k k
>0 DD ohlsia) (1 vare, o V1) SMEH 3050 37 (s, apvare, .o (V5]
(s,a)€Z. k=1p=1 p=1k=1(s,a)eSx.A
M K H
5MKH+ZZ ar Z?‘h)p‘ﬂ'
p: : :
<MKH?.

(52)

where the first inequality is by the fact that p’; are probability distributions over every layer h € [H];
the last two inequalities are by a law of total variance identity (see, e.g., [3, Equation (26)]). To
summarize, the second part is at most

K M w* nk(s,a
Z Z Zpg(s’a) H/\\/(l—FVaI"IP’p(-Is,a)[V;) ])L( k( ) )) S MKH2|I€‘1I1 (MSAK) .

k
(s,a)EL. k=7(s,a) p=1 n*(s,a) 1)

Combining the bounds for the first and the second parts, we have:

Z pr s,a) clip <Bk lead (g ), gap,(s a) (\/MKH2\I JrMHSA) (MS;AK) .

(s,a)€Z. k,p
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Case 2: (s,a) ¢ Z.. We simplify the corresponding term as follows:

Z Z pk(s,a) clip (Bk’lcad(s7 a), gap,(s, a))

(s.)¢Ze op
(1 +varp, (fo.a) [v,;rk]) L(nf(s,)) | gap (s,a)
< Z Zp’;(s,a)clip H A 7k (5,0) ’ ZH
(sx)¢T. kp m

Z Z A (1 + varpp(.s;j;?f:)]) L(nk(s,a))

(s,a)¢Z. k,p

For each p and (s, a), we now decompose the inner sum over k, S°5_ 10 372" and Y5 o (5.0)"
The first part is bounded by:

Tp(s,a)—1

M Tp(s,a)—1 3 M
! (L4 varp, |s,a)[Vr 1) L(nk(s, a))
S O3S s ([l =D ol ol

(s,a)¢Zc p=1 k=1 (s,a)¢Z.p=1 k=1
<MHSAN,,

which is S MHSAIn (MSAL).

For the second part,

(1 vare, (js.0 V1) L(nf(s, )

M K .
2. 2 2 Alsa) [HA (s, a)

(s,a)¢Zc p=1 k=7p(s,a)

M K 1+ varp, (|s.0) (V"] ) L(7k(s,a))
S Z Z Z pp(5,a) ( ﬁk(s,a))

(s,a)¢Zc p=1 k=1,(s,a) P

MK Lab(s,) K k
NIDDDIEDS Pp(8:0) =iy > Zzpp(saa)(Hv&fﬂws,a)[vp’r ]>

(s,a)¢Z. k=1p=1

We bound each factor as follows: for the first factor,

nksa $,a
XYY e ;k(ga P> zkz(

(s,a)¢Z. p=1 k=7,(s,a) (s,a)¢Z. p=1 )

n, K(s,a)
/ fdu
(s,a)¢Z. p=1

2 S’IEC‘M <ln(M5;SAK)>2

where the first inequality is because L is monotonically increasing, and n ( ) < K; the second

inequality is from the observation that p*(s,a) € [0,1], ¥ (s, a) > 2, and u — 1 is monotonically
decreasing; the last two inequalities are by algebra.
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The second factor is again bounded by (52). Therefore, the second part of the sum is at most

(1 + varp, (.|s,a) [Vp”k]) L(nk(s,a))

M K
2. 2. ) msa)|HA w5, )

(s,a)¢Zc p=1 k=7, (s,a)
< (M KH2[IC| + MHSA> In (MS(SAK) ,

Combining the bounds for the first and the second parts, we have:

: ca < MSAK
Z Zpﬁ(s,a) clip (Bk’l d(s,a),gapp(s,a)> hS (M\/KH2|I€C| —|—MHSA> In < 5 ) .

(s,a)¢Z. k,p

Now, combining the bounds for cases 1 and 2, we have that

(53)

(4) < <\/MKH2|IE| + M\/KH?|IC| +MHSA) ~ln(

MSAK
5 .

In conclusion, by the regret decomposition Equation (50), and Equations (53) and (51), we have:

MSAK)

Reg(K)S( MH?I|K + M H?]IEC\K+MH452A1H<M5;AK>>ln(

O

C.4.2 Proof of Theorem 6

Proof of Theorem 6. From Lemma 20, we have that when E happens,

M
Reg(K) = Reg(K,p)

: ea x . u gap, ,min
< Z Z ,0’;(8, (1) Chp (Bk’l d(sa CL), gapp(57 (l)) +H Z Z p];(sa a) Chp (Bk,f t(57 (l), 85le2> 5

s,a k,p s,a k,p

(4) (B)

We focus on each term separately. We directly use Lemma 22 to bound term (B) as:

MSAK> ‘o MSA . (54)

. 84Pp, mi
" & lip  Bk-fus STpmin | 2 rprdg2 4
E E pp(Saa)Clp( (s, a), 85AH2> ~ S n< ) €aPmin

s,a k,p

For the (s, a)-th term in term (A), we will consider the cases of (s, a) € Z, and (s, a) ¢ Z. separately.
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Case 1: (s,a) € Z.. Inthis case, we have that for all p, gap,(s,a) = gap, (2,a) > 24¢. We simplify

4H
the corresponding term as follows:

>~ ph(s.a)clip (BI(s,a), gip, (s, 0))

k,p

K M
SZZp’;(s,a)clip HA|be+0

k=1p=1 nk(s,a) 4H

\/(1 + varp (.1s,.0) V7" 1) L(n¥(s, a))) miny, gap, (s, a)

H2L(n*(s,a)) min, gap,, (s, a)

K
< k 1 H ’
<> p*(s,a)clip | HA | 5e+0 (. a) , 10

H2L(nk(s,a)) |\ min,gap,(s,a)

k
k . 5
SZp (s,a) | HAclip | 5e + O (s, a) , 1

H2L(n*(s,a)) min, gapp(s, a)
nk(s,a) 16H

K
S Z p"(s,a) | H A clip
k=

—

where the first inequality is by the definition of B*!°2d; the second inequality is from that
Varp, (.|s,a) [Vp’rk} < H?; the third inequality is from that clip(4 A B,C) < A A clip(B, O); the

H2L(nk(s,a) min, gap,, (s,a)

third inequality uses Lemma 27 with a; = 5¢, ag = Wa)) and A = v , along

with the observation that clip(5e, %ﬁ(sm) = 0, since for all (s,a) € Z, and all p € [M],
gap,(s,a) > 96¢H.

