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ABSTRACT

Recently, diffusion models have achieved great success in mono-channel audio generation.
However, when it comes to stereo audio generation, the soundscapes often have a complex
scene of multiple objects and directions. Controlling stereo audio with spatial contexts re-
mains challenging due to high data costs and unstable generative models. To the best of
our knowledge, this work represents the first attempt to address these issues. We first con-
struct a large-scale, simulation-based, and GPT-assisted dataset, BEWO-1M, with abun-
dant soundscapes and descriptions even including moving and multiple sources. Beyond
text modality, we have also acquired a set of images and rationally paired stereo audios
through retrieval to advance multimodal generation. Existing audio generation models
tend to generate rather random and indistinct spatial audio. To provide accurate guidance
for Latent Diffusion Models, we introduce the SpatialSonic model utilizing spatial-aware
encoders and azimuth state matrices to reveal reasonable spatial guidance. By leveraging
spatial guidance, our model not only achieves the objective of generating immersive and
controllable spatial audio from text but also extends to other modalities as the pioneer
attempt. Finally, under fair settings, we conduct subjective and objective evaluations on
simulated and real-world data to compare our approach with prevailing methods. The re-
sults demonstrate the effectiveness of our method, highlighting its capability to generate
spatial audio that adheres to physical rules.

1 INTRODUCTION

The binaural hearing ability naturally enhances our perception of the world through the acoustic field,
which became widely recognized in the 1980s with the rise of PCM (Lipshitz & Vanderkooy, |2004) and
MP4 (Sikora, |1997) formats. In the current era of audio generation, creating immersive experiences requires
the production of stereo audio that adheres to specific location properties, which can be effectively achieved
through end-to-end generative models. This generation task boosts applications in immersive VR/AR (Fi-
tria, (2023} |Burdea & Coiffet, 2024) and embodied Al (Liu et al., 2024d)). Therefore, generating stereo audio
that incorporates spatial multimodal context represents a valuable task within the community.

Significant progress has been made in a monaural audio generation, with models such as AudioLDM 2 (Liu
et al.,|2024a), Make-an-Audio 2 (Huang et al.| 2023a) and Tango 2 (Majumder et al., 2024). These models
leverage the diffusion architecture to efficiently generate audio from textual prompts with a T5 model. For
example, AudioLDM 2 uses a latent diffusion model to generate a latent representation of mel-spectrograms,
and Make-an-Audio 2 and Tango 2 further explore the presence of events and their temporal ordering.

*: Equal contribution
= Corresponding authors


https://peiwensun2000.github.io/bewo/

Published as a conference paper at ICLR 2025

Previous Two-Stage Generation . spatial audio @ Description @ Image E} Bounding Box X click
Image Latent 1-caudio  Conditional Filter LR ) . - — -
N Diffision II||I|I or ((Dﬂ/, ‘A engine sound” occurs E{; ES}" Tiem | s
Model . . g and moves left. <1 A A\
Simulation ) -

Low quality

. = ‘A motorcycle is moving .
Previous One-Stage Generation Our Spatial Generation fast from right to left.” =4

ot = Stereo su\dio ngo-lM Dataset @ Guided Generation @
— e NN
= Rifsion (Vlﬂ// Spatial-Aware Control

= Model =
Uncontrollable Spaial audio « % L e ®@2 1 W

Text Image Box Click > Spaisicelle > Engine sound . Human talking
R N-REE S ) L@ Or  nowl LT D e
(a) Comparison to popular generation model (b) The objective of controllable spatial audio generation

Figure 1: Our SpatialSonic, as a one-stage model, alleviates the problem of error accumulation in a two-
stage model and facilitates control with end-to-end finetuning in a one-stage model. Moreover, our spatially
enhanced system supports spatial audio generation from text and image, as well as interactive actions.

Compared to monaural audio generation, current research on spatial audidﬂ generation is still limited. The
pioneering work (Dagli et al., |2024) cascades the generation model with a simulator to generate stereo
audio from the image. Another direct thought is converting generated mono audio to stereo by integrating
interaural time difference (ITD) and interaural level difference (ILD) (Desai & Mehendalel [2022), which
are crucial for spatial perception in human auditory processing. Typically, to convert mono audio to stereo,
/hou et al.| (2020); |Parida et al.| (2022) use visual and positional cues as conditions to produce spatial audio
through a U-net style filter. Although it seems feasible to generate spatial audio by cascading effective audio
generation models with simulations or filters, the two-stage approach in Fig. [T(a) incurs high computational
costs and potential error accumulation.

We attribute the challenges of spatial audio generation to 3 aspects: 1) large data scale; 2) precise guidance
construction; 3) proper evaluation metrics. This work presents the first exploration addressing these issues.

Although stereo audio is common in real life, captions of such audio with spatial descriptions still require
massive human resources. For example, generating spatial audio that matches the textual description “a
motorcycle engine sound moving gradually from front to left” requires extensive paired data of motorcycles
in various directions of movement. Due to such high labeling costs, the lack of sufficient high-quality data
becomes a barrier to spatial audio generation models, compared to Mei et al.| (2024); Wu et al.| (2023). To
better facilitate the advancement of multimodal guided spatial audio generation models, we have developed
a dual-channel audio dataset named Both Ears Wide Open 1M (BEWO-1M). It contains up to 1 million
audio samples through rigorous simulations and GPT-assisted caption transformation. BEWO-1M contains
an abundant soundscape, including moving-source, multi-source, and interleave-source scenarios with the
spatial description or rational image. To ensure perceptual consistency with the real world, test sets from
BEWO-1M are checked by humans, and a real-world recorded subset is manually constructed and annotated.

Previous one-stage stereo audio generation model (Evans et al.,[2024ajb) training on real-world data is able
to generate stereo audio based on the caption but fails to generate rational spatial audio, as shown in Fig.[T(a).
After fine-tuning existing models with BEWO-1M, a basic capability can be obtained to understand the posi-
tional description. Since the knowledge from the text fine-tuned model is trained on our enormous data, it is
important for the image to utilize this knowledge through language-driven behavior. In our diffusion-based
SpatialSonic model, we first explore the multimodal spatial-aware guidance to encode images with regional
perception way in Sec.[.2] Then, we identify that due to the lack of explicit spatial guidance, simply fine-
tuning the existing model with BEWO-1M still fails in precise T2A and 12A tasks. Therefore, we introduce
azimuth guidance inducted by LLM through a specific scheme to clarify and integrate complex textual and
visual contexts. Finally, along with proper classifier-free guidance training on the diffusion model, we obtain
a controllable generation model. During inference, a straightforward method can be easily applied to achieve
user interaction. We propose using ITD-based objective metrics and opinion-based subjective evaluations

"For clarity, we define “spatial audio” as the “stereo audio” adheres to spatial context.
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to assess generated audio systematically. Our results show that SpatialSonic effectively generates realistic
spatial audio, achieving a 70% reduction in ITD error and higher opinion scores than popular models with
minor adaption, including AudioLDM?2. Overall, our contributions are:

* Developing a semi-automated pipeline to create an open-source, large-scale, stereo audio dataset
with spatial captions, BEWO-1M and supporting both large-scale training and precise evaluation.

* Introducing a one-stage, controllable, spatial audio generation framework, SpatialSonic, which is
designed to generate dual-channel audio precisely adhering to multimodal spatial context.

* Proposing a series of subjective and objective metrics based on ITD and opinion score to evalu-
ate spatial audio generation models. Under fair experimental conditions, our framework produces
audio with enhanced spatial information, obtaining more authentic soundscapes.