We now decompose the inner sum over £, Z?:p to ;Sia)fl and Ef:T(S a)- The first part’s

contribution is at most Ny - H < M H In (SATK). For the second part, its contribution is at most:

K .
H2L(nk(s,a)) miny,gap,(s,a)
k . ) 14 p
HAcl
Z p(s,a) P nk(s,a) 16H
k=7(s,a)
7 (s,a) H2I, i
<MH +/ H Aclip (u)7 My gapp(s, %) du
1 (7 16H
3
<MH + — H 0 (MSAK)
min, gap,, (s, a) 0

. . . min, gap,(s,a)
where the second inequality is from Lemma 28 with f,.x = H, C = H 2 A = ’HT,

N =MSA, £=65T=1,n=n%(s,a) < K. In summary, for all (s, a) € Z.,

3
Zp];(&a) clip (Bk’lead(&a),gépp(s,a)) < (MH + a ) In (MS(SAK> .

o min, gap,, (s, a)

Case 2: (s,a) ¢ Z.. Inthis case, for each p € [M], we simplify the corresponding term as follows:
>~ pl(s,a) clip (BH(s,a), gip, (s, a)

k
H2L(ng(s, a)) gap,(s,a)
nk(s,a) 7 16H

K
hS Z pl;(s, a) | H Aclip
k=1
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We now decompose the inner sum over k, Sk, to Y72~ and Z?:TP (s.a)- The first part’s

contribution is at most Ny - H < H In (MSAK)

For the second part, its contribution is at most:

K s
. H2L(nk(s,a)) gap,(s,a)
Z pE(s,a) | H Aclip Fea) 1%H
k=1p(s,a) ’
iy (s,0) H2L(u) gap,(s,a)
<H H Acli b d
S +/1 A clip ( ' 16H U
3
<H+ VH 1n<MSAK)
gap, (s, a) 6
where the second inequality is from Lemma 28 with f.x = H, C = H?, A = géi%(;’a), N =
MSA, §=6,T=1,n=nk(s,a) < K. Insummary, for any (s,a) € ZC and p € [M],
H? MSAK
k - k,lead <
57 (o)l (B44(s,0), i 5.0)) 5 (0 + (F55).

k
summing over p, we get:

. ea 51 MSAK
> pk(s,a) clip (B’“ d(s,a),gapp(s’a)) S MHJngap (s,a) ( 0 >
p

k.,p

In summary, combining the regret bounds of cases 1 and 2 for term (A), along with Equation (54) for
term (B), and observe that gap,, (s, a) = gap, i, if (5,a) € Zp opt» and gap,,(s, a) = gap,(s, a)
otherwise, we have that on event £, MULTI-TASK-EULER satisfies:

MSAK H3 H?
Reg(K)Sln( 5 ) > > — > prsrrl

a .
pe[M)] (s,a)ez,,,optgpl”m”1 (5,a)E(ZcUZp opt)C

MSA

8aPmin

MSAK O

H3
Z —_ +ln< )~MS2AH41n
Wres min,, gapp(s, a)
Lemma 22 (Bounding the lower order terms). If E happens, then

. MSAK MSAK MSA
% L [ phofut &Ppmin |\ — 362 4 1 1 :
E E pp(S,a)Clp< (s,a), SSAHZ | ~ S%Aln S n 5 Al €aD1in

s,a k,p

Proof. We expand the left hand side using the definition of B, and the fact that 8aPp min =
8aPmin'

K
k. fut 82Dy, min
Z (s,a)clip (B (s, a), SSAHQ) (53
§ K Al H3SL(nk(s,a)) gapn 56)
Nz:lp 5 a) P nk(s,a) ’8SAH?
We now decompose the sum Zszl to ;”:(‘19 9~ and Zf:%(sﬂ). The first part can be bounded by

p(s,a)—1 3SL( (S a)) Tp(s,a)—1

k 3 : £aPmin 3 k 3

E H’ ANl < g H < H°N.
2 pp(S,CL) clip ( nﬁ(s,a) ) 8SAH2> = P pp(sva) > 2,
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which is at most O (H 3.1n (W)) . For the second part, it can be bounded by:

K 3 k
H’SL(n3(s,a)) gap,;
k 3 3 p\T? min
H 1
Z Pp(s:) A clip ( nk(s,a) ' 8SAH?
k=1,(s,a) p
iy (:0) H3SL(u) ga
<H3 .1 H3 Acli AP in d
=HT L /1 cip ( v 8sAm? ) |
; ) MSA MSAK MSAK MHSA
<H? + H?In M5A + H3S1n 5 m (M5 Aln 5 ,
) 1) 1) 2aPmin
where the second inequality is from Lemma 28 with f.« = H?, C = H3S, A = ggi"}}g,

N=MSA (=0, =1,n= ﬁff(s, a) < K. In addition, observe that H < S by our layered
MDP assumption, we have

k . k,lead 8aPmin 3 MSAK MSAK MSA
Zk:pp(s,a) clip <B (s,a), SSAHQ) < H°SIn ( 5 In 5 Aln

€8Pmin
Summing over s € S, a € A, and p € [M], we get

k : k,lead £aPmin < 3 a2 MSAK MSAK MSA
Zpr(s,a)chp <B (S’a)’SSAH2> SMHS*Aln (6 In 5 Aln .

a .
s,a k?,p g pmlll

O

C.5 Miscellaneous lemmas

This subsection collects a few miscellaneous lemmas used throughout the upper bound proofs.

V/var[X] — \/var[Y]‘ <

Lemma 23 ([36], Lemma F.5). For random variables X and Y,
E[(x - V).

Lemma 24. Suppose distributions P and @) are supported over [0, B], and ||P — Q|1 < e < 2.
Then:
|Ex~p[X] — Ex~q[X]| < Be,

|varx ~p[X] — varx o[ X]| < 3B%.

Proof. First,

B B
[ExerlX] ~ ExnolX]| =‘ | stox (@)~ ax@)ds| < [ lallpx (@) - ax (o) do < BIP-QI1 < Be
0 0

Second, observe that
‘IEXNP[XQ] - EXNQ[XQ}‘ < BZe.

Meanwhile,
(EXNP[X])Q — (EXNQ[XDQ‘ < |EXNP[X] — EXNQ[X]|'|EX~P[X] + ]EXNQ[X” < 2B-Be = 2B%.
Combining the above, we have

|varx~p[X] — varxq[X]| < 3B%.

Lemma 25. For A,B,C,D,E,F > 0:
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1. If|[A—B| <VBC+C, thenwehave‘\/Z— \/E’ < 2V/C.

2. IfD < E+FVD,then /D <E +F.

Proof. 1. First, A — B <|A — B| < vVBC + C; this implies that A < B + 2/BC + C, and
therefore VA < /B + /(.

On the other hand, B < A+C++/ BC; therefore, applying item 1 with D = B, E = A+C,
and F = v/C,wehave VB < VA + C +VC < VA +2VC.

2. The roots of 22 — Fx — E = 0 are £V L2+4E V};QHE, and therefore D must satisfy VD <
F+\/1;2+4E < F+F;r2\/E = F+E.

O
Lemma 26. Fora >0, 1 A (a+ /a) <1A2/a.

Proof. We consider the cases of ¢ > 1 and a < 1 respectively. If ¢ > 1, LHS = 1 = RHS.
Otherwise, a < 1; in this case, LHS = 1 A (a + v/a) < 1 A (y/a + v/a) = RHS. O

Lemma 27 (Special case of [36], Lemma B.5). For aj,az, A > 0, clip(a; + a2, A) <
2clip(ay, A/4) + 2clip(ag, A/4).

Lemma 28 (Integral calculation, [36], Lemma B.9). Let f(u) < min(fimax, clip(g(u), A)), where
A € (0,1, and g(u) is nonincreasing. Let N > 1 and & € (0, ). Then:

Nu
L Ifg(u) < Cloi * for some C' > 0 such that ln C' < In N, then

" Nn C Nn
Cln%

2. If g(u) S ——= for some C > 0 such that n C' < In N, then

/an(U/4)du§fmaxan§+ClnN;- (ln]\;n/\ln]\f),

D Proof of the Lower Bounds

D.1 Auxiliary Lemmas

Lemma 29 (Regret decomposition, [36], Section H.2). For any MPERL problem instance and any
algorithm, we have

M
E[Reg(K)] =Y. > E[nf*(s,0)] gap, (s, ), (57)
p=1 (s,a)€ES1 XA
where we recall that n5+1 (s, a) is the number of visits of (s, a) by player p at the beginning of the

(K + 1)-th episode (after the first K episodes). Furthermore, for any (s,a) € 81 x A, we have

M
K+1 > K+1 .
;E {np (8&)] gap,(s,a) > E [n (87a)] <J£ﬂfv}] gapp(s,a)> : (58)
where we recall that n* 1 (s, a) = Zﬁil nX*1(s, a).

Proof. Eq. (58) follows straightforwardly from the fact that for every (s, a,p) € S1 x A x [M],
ming, ¢(a gapp/(s, a) < gapp(s,a).
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We now prove Eq. (57). Let 7 denote 7% (p). We have

p=1k=1s€S;

B [Res(K)] = |33 3 pofsh, = 9 (- o)
> zf > polsh, =) (Vir(s) = Qps,mh(9)))

p=1k=1s€8S;

M K

—E > po(s)gap, (s, 75 (s))

p=1k=1s€S;

M K
=EIY S Y1 (slﬁp ) gap, (s, 7, (5))

s€S

=E f:i 1 (s]fyp,w;f(s) = (s,a)) gap, (s, a)

p=1k=1(s,a)eS1 xA

M
=S E [} (s 0)| 8w (s, 0)

"B
Il
-
ol
Il
-
»

-

(59)

where the first equality is from the definition of collective regret; the first inequality is from the

simple fact that V,J(s) = QF(s,7(s)) < Qy(s,7(s)) for any policy ; the second equality is

from the definition of suboptimality gaps; and the third equality is from the basic observation that
k

Sl,p ~ Po- O

Lemma 30 (Divergence decomposition [23, 44]). For two MPERL problem instances, 9N and
M, which only differ in the transition probabilities {Pp(- | s, a)}pe[M],(s,a)eSxA’ and for a fixed

algorithm, let Pop and Poy: be the probability measures on the outcomes of running the algorithm on
M and N, respectively. Then,

KL Pim,Pmt/ Z Z Eon |: 5+1(37a):| KL (P;zg)n( | Sva)apgn/(' | S,CL)) 3
p=1(s,a)eSxA

where P (- | s, a) and ]P’?)n, (- | 8, a) are the transition probabilities of the problem instance I and
M, respectively.

Lemma 31 (Bretagnolle-Huber inequality, [23], Theorem 14.2). Let P and Q be two distributions
on the same measurable space, and A be an event. Then,

P(4) + Q(A) > L exp (- KL(P,Q))

Lemma 32 (see, e.g., [43], Lemma 25). Forany z,y € [%, 3], KL (Ber(z), Ber(y)) < 3(z — y)°.

Lemma 33. Let X be a Binomial random variable and X ~ Bin(n,p), where n > %. Then,

M\w

E [X%} < 2(np)>=.

Proof. LetY = X2, and f(Y) = V4. We have E[Y] = E [X?] = var [X] + E [X]* = (np)?
np(1—p) < (np)?+np < 2(np)?, where the last inequality follows from the assumption that n>

By Jensen’s inequality, we have E [X%} =E[f(V)] < F(E[Y]) < (2n2p2)% < 2(np)*.

[l *@_\H +
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D.2 Gap independent lower bounds

Theorem 34 (Restatement of Theorem 7). Forany A > 2, H > 2,5 > 4H, K > SA, M € N, and
1,1 € Nsuch that 1 + 1 = SA and | < SA — 4(S + HA), there exists some € such that for any
algorzthm Alg, there exists an e-MPERL problem instance with S states, A actions, M players and

an episode length of H such that

E [RegAlg(K)} >0 (M\/HZZCK + \/MHQZK) .