2 RELATED WORKS

Spatial Audio Understanding. Researchers including [May et al.| (2010) have been exploring the field of
stereo audio through learnable methods since 2010. In recent years, the development of deep learning has
led to more extensive exploration of stereo audio. The first area explored is binaural audio localization,
where researchers are able to localize the direction of sound sources by learning ITD and ILD in the single-
source scenarios (Krause et al., [2023; |Yang & Zheng| 2022} |Cao et al. 2021} [Shimada et al., [2022; |Yasuda
et al., [2020; |Garcia-Barrios et al., [2022) and the multi-source scenarios (Nguyen et al., [2020). With the
advancement of multimodal research, mono-to-stereo audio generation methods conditioned on visual (Garg
et al.| 2021} Xu et al., [2021}; [Liu et al.l 2024c |ILi et al., 20245 [Zhou et al.| 2020), depth (Parida et al., [2022)
and location (Leng et al., 2022), have also been gradually developed. The input takes a mono audio and an
image, and then spatial audio can be obtained through supervised learning. However, since a mono signal
is still required, this task is not a generation task from the current view. Additionally, researchers including
Gebru et al.| (2021)); [Phokhinanan et al.| (2024); Ben-Hur et al.| (2021)); |Geronazzo et al.| (2020) hope to
implicitly establish head-related transfer function (HRTF) through deep learning to form a reasonable signal

mapping.

Text-to-audio (T2A) Generation. Audio generation from text is typically categorized into text-to-speech,
text-to-music, and text-to-audio. In this paper, we focus on the latter category. From a methodological
perspective, text-to-audio generation approaches can be broadly classified into autoregressive models and
diffusion models. The pioneering works from Kreuk et al. (2022); |Yang et al.| (2023); [Lu et al.| (2024); |[Liu
et al.| (2024b) on autoregressive-based audio generation use a general audio tokenizer to convert waveforms
into a sequence of tokens. Then, they apply an autoregressive network like GPT-2 (Radford et al.| 2019)
to predict the next token in the sequence. However, autoregressive-based models often require substantial
data and computational resources (Kreuk et al.,2022). This has led to increased exploration of diffusion-
based models for audio generation, with outstanding works including AudioLDM (Liu et al.| 2023} 2024a)),
Audiobox (Vyas et al.,|2023)) and Stable Audio (Evans et al.,|2024afb).

While the controllable problem in image generation (Cao et al. [2024) persists in audio, the specific chal-
lenges may differ. General controlling attempts are made by enhancing the text prompt (Copet et al.l [2024;
Huang et al., |2023b). To improve the precision of time and frequency control, Huang et al.| (2023a); [Xie
et al.| (2024b)) explore the temporal encoding along with the fusion mechanics. As for stereo audio, Mu-
sicGen (Copet et al.,2024)) and Stable Audio (Evans et al.l |2024alb) can generate stereo audio but without
spatial control. In this work, we reveal and deal with this spatial-controlling problem for the first time.

Other-to-audio Generation. With ImageHear (Sheffer & Adi|, 2023) pioneering the use of images as guid-
ance, CLIP has been extensively employed for I2A generation tasks. Subsequently, Dong et al.[|(2023) and
Wang et al.|(2024) have also leveraged CLIP to generate realistic spectra through diffusion guidance directly.
However, the CLIP primarily focuses on aligning the global abstract semantics rather than the positional con-
text. Therefore, spatial audio generation, as a position-aware task, requires further exploration of regional
understanding of images.
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Figure 2: The pipeline of BEWO-1M data collection. The data machine is driven by LLM induction and
rigorous simulation. In particular, the data for testing are built with human checking. The diagram in Step 3
represents one of the simulation scenarios. (a) illustrates the diversity of source and microphone positions.
(b-f) show the abundant soundscapes in BEWO-1M.

3 BEWO-1M DATASET

Due to high labeling costs, Tab. [T|shows that stereo audio datasets usually have a short duration. The limited
spatial audio datasets and the spatial constraints in existing models (Evans et al.| [2024b) necessitate the
creation of a dataset with explicit spatial context. We propose BEWO-1M, a large-scale stereo audio dataset
with spatial captions, as the first to the best of our knowledge. BEWO-1M consists of audio-caption pairs
and audio-image pairs. The construction pipeline in Fig. [2| follows the step-by-step procedure of preparing,
transforming, and simulating to obtain a balanced dataset.

Data Preparation. Raw data collected Table 1: Comparison of existing audio-caption datasets.

online is noisy and requires pre-selection Duration | Num. of | Paired
before simulation. Initially, we select Task | Dataset (hours) | Audios | Type
: : hi L LAION-Audio (Wu et al.|[2023 4.3k 633k Text
samples with captions descnblng sin WavCaps (Mel eraT 150341 By 103k Toxt
gle sound sources to construct a single- AudioCaps (Kim et al.| 2019} 110 46k Text
source database. This makes each audio Event | SoundDescs (Koepke et al.]2022] L1k 3k | Text
li tai | inol nd event Clotho (Drossos et al.|[2020) 23 25k Text

Clip contain only a Single sound event, Audio Caption (Wu et al][2019] 10.3 3.7k Text
thereby ensuring realism and quality in VGG-Sound|Chen et al.[(2020] 550 200k | Video
simulation. We then apply sound ac- AVE|Tian et al 11.5 4k | Video
.. . pp y. PicoAudio (Xie et al.| 2024b) 15.6 5.6k Text
tivity detection on each audio and ran- Temporal | AudioTime (Xie et al..[2024a 15.3 5.5k Text
domly crop to 10s segments. Further, we CompA-order (Ghosh et al.l %024} L5 851 Text

: SimBinaural (Garg et al.|[2023 116 22k Video
remove segments with low CLAP FAIR Play (Gao & Grauman 3019 | 5.2 Tk | Vides
et al.}|2023) similarity with their caption. Spatial | YTALL (Morgado et al.|[2018] 113.1 L1k | Video
See Appendix [B.I|for more details. MUSIC 2018] 23 0.7k | Video

BEWO-1M (Ours 2.8k 1,016k Text

GPT-based Attributes Induction and B RO Sl Zale | I

Caption Transformation. With input as a caption or image-caption pair, we use GPT-4 and GPT-40 to
induct sounding objects and their attributes for simulation, transforming raw captions into acoustic-rich cap-
tions with spatial descriptions. The audio simulator normally requires certain essential attributes to simulate
realistic audio, including scene size, sound source location, moving direction, and speed. We create an
audio-object pool from sound objects inducted from audio-caption pairs. The sound objects are inducted
from images, and then the corresponding audio is retrieved from this pool. To obtain reasonable attributes
and captions, we apply the Chain of Thought Prompting (CoT) to enhance the induction
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ability of GPT-4 and GPT-40. We predefined several patterns to describe each attribute, with each being
an attribute element, such as “far” or “near” for the distance attribute. Specifically, we require GPT to
select attribute labels that match the input context and transform raw captions into acoustic-rich captions
with positional and movement phrases. Fig. [2[e) presents the statistics of caption length in BEWO-1M,
and the transformed captions still remain concise with additional spatial and movement descriptions. See
Appendix [B.2] for more details.

Audio Simulation. We utilize the obtained attributes to simulate realistic and reasonable stereo audio.
Following prior researches (Salvati et al., 2021} (Chen et al., [2022b; [Dagli et al.| [2024), we use Pyrooma-
coustics (Scheibler et al.,|2018)) and gpuRIR (Diaz-Guerra et al., [2021) for simulation. To enhance diversity
and reflect real-world distribution, we introduce a certain level of randomness into the inferred and selected
attributes. To ensure scenery diversity, we also randomly set additional scene attributes like the microphone
position and the room reverberation indicator, RT60. The simulation assumes a common ear distance of
16~18 cm. To make the dataset general, we do not consider the shadow effect of the head and leave the
head adaptation achieved by future fine-tuning. The simulator then uses these attributes to generate the
audio. Fig.[2(a) shows the diversity of source positions in simulation. In the indoor scene, the simulator
also generates audio with a static simulated room impulse response (RIR). For the moving source scenar-
ios, we build a trajectory to detail its positions. Our pipeline proficiently simulates audio across various
environments, achieving both diversity and authenticity while meeting the criteria for ITD and ILD. See

Appendix [B.4]for details.

Post-Processing. To ensure data quality, we perform manual checking for part of the training set and entire
test set. Tab. [CT4]shows that our automated pipeline can generate decent captions.