Proof. The construction and techniques in this proof are inspired by [43, Section E.1] and [36].

Fix any algorithm Alg; we consider two cases:

1. 1> MI%;
2. MI° >1.

Case 1: | > MI°. LetS; =S —2(H —1),and b = [&-] > 1. Let A = |/ 5, and let
€= %H A. We note that under the assumption that K > S A, and the observation that [ < S A, we
have A < 1. We define (b+1)" e-MPERL problem instances, each indexed by an element in [b-+1]°".

It suffices to show that, on at least one of the problem instances, E [Reg Alg (K )} >0 (\/ MH?IK )

Construction For a = (al, ...,as,) € [b+1]%1 , we define the following e-MPERL problem
instance, M(a) = {/\/l } with S states, A actions, and an episode length of H, such that for
each p € [M], /\/l is constructed as follows:

* 81 = [S1], and py is a uniform distribution over the states in S;.
« Forh € (2, H), Sp = {Sy + 2h — 3,8 + 2h — 2}.
« A=[A].

* For each (s,a) € S x A, the reward distribution r,(s,a) is a Bernoulli distribution,
Ber(R,(s,a)), and we will specify R, (s, a) subsequently.

¢ For each state s € [S1],

%—i—A, if a = ag;
, ifaeb+1]\ as;

P,(S1+1]s,a)= %
0, ifad [b+1];

and for eacha € A, Pp(S1 +2|s,a) =1—-P,(S1+1]s,a),and Ry(s,a) = 0.

e Forh € [2,H],and a € A, let

2
(Sl+2h—1|51+2h 30,) = ]., Pp(51+2h|51+2h—3,a) = 0, and
p(Sl+2h 3,a) = 1.

p(81+2h|sl+2h72,a) = 0, ]P’p(51+2h71|S1+2h72,a) = 1, and
R,(S1 + 2h — 2,a) = 0.

It can be easily verified that 9t(a {Mp} , is a 0-MPERL problem instance, and hence an

e-MPERL problem instance—the reward d1str1but10ns and the transition probabilities are the same
for all players, i.e., for every p, ¢ € [M], and every (s,a) € S x A,

|Ry(s,a) = Ry(s,a)| =0 < e, [Py(-|s,a)—Py(-|s,a) =0< ~
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Suboptimality gaps. We now calculate the suboptimality gaps of the state-action pairs in the above
MDPs. For each p € [M] and each (s,a) € S x A,

gap,(s,a) =V, (s) — Q,(s,a) = max Qp(s,a’) — Q3 (s, a).

In M(a), it can be easily observed that for every p € [M], and every (s,a) € (S\S1) x A,
gap,(s,a) = 0. Now, for every p € [M], (s,a) € Si x A, we have

gap,(s,a) = max Q;(s,a’) —Qp(s,a) = (H—1) <mz/1x]P’p(Sl +1|s,a)—=Py(S1+1] s7a)> :
It follows that, for every p € [M] and every state s € [S1],

0, if a = ag;
gap,(s,a) = ¢ (H —1)A, ifaeb+1]\ as;
(H-1)(3+4), ifag¢g[pb+1].

Subpar state-action pairs. It can be verified that in 2i(a),

7_- ’ > [. Specifically, since

192H
(H-1)A=(H- 1)% > € > § = 96 H 1557, we have that the number of subpar state-action pairs
is at least 16 = 5 [SLJ > 1.

It suffices to prove that
1
EaNUnif([b-i-l]Sl)]Eim(a) {RegAlg(K)} 2 640 MH?IK,

where we recall that a = (a1, ..., ag, ); furthermore, it suffices to show that, for any s’ € [S1],

MK

15, (60)

EaNUnif([b+1]Sl)Efm(a) [NK+1(3/) _ nK-i-l(S/’ G/S/)i| >

where N¥F1(s") =3 ., nT1(s, a); this is because it follows from Eq. (60) that

A
EaNUnif([b-&-l]Sl)Eim(a) [RegAlg(K)} > Z (H — 1)Z . EaNUnif([b+1]Sl)Efm(a) [NK+1(8/) _ nK+1(SI, agr)
s'eSy
H A MK
2 _— . —

2 4 as

> %\/MHQZK,

where the first inequality uses Lemma 29 (the regret decomposition lemma).

Without loss of generality, let us choose s’ = 1. To prove Eq. (60), we use a standard technique
and define a set of helper problem instances. Specifically, for any (az, as, ...,as,) € [b+ 15171,
we define a problem instance (0, ag, ..., as, ) such that it agrees with (a1, ag,...,as, ) on
everything but P, (- | 1,a41)’s, i.e., in M(0, aq, . . ., as, ), for every p € [M],

1
IF’p(Sl + 1 ‘ 170,1) = 5

Now, for each (j, as, ..., as,) € (0] U [b+1]) x [b+1]5 71, let P; 4, as, denote the probability

yeery

measure on the outcomes of running Alg on the problem instance 9 (j, as, . . ., as, ). Further, for
each j € {0} U [b+ 1], we define
1
Pj = GBSt > Pjas,....as,;

as,...,ag, €[b+1]5171

and we use E; to denote the expectation with respect to PP;.
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In subsequent calculations, for any index m € ([0] U [b+ 1]) x [b + 1]5*~, we also denote by
Py, (- | NK+1(1)) and E,y, [- | N¥F1(1)] the probability and expectation, respectively, conditional
on a realization of N¥+1(1) under P,,. Observe that, for any j € {0} U [b+ 1],

P;(-, N (1))

B, (NKF(1))

j— W Za27u.,aS1€[b+1]sl_1 P",a27...,(le (" NK+1(1))
- Pj(NF+(1))

_ 1 Z Pj,az,...,asl ('7NK+1(1))
GFURT 2 o (VD)

1
=G5 > Phaseeas, (NS, 6D
az,...,as, €[b+1]51 -1

P(- | NKTI(1)) =

where the first equality is from the definition of conditional probability; the second equality is from
the definition of IP;; the third equality uses the fact that P;(N**1(1)) = P a,,....as, (N*+1(1)) for

any as, . . ., ag, , which is true because N¥+1(1) is independent of as, . . ., as, conditional on j; and
the last equality, again, is from the definition of conditional probability.

We have, for each j € [b+ 1],

E; |0/ (1,5) | NS ()|~ Bo [ (1) | N (1)

<NK+(1) Hpj ( | NK+1(1)) — P, ( | NK+1(1))

1
SNFF) - (b+1)5-1 Z Pjaz,..as, ( | NKH(U) = Po,as,....a5, ( \ NKH(I))
az,...,as, €[b41]S1-1 1
1 1 1 .
<NEF(1)- FSE= > 2KL (Ber(2 + A),Ber(2)) Eo,as,...a5, [EF1(1, ) | NE+1(1)]

az,...,as, €b+1]%1-1

1 .
SN s D e, [P0 | NE)]

as,...,as, €[b+1]51-1

SN (6) g o [ (1) | V()]

384MK
1 1
= N ) T By e 1, ) | N () (62)

where the first inequality is based on Lemma 24 and the fact that, conditional on N K+l (1),
n®+1(1, §) has distribution supported on [0, N¥+1(1)]; the second inequality follows from Equa-
tion (61) and the triangle inequality; the third inequality uses Pinsker’s inequality and Lemma 30 (the
divergence decomposition lemma); the fourth inequality uses Lemma 32 and the fact that A < 1;
and the last inequality follows from Jensen’s inequality.

Since N5+1(1) has the same distribution under both Py and any P; (which is Bin(X, S%))’ taking
expectation with respect to N¥+1(1), we have that, for any j € [b + 1],

1

l+1
g]\7K+1(1) .

B, [n"4(L,g)] - Bo [n51(1,)] <Eo s

Eo [nXF1(1,5) | NEH(1)]
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In subsequent derivations, we can now avoid bounding the conditional expectation. Specifically, we
have
Z E, {nKJrl 1 ])]
J €b+1]

1 . 1 I+1 .
ST > Eo [T+ DD Eo [SNKWD 2ric o [P (1 4) | N (D)
‘ J€[b+1]

1 1
<" E K+1 1.7 E *NK+1 1
b+ 1 0 Z n ( 7.])] + o ] ( )
1

I+1 1
- E K+1(1.4 NE+1(1
T T 2 B[R L) | N )
jE[b+1] JE[b+1]
1 I+1 1 3
< E [NK“l] E ,/7-7(1\#‘“1)
“b+1 " W +Eo |5\ 7k 51 L
1 1 /S 3
< FE [NKH 1 ] - E (NK+1 1 ) , 63
<=7Eo [V )] + 5/ 175 B &) (©3)
where the first inequality follows from Eq. (62) and algebra; the second inequality uses linearity of
expectation and Jensen’s inequality; the third inequality uses the facts that jer1) " (1,5 <
NE+1(1) and, for every z € [0] U [b+ 1],
S0 B [FH(1L) | NET )] < 3B (R (1) | NETI ()] = NEH (1),
jelb+1] jeA

and the last inequality uses the linearity of expectation and the construction that b = fsij, which
implies that | < bS; and therefore { +1 < bS; +1 < bS; + 51 = (b+ 1)5;.

It follows from Equation (63) that

1 3
E[KHI }< 1 NK+1 )
Z " J) ~ b+ S 8 M )
Je[b+1]
MK
<
- 25 4 MK
3SMK
< )
45,
where the second inequality uses the fact that ﬁll < % and Lemma 33 under the assumption that
K > 5.
It then follows that
SMK MK
E, [NK+1 K+1(1 } {NKH } _ _ 7
P12 D=L Z D -5 = 15
jE[b+1] [b+1]

and we have
MK

48,

]EaNUnif([b—‘rl]Sl)Em(a) {NK-H(I) — nK+1(17a1)} >

Case 2: M1 > 1. Again,let Sy =5 —2(H —1). Letu=[£]andv = A—u=A—[£].
Furthermore, let A = 32%, and ¢ = 2HA. We note that under the assumption that K > SA

and the fact that v5; < SA, we have A < 1. We will define v ** e-MPERL problem instances,

each indexed by an element in [v]sl XM Tt suffices to show that, on at least one of the instances,

E [Rega(K)| = @ (MVIPIK).
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Facts about v. There are two helpful facts about v that can be easily verified:

e vS; > %lc. This is true because, by definition, vS; > S14 —1— 51 = S1A — (SA —
19) =51 =19 - (SA—S14) — S, =19 — (2(H — 1)A+ S;); since, by assumption,
I < SA—4(S+ HA),wehavel® > 4(HA+ S) > 2 (2(H — 1)A + S1); it then follows
that vS; > ¢ — (2(H - 1)14 + Sl) > %lc

* v > 2. This is true because, as shown above, vS; > 11 and [ > 4(HA + S), which

2HALS) 5 251 _ o

imply that v > == >

Construction. Fora = (ay1,...,a1.0r,02.1,--.,as, 1) € [v]5M

, we define the following
e-MPERL problem instance, 9t(a) = {M » }2/[:1, with S states, A actions, and an episode length of

H, such that for each p € [M], M, is constructed in the same way as it is for case 1, except for the
transition probabilities of (s,a) € S; x A:

* For each state s € [S1],

% + A, ifa=asp;

% ifa e [v]\ asp;

0, ifa ¢ [v];

and foreacha € A, Py(S1 +2|s,a) =1 —-P,(S1 +1]s,a),and Ry(s,a) =0.

P,(S1+1]s,a)=

We now verify that 9%(a) is an e-MPMAB problem instance. It can be easily observed that the reward
distributions are the same for all players, i.e., for every p, g € [M] and every (s,a) € S x A,

|Ry(s,a) — Ry(s,a)| =0 <e.

Regarding the transition probabilities, for every (s,a) € ((Sl x (A\ [v}))) U ((S \S1) x A), we

observe that the transition probabilities are the same for all players. Furthermore, for every p, ¢ € [M]
and every (s,a) € &1 x [v],

€
P, (- |sa)—P, (s, H <oA= L
HP(|sa) q(|sa)17 H
Therefore, M(a) is an e-MPMAB problem instance.