In summary, we constructed 2.8k o sleft ~Lefefront «Front

*Right-Front *Right
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i : Figure 3: In polar coordinates, the radius represents normalized audio
In addition to its large scale, the

BEWO-1M dataset is also notable €n€rgy. the angle denotes the perception angle (0°for right, 180°for
for its high quality. As shown in left), and five colors in the above legend signify the use of common
Tab. [ the simulated audio receives directional terms to describe sound events. (a) is the human perception
high subjective ratings from human based on the questionnaire of volunteers. In (b), the baseline fails to
annotators. Fig.[fc, d) presents the generate the controllable audio. Obviously, (c) highlights the valuable
diversity of attributes in BEWO- knowledge from BEWO-IM. (d,e) highlights the superiority of our
1M, and Fig. J(f) shows the sound data and methods in controlling the generation of 5 common directions
events diversity. The details and and uniform fine-controlling matrices.

statistics of subsets are provided in Appendix [C] Finally, we fine-tune the baseline (Evans et al [2024b)
with BEWO-1M, and Fig. B(b,c) demonstrates our dataset significantly improves the spatial discrimination.

4 METHOD

Overview. Our objective is to extract precise guidance from multimodal input and create stereo audio adher-
ing to spatial context. The overall pipeline of our SpatialSonic network consists of multimodal extraction,
azimuth guidance, and latent code generation, as illustrated in Fig. 4] On top of [Evans et al. (2024b), we
introduce a multimodal encoder for the image’s spatial perception in Sec. .2} to adapt the image to T2A
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Figure 4: The overall pipeline of SpatialSonic. It is a one-stage controllable model that processes multimodal
inputs to generate spatial audio, where GPT is used to inject the specific azimuth state into the guidance.

model. Then, the azimuth fusion module in Sec. 3] provides extra clear conditions with the help of LLM
and the azimuth scheme. Finally, the training and inference methodologies are presented in Sec. [d.4]

4.1 PRELIMINARIES

Task Objective: Let z € R?*%s represent a dual-channel audio signal, where L, depends on the length
of audio. As the autoencoder compresses the x into Z, the audio generation process can be denoted as
H : (C,€) — & — x, where C is the multimodal condition, € is the Gaussian noise and # is the conditional
generation process.

Text Embedding: The pre-trained language model TS encoder (Raffel et al., [2023)) is used as the text en-
coder (Fyey). It captures spatial context as text embedding Fio,, € RY* % where L is a variable number
depends on the text input. The ablation study in Tab. [/|reveals that incorporating CLAP speeds up conver-
gence compared to T5; however, the spatial performance is inferior to T5.

Image Embedding: Previous image encoder Ej,, used in I2A usually obtains Fipe € R dime by CLIP.
Considering the regional perception in Sec. our image embedding follows Fine € RLXdime

Azimuth Information: The attributes including number of sources K, start position (i, end position fiend,
moving start time T{) and moving interval T is precisely known during simulation and can be used during
training. During inference, inspired by |Xie et al.|(2024b); Qu et al.| (2023)), K, fivegin, ftend> 1 can be inducted
by GPT. Details are provided in Appendix [H[

4.2 IMAGE EMBEDDING WITH REGIONAL PERCEPTION

Popular I2A model (Sheffer & Adi, [2023)) using CLIP (Ramesh et al., [2022) focuses on aligning the global
abstract semantics rather than its positional and relational context. Therefore, the objective of this module is
to gain regional image perception, while re-utilizing language-driven knowledge from massive text pairs.

To inject the spatial-aware semantics into the image encoder, we follow (Cho et al| (2021) to carry out a
detection model as a regional perception to provide the rich positional context; this pre-training network is
an encoder-decoder structure, firstly trained as a vision-language task. The network generates the acoustic
description of the image, supervised by image-caption pairs in Sec.[3] The pre-training follows 3 steps below.
1) Use the detection model to obtain the N regions’ embedding R € RY*Ldr corresponding coordinates
C € RNV*4 and detected object class embedding Z € RV *Les where 0 < N < Npu. Obtain a visual
embedding Fi, € RN *Lrwe by linear projecting and element-wise adding R, C, T separately. 2) Concatenate
the visual embedding to specified text prefix embedding (i.e. “image acoustic captioning’) as encoder input.
3) Update the multimodal encoder while keeping the weight of the decoder frozen. Overall, since the shared
decoder is utilized during the pre-training of text and visual encoders, the latent features obtained from the
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visual encoder Ejy,, and text encoder iy can be regarded in the same aligned space. The visual embedding
output by Eipe can be denoted as Fip, € R dime,