Suboptimality gaps. Similar to the arguments in Case 1, it can be shown that for every p € [M],
and every (s,a) € (§\ S1) x A, gap,(s,a) = 0. And, for every p € [M], and every s € S,

0, if a = agp;
gapp(&a) = (H - 1)A7 ifac [’U] \aS,P;
(H-1)(3+4), ifaé[v]

Subpar state-action pairs. Based on the above construction, for every (s,a) € S x (A \ [v]) and
every p € [M], gap,(s,a) = (H — 1) (% + A) >3(H-1)A = %e > %e > 96H (wﬁ)
where the first inequality uses the fact that A < i. Therefore, there are at least (A —v)S1 = uS; > 1

state-action pairs in Z_c__, i.e.,|Z_« ’ > 1.
2H

192H

19

Now, it suffices to prove that

1
EaNUnif([U]Sl><M)Eim(a) [Regmg(K)] > %Mm,

where we recall thata = (a1.1,...,01,m,a2,1, - - -, as, m)- 1t suffices to show, for any s’ € [S;] and
any p’ € [M],
K
K41/ K41/
IEaNUnif([v]Sl><M)H-Eim(a) |:Np’ (S ) - np’ (S 7a8’)] > Ea (64)
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where NS+ (s') = 30, c 4 nli T (s/, ). To see this, by Lemma 29, we have

M
EaNUnif([v]Sl><M)Em(a) {RegAlg(K)} = Z Z (H-1A- ]Ea~Unif([ ]SlxM)EE)JT(a) NKH( ) - KH(S as)

p=1s"€S;
H-1 ’USl
> MK
! 384K
1
> —My/H?2(vS)K
= 160 (v51)

1
> —MVH?CK
240

where the last inequality uses the fact that vS; > $1°.

Without loss of generality, let us choose s’ = 1 and p’ = 1. Similar to case 1, we define a
set of helper problem instances: for any (a1 2,...,as, v) € [v]91*M~1 we define a problem
instance (0, ay 2, - . ., as, ar) such that it agrees with M (a1 1,12, ..., as, ) on everything but
Py (- | 1,a1), namely, in M(0, a1 2, ..., as, m), P1(S1 + 1| 1,a1) = &.
For each (j, a1, ...,as,,m) € ([0]U [v]) X [v]5*M =1 Jet Pjq, ,...as, » denote the probability
measure on the outcomes of running Alg on the problem instance 9(j, a1 2, . .., as, m ). Further,
for each j € {0} U [v], we define

1

]P)j = pSIXM—1 Z ]P)j7a1,27~~7a5’1,M;

a1,2,...,a5,,ME]S1XM-1

and we use [£; to denote the expectation with respect to P;. In subsequent calculations, for any
m € ([0]U[v]) x [v]¥1*M~1 we also denote by P, ( | NlK“(l)) and E,, [ | N1K+1(1)} the

probability and expectation conditional on a realization of V. 1K + (1) under P,,,. Similar to case 1, it
can be shown that, for any j € {0} U [v],

1
By(- | NN (1) = —os > Pianzas, o (| VD) 69)

a1,2,...,a5,, ME[V]SLXM—1
Now, for each j € [v], we have
By [nf (1) | ML (0)] = Bo [ (1) | M)
By (- I V(D) = Py (| NFF (D))

1
<N () - pS1xM—1 Z

a1,2,...,a5,,M €[V

<NEH(1) \

1

Pjﬂl,z»---ﬂsl,zw ( | N1K+1(1)) - PO,al,z,-<~7asl,1w ( | N1K+1(1)>

]SlxM—l 1

1 . .
<NE+Y(1). wSixM—1 E \/2 KL <Ber( +A), Ber(z)) Eo,as.....as, |:n{<+1(173) | NlKH(l)]
a1,2,...,a5,,ME]S1XM—1
! E )
SN pSixM—1 \/6A2Eo,a2,...,as1 [n{(H(LJ) | Nf(“(l)}
]SlxM—l

a1,2,..,as;, MEW

6vS .
N () [ [l (1) | N )

= NK*1 \/ T o [nf (1) | N (D). (66)

where the first inequality is based on Lemma 24 and the fact that, conditional on NIK H(l),

niT1(1, j) has distribution supported on [0, N{*™!(1)]; the second inequality follows from Equa-
tion (65) and the triangle inequality; the third inequality uses Pinsker’s inequality and Lemma 30 (the
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divergence decomposition lemma); the fourth inequality uses Lemma 32 and the fact that A < i;
and the last inequality follows from Jensen’s inequality.

Using arguments similar to the ones shown for case 1, we have that

PR

JE[V]
S By [l )] + By | GNEFI) | PSS e [nl (1) | NS )
JE[V]

1 K+1 1 /5 K+1 H
<Z a =
<Eo [NFF )] 4+ 5y 2 Eo | (M)
LK 18 (KN
v 5 4\ K \ S

3K
<7a
—45;

where the second to last inequality is from Lemma 33 under the assumption that K > S, and the
last inequality uses the fact that v > 2.

It then follows that

K K
J;]]E [NK+1 K+1(1 j } > ]%;)]]E [NKJrl( )} 15 _ P

and we thereby have shown that

]EaNUnif([v]SlXM)]Em(a) |:N1K+1(1) - n{(+1(1a al):| > - O

D.3 Gap dependent lower bound

Theorem 35 (Restatement of Theorem 8). Fixe > 0. Forany S € N, A > 2 H > 2, M €N,
such that S > 2(H — 1), let Sy = S — 2(H — 1); and let { A, P}(s ap be any set of

values such that

€[S1]x[A]x[M]

e forevery (s,a,p) € [S1] x [A] X [M], As,op € [0, H/48];
* forevery (s,p) € [S1] x [M], there exists at least one action a € [A] such that Ag , , = 0;

* and, for every (s,a) € [S1] x [A] and p,q € [M],|Aqqp — Ngaq] < €/4

There exists an e-MPERL problem instance with S states, A actions, M players and an episode
length of H, such that S = [S1], =2 forall h > 2, and

gap,(s,a) = Agap,  V(s,a,p) € [S1] x [A] x [M].

For this problem instance, any sublinear regret algorithm Alg for the e-MPERL problem must have
regret at least

2 H?
E[Rega(K)| 20| K [ 3 > et Y
gapp(s7 a) min, gapp(s, a)

pE[M] (s, a)EI( J102)’ (5:0)€L( j10211)

gap, (s,a)>0
Proof. The construction and techniques in this proof are inspired by [36] and [43].

49



Proof outline. We will construct an e-MPERL problem instance, 91, and show that, for any
sublinear regret algorithm and sufficiently large K, the following two claims are true:

1. forany (s,a) € S x A such that for all p, gap,,(s,a) > 0,

2
Eon {nK(s,a)} >0 a InK |; (67)

2
(minp gapp(s7 a))

2. for any (s,a) € Iiﬁ and any p € [M] such that gap,(s,a) > 0,

2
Ean [nf (s,a)] = © B ——— (68)

= 2
(s, (0. 0)
The rest then follows from Lemma 29 (the regret decomposition lemma).

Construction of 2t.  Given any set of values {As’a’p}(s " that satisfies the assump-

,a,p) €[S1]x [A]x [M] o
tions in the theorem statement, we can construct a collection of MDPs {Mp}pzl, such that for each

p € [M], M, is as follows, and I = {MP}IJ)V; is an e-MPERL problem instance:

* 81 = [S1], and py is a uniform distribution over the states in S;.
» Forh € [2,H], S, = {S1 + 2h — 3,51 + 2h — 2}
« A=[A].

* For all (s,a) € S x A, the reward distribution r,(s,a) is a Bernoulli distribution,
Ber(R,(s, a)), and we specify R, (s, a) subsequently.

* Forevery (s,a) € §; x [A], set A? , = % Then, let
1 - 1 -
P, (S1+1]s,a) = 5~ Ao P, (S1+2]s,a) =5 +A
and R,(s,a) = 0. Since A, , € [0, H/48], A Pa < ﬁ < 24, where the last

inequality follows from the assumption that H > 2. Therefore, P, (5’1 +1]s, a) €10,1],
and P, (S1 +2 | s,a) € [0,1].

» Forh € [2,H],and a € [A4], let

2,
- P, (S1+2h—1|S1+2h—3,a) =1, P, (S1+2h|S1 +2h—3,a) = 0, and
p(31+2h 3a)—1

p(51+2h|51+2h—2,a) = 0, Pp(51+2h—1|51+2h—2,a)
Ry(S1+2h —2,a) = 0.

1, and

By the assumption that for every (s,p) € [S1] x [M], there exists at least one action a € [A] such
that A ,,, = 0, we have that there is at least one action a such that AL , = 0. We verify that for

every (s,a,p) € [S1] x [A] x [M],
gap, (s, a) = V' (s) — Qp(s,a)
= mE}XQ;(S’ a') — Q;(Sv a)
= (H - 1AL,
=Agap-

50



We now verify that the above MPERL problem instance 9t = {/\/lp }211 is an e-MPERL problem
instance:

1. The reward distributions are the same for all players, namely, for all p, g,

|Rp(s,a) — Rg(s,a)| =0 <¢,V(s,a) €S x A

2. Further, by the assumption that for every (s,a) € [Si] x [A] and p,q € [M],
}As,a,p - As,a,q| < ¢/4, we have that

. . Asap — Dsayl € €
Ap _ Aq _ ‘ S,a,p S,a,q < <
‘ 5a 5a H-1 T4H-1) " 2
It then follows that
~ ~ €
1B, (- | 5.a) =By (-] s,0) Il = 2|27, - A%, | < £

Meanwhile, for every (s,a) € (S\ 1) x A
Py (- | 5,a) — Py ( | s,a) [h=0<
In summary, for every (s,a) € S x A,
1B, (-1 5.0) =Py (- | 5,a) |1 < -
We are now ready to prove the two claims:

1. Proving claim 1 (Equation (67)):
Fix any (so, ag) € [S1] % [A] such that A™® = min, AP > 0. It can be easily observed

50,00 50,20

that gapp(so, ag) > 0 for all p. Define py = argmin,, Aga,ao‘ We can construct a new

problem instance, 9, which agrees with 91, except that

Vp S [M],Pp (Sl +1 | 50,0,0) AI‘;O a0+2AI§r:)H(lLO, (Sl +2 | So,ao) +A€0 a072AI§r(1)11{110

' is an e-MPERL problem instance. To see this, we note that the only change is in
P, (- | s0,a0) for all p € [M]. In this new instance, it is still true that for every p, ¢ € [M],

€
< —.

H]P)P ( ‘ So,ao) ( | 507(10) ”1 - 2’A€g,a0 - Azo,ao =

Fix any sublinear regret algorithm Alg for the e-MPERL problem. By Lemma 30 (the
divergence decomposition lemma), we have

KL(Pay, Pon ) ZEm[ (50, a0)| KL (P3*(- | s0,00), B3 (- | 50, a0) ) ,

where Pgy and Pgy are the probability measures on the outcomes of running Alg on 9t and
M, respectively; P2 (- | so,a0), P! "(- | s0, ap) are the transition probabilities for (sg, ag)
and player p in 91 and 9V, respectlvely.

We observe that, for any p € [M],

KL (]P’f,”( | 50,a0), PP (- |807ao)>

~KL (Ber (2 Ar ao) Ber <2 SAT L+ QA?E‘%O))

SlQ(Amln )2’

50,00
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where the last inequality follows from Lemma 32 and the assumption that A, , ,, < f—s.