4.3 CONTROLLING AZIMUTH FROM COARSE TO FINE

When text and image embedding are used directly as conditions, there is still a large dispersity in Fig. [3[c).
Therefore, it is crucial to design a model that effectively supports precise generation using both text and
images. On the one hand, the language phrase to describe source direction is limited and rather subjective.
By learning the underlying distribution of human perception in Fig. [3[a), the generated audio becomes
more realistic in assessments. On the other hand, when generating stereo audio using continuous spatial
information such as images, it is necessary to form a more precise guidance. Inspired by layout-controllable
image generation (Inoue et al., 2023} |Qu et al.l|2023), we introduce simple and clear guidance, azimuth state
matrix for K sources S € R XLwixXdime which encodes azimuth at different times slots.

To fit the coarse guidance into a distribution of human perception, we developed a Gaussian-based coarse-
grained guidance for controllable generation. Given a time and duration {t,T'} € dyme based on specified
speeds, the center position p(¢) at given moment ¢ adheres to the following physical principles:

t
M(t) = Wstart + T(ﬂend - ,Ustart)- (1)
where s, ftend € Lazi- Here, for conciseness, we omit the expression before moving (¢t < Tj) and after

moving (Ty + T < t), which can be simply derived by fiena=[tstart- Further, the azimuth of k-th (0 < k < K)
object under the normal distributions A/(-) at different moments are illustrated by,
- 1 (L = u(t))?
coarse _ 2\ o
I = N | ute). o) = g e (- E5400 ), @
where the variance o is obtained from the statistics of real data. Each azimuth / can be modeled as [ = 1 for
right and | = dyjme for left. Then S73™ [k] is azimuth-wise normalized before the next module.

For fine-grained purposes, the precise location is easily accessible to the nature of the simulation. Thus, we
design the discrete state matrix of k-th object to represent the precise azimuth across time as

finerr _ J 1 ifl = [p(t))
Silk] = {O otherwise )

This fine matrix can be regarded as the extreme situation of equation [2| without the uncertainty.

Then, we enhance the condition by fusing azimuth state and text embedding by azimuth fusion module
(AFM). This AFM composes of the multi-layer cross-attention as CA(q, k, v) introduced as

S"=CA(S,F.,,F.)+ S for ' — FlL., ifT2A @
= softmax (S - F, )F,, + S, m Flppge 1T12A7

where F},,,, F... ge are the embedding after transforming F}crt, Fimage by adapter and S’ is the attended
state matrix. To enhance conciseness, the equation [ for attention have excluded projection and scaling
factors. This state matrix and the fusion module allow us to encode complex behaviors such as the speed and

direction of sound source movement, and even support future custom matrices for any speed and azimuth.

4.4 TRAINING AND INFERENCE OF DIFFUSION MODEL

We utilize a diffusion model as H to model & based on the azimuth state matrix .S and modality embedding
Flext or Fimage. The forward process of the cosine form (Esser et al., 2024) is used to obtain the noised
representation P, of each time step 7 by noise € injection by

P = at + Pe, &)
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where € follows a isotropic Gaussian distribution, v = cos (37) and 8 = sin (27). Then, the v-prediction

parameterization (Kingma & Gao, 2024) is implemented for training for better sampling stability with a few
of the inference steps, so the overall training conditional objective is

L= Etw[O,l],J,,xaT Wt Hf9 ([”PT,cat(S',an)] 707) — Vo, Hg ; (6)
oP,
Vo, = : = ae — BPy, (7

where the velocity v is calculated from noise schedule o € [0, 1], and w. is the weight obtained from the
signal-to-noise ratio of P;. cat(-,-) means concatenation. fy is the estimation network to reconstruct and
denoise from P, to learn the conditional denoising as

B = L 1fy (CA(Pr cat(s', Fy))) — el ®)

Initially, the T2A model is trained using the BEWO-1M dataset. On top of this T2A model, it is fine-tuned
using the spatial-aware image encoder to develop the I2A model. Drawing inspiration from current SAM-
based interaction models (Ma et al.,|2024; Kirillov et al.,2023)), we utilize clicks and bounding boxes (BBox)
to select Region of Interest (Rol) from regions R,, € R in Sec.[#.2] After generating the high-quality mask,
it is then matched with region coordinates C and regional feature R. We enable the selection of multiple
Rols as input of Eipaee. The regions R,,, coordinates C,, and IDs Z,, are selected, where n € N. By using
the selected R,,, C,, and Z,, as input, the image encoder Ejn, takes interactive embedding Fiiick or Fipox and
finally generate the spatial audio of the target object.

5 EXPERIMENT

5.1 TRAINING AND EVALUATION

Dataset Our dataset is built on a diverse combination of datasets detailed in Appendix We convert the
sampling rate of audios to 16kHz and pad short clips to 10 seconds long after the data construction in Sec.[3]
As for images, we select the scenery with audible subjects from COCO2017 (Lin et al.,[2014).

Model Configurations We fine-tune the continuous autoencoder pre-trained by Stability A]E] to compress
the perceptual space with downsampling to the latent representation. For our main experiments, we train a
text-conditional Diffusion-Transformer (DiT) (Levy et al.l 2023} |Peebles & Xiel, [2023)), which is optimized
using 8 NVIDIA RTX 4090 GPUs for 500K steps. The base learning rate is set to 2e-5 with a batch size of
128 and audio length of 10s. Hyper-parameters are detailed in the Appendix [E]

Evaluation Metrics: 1) 1-C metrics: We adopt metrics from [Huang et al.| (2023b)) and |Liu et al.| (2023)
to calculate Fréchet Distance (FD), Inception Score (IS), Kullback-Leibler divergence (KL), Fréchet Au-
dio Distance (FAD), CLAP score (CLAP), overall impression (OVL) and audio-text relation (REL) for
T2A evaluation. Additionally, CLIP Score (Wu et al., 2022; |Sheffer & Adil [2023) evaluates the relevance
for I2A model. 2) 2-C objective metric: To better examine the quality of the generated spatial audio, we
propose novel evaluation methods based on TDO Utilizing the non-silent segments with a threshold of
-16 dBFS in the audio, we compute TDOA distributions in intervals of 0.1 seconds using both the tra-
ditional Generalized Cross-Correlation with Phase Transform (GCC-PHAT) (Knapp & Carter, |1976) and
the deep learning network StereoCRW (Chen et al., [2022b)). Finally, the mean absolute error is com-
puted based on the TDOA of the ground truth and generated audio as GCC MSE and CRW MSE. A
lower error indicates better alignment with ground truth, but simple MSE fails in scenarios with multiple
or moving sources. Expanding on FAD (Kilgour et al. 2018)), a novel evaluation metric, Fréchet Stereo

Zhttps://github.com/Stability-Al/stable-audio-tools
3This quantity is known as both difference of arrival (TDOA) and the interaural time difference (ITD).
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Audio Distance (FSAD), is introduced. FSAD builds on FAD by leveraging the StereoCRW network in-
stead of VGGish for FD computation. More methodologies and parameters are detailed in Appendix
3) 2-C subjective metric: To assess the quality of the generated audio, we employ the Mean Opinion
Score (MOS) through human evaluation to evaluate the quality of source direction (MOS-Direction) and
event (MOS-Event) separately. We invite 15 experts to evaluate the quality on a scale ranging from 1
to 5, with 5 for the best quality. For further information on our MOS, please refer to Appendix [F4]

5.2 RESULTS
Table 2: 1-C audio quality comparison of popular methods in T2A on
Comparison on 1-C T2A Base- Aydijocaps test set.