In addition, -2 | Egy [n{f (0, ao)} = Eon [0 (50, a0)]. It then follows that

50,20

KL(Pa, Pow) <12Ean [n" (s0,a0) | (A% )2, (69)

Now, in the original e-MPERL problem instance, 91, by Equation (57) and Markov’s
Inequality, we have

X - K
]Em [RegAlg(K)} Z r& ((H — 1)A§(1)17I(]10> IP)EITI (TLII)(O(SO,G/O) Z 4511> 5

where we note that Aggm = Ag‘]if}lo. In 9V, the new e-MPERL problem instance, we have

Eanr [Regage (K)| = ((H = 1)A%5 ) Egv | D mpy(s0,0)

<
(

=((H - 1)&2:‘){20) Eop [szg(so) — N, (so,ao)}

K A min K
24751 ((H — 1)Aso,ao> ]Pgm/ (N;g(so) — Np, (S(),ao) 2 451>

K A min K K K
EE ((H — 1)Aso,ao> Pgm/ (Npo (50) Z 275,1,711,0(507@0) S Sl)

K o K K
>__ _ min , < = ) _ o
=145, ((H 1)Aso,ao> (me (npo(s()?a()) = 451> exp( 85, )) ;

where the first inequality is by Equation (57); the second inequality is by Markov’s Inequal-
ity; the third inequality is by simple algebra; and the last inequality is by Chernoff bound

that Poy (N]fg(so) < %) < exp(f%), and P(A N B) > P(B) — P(A) for events
A, B.
It then follows that

Eon [RegAlg(K)} + Eonr {RegAlg(K)}

K = min K K

=5 (i —nam ) (sz (nK<> > 2) + Pow (nK<> < 2) —exp(— g
K o 1 K

> _ min - _ , _ -

> (- vazi, ) (e (- KLEm Pon) - expl— 55 )
K A min 1 _ K Amin \2 | _ K

Z? ((H - 1)A50,a0) <2 €xXp ( 12E9ﬁ [n (807a0)i| (ASO,QO) ) eXp( 851 )) )

where the first inequality follows from Lemma 31 (the Bretagnolle-Huber inequality), and the
second inequality follows from Eq. (69). Observe that Egy [nK (so, ao)] < Sﬁl; in addition,

by our assumption that Ay, , < 4% for every (s,a,p), we have A% < 2. These

together implies that } exp (—12E§m [n*(s0,a0)] (Amn )2) > exp(—gs-). Therefore,

50,20

we have

Eon [RegAlg(K)}‘FEﬁﬁ’ [RegAlg(K)} > % ((H - 1)A?§;0)'16XP (-12Em {HK(SO,GO)} (

4

Now, under the assumption that Alg is a sublinear regret algorithm, we have

% ((H - 1)5?&20) exp (—12Egm {nK(so,ao)} (Ag‘;{ré[)f) <20K“.
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Amin

$0,Q0

?).



It follows that

1 H - 1)Amin g1-a
Eon [nK(so,ao)} > 5 In ( )R
~ 16C
12 (Agggo)
— (H B 1)2 ln minp gapp(307a0)Kl_a

2
12 (minp gap, (so, ao)) 16C

H? n min,, gap,, (so, ao) K'~*
- )
, 16C

24 (mlnp gap,(so, ao))

\%

We then have

H2
Egm [nK(So,ao)} > Q InK

P
(minp gap,,(so, ao))

2. Proving Claim 2 (Equation (68)):

Fix any (sg,a0) € Iiﬁ and pg € [M] such that A’(’EO ap) > 0. which means that
gap,, (S0, ag) > 0. We have that for all p € [M],

AP AL ., 8ap,(s0,a0) < 24H (¢/(192H)) < € €

- - <.
s0:00 — f ] H-1 = @-1 “sE-1n-im 0

We can construct a new problem instance, 9, which agrees with 91 except that

L3 X 1
By (S1+ 1] s0,00) = 5 = A%y, + 20, = 5+ A2,
L A X 1.
Py (S1+2 ] s0,00) = 5 + Ak, ~ 200, = 5~ AL,

' is an e-MPERL problem instance. To see this, we note that the only change is in
Py, ( | s0, ao). In this new instance, it is still true that for any ¢ # po,

_ - €
IPpo (- | s05a0) — Pg(- | s0,a0)[l1 < 2|AR , + Al < —.

50,00 $0,a0 | — H

where the last inequality uses Equation (70) that AP < 437 forevery p € [M].

50,00
Fix any sublinear regret algorithm Alg. By Lemma 30 (the divergence decomposition
lemma), we have

KL(P{)}{,Png) == Egm {ng (S()7 a()):| KL (]P)Z:Z( | S0, ao),]P’gf/Q ‘ S0, ao)) .
Using a similar reasoning as before, we can show that

KL(Pox, Pox') <12Ean [n{;(so,ao)} (AP0 )2, (71)

50,Q0

Similar to case 1, we have the following argument. In the original e-MPERL problem in-
stance, M, we have Egy {RegAlg(K)} > 5 ((H —1)Apo )sz (nK(so,ao) > K );

$0,a0 DPo — 45,

and in 9V, the new e-MPERL problem instance, we have Egy [RegAlg(K )} >

% ((H N 1)A€8,ao) <me’ (nﬁﬁ(SO,ao) < ﬁ) — eXp(—ngl)),
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It then follows that

Eon [RegAlg(K)} + Eon/ {RegAlg(K)}

2% ((H — 1)A§S,ao) (; exp (— KL(Pox, Poy)) — exp(_gf;)>
Z% ((H - 1)A£3,a0) exp (12Ezm {HK(so,ao)} (AE’S,%)Q) |

Now, under the assumption that Alg is a sublinear regret algorithm, we have

% ((H - I)Aé’g,ao) exp (-12Em [nffo(so, ao)} (A537a0)2> < 2CK®.

It follows that

1 (H—1)Ar  K'=
Eon [nf,ﬁ (so,ao)} 12 (A”" )2 In ( 16C )

H? In (gappo(soaao)Kl_a>
2 16C '
24 (gappo(so, ao))

Y

Y

We then have that
H2
Eon [n{;(so,ao)} >0 —2an
(gappo (50, ao))

Combing the two claims: We note that in 9, for any (s, a,p) € (S\S1) x A x [M],
gap,(s,a) = 0. It then follows from Lemma 29 (the regret decomposition lemma) and the
fact that for any (s, a,p) € Z.j192m ¥ [M], gap,(s,a) > 0, that

E [RegAlg(K)} > i Z E [nf(sm)] gap, (s, a)

p=1(s,a)€ES1 XA

>0 |mKk | Y Y - > =h

ap,(s,a min, gap, (s, a
PE[M] (5,0)€T) 1001 & pp( ) (s,0)€Lc/102m »& pp( )

gap, (s,a)>0
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