line: After averaging the generated

. Model Objective Subjective
stereo audio across channels, we ] FD, ISt KL| FAD| CLAP{ | OVLt REL{
. AudioGen-L (Kreuk et al.]2022] - - 169 182 - 7 7
compute metrics for mono-channel 15" SRR . - 260 312 ) 305 3.19
(1-C) audio. The results are pre-  Make-An-Audio (Huang et al.|2023b) | 1832 7.29 161 2.66 0539 | 353  3.59
sented in Tab. 2] and highlight our ~ Make-An-Audio? (Huang etal[3023a) | 1175 1116 132 180 0645 | 372 357
, AudioLDM (Liu et al.]2023) 2331 813 157 196 0621 | 370 3.71
model’s strong performance across AudioLDM 2 (Ciu et al.|[2024a) 1993 939 164 186 0652 | 378 3.76
all metrics, pa_rticu]aﬂy exce]hng in Stable-audio-open (Evans et al.|[2024b) | 21.21 10.50 1.86  2.37 0.594 3.64 3.60
IS and CLAP. often matching or  TANGO (Ghosal etal 2023} 26.13 823 137 183 0650 | 3.65 3.66
) g TANGO 2 (Majumder et al.||[2024} 18.85 1009 112 190 0.675 | 373  3.69
even surpassing best benchmarks. SpatialSonic (Ours) 1403 1379 137 193 0672 | 375 373

These results indicate that our model adeptly interprets textual cues to produce high-quality audio outputs.

Table 3: 2-C audio quality comparison of popular methods in T2A on BEWO-1M test set. “{” means a
minor adjustment of the original structure with a conditional mono-to-stereo filter.

Objective Subjective

Task Method GCCMSE | CRWMSE | FSAD | | MOS-Events  MOS-Direction |
Simulation Simulation - - - 4.94 4.95
AudioLDM2F 46.59 50.17 1.61 3.57 3.53
Make-An-Audio2! 38.83 43.12 0.97 358 3.59
T2A (88-5e0) g ble-audio-open 38.73 34.36 0.63 373 3.76
SpatialSonic(Ours) 27.20 15.86 0.17 3.78 3.84
AudioLDM2{ 45.08 42.88 0.94 337 334
Make-An-Audio2f 48.55 47.88 1.09 3.38 3.30
T2A (SD-sel) i ble-audio-open 45.76 48.60 0.53 3.68 3.58
SpatialSonic(Ours) 44.36 31.91 0.26 3.86 3.71
AudioLDM2' 38.96 50.96 2.48 3.29 297
Make-An-Audio2 35.37 48.54 2.11 3.4 331
T2A (DS-se) g ple-audio-open 32.63 36.30 0.87 3.60 3.61
SpatialSonic(Ours) 22.51 13.75 0.31 3.80 3.83
AudioLDM2{ 36.43 49.87 1.22 338 334
, Make-An-Audio2! 36.01 4731 1.32 3.29 332
T2A M-seh) gy ble-audio-open 34.20 48.06 0.53 3.54 3.58
SpatialSonic(Ours) 3332 4324 0.16 375 373
AudioLDM2} 46.98 44.66 1.54 328 335
Make-An-Audio2 46.94 4347 1.60 323 3.30
T2A RW=5eD) g ble-audio-open 43.18 47.58 0.60 351 3.49
SpatialSonic(Ours) 3027 2319 0.28 3.79 3.76

Comparison on 2-C T2A Baseline: Based on the proposed evaluation method, we train all the models listed
on the BEWO-1M train set and conduct a series of tests on spatial audio in Tab.[3} 1) The authenticity of our
ground truth simulation data is evaluated by humans, showing that our simulation received a high position
and events score. 2) The evaluation metrics GCC MSE and CRW MSE, based on global averages, show
limitations in representing complex subsets such as the SD-set and DS-set; thus, we primarily treat FSAD
as our evaluation method. 3) Utilizing FSAD and MOS as the principal metric, our approach outperforms
all baselines in objective performance and achieves higher recognition in subjective evaluations.

Comparison on 2-C I2A Baseline: As the objects in COC0O2017 often have common occlusion, our method
still demonstrated advantages in objective and subjective evaluation metrics, notably achieving a 1.56 per-
formance improvement in FSAD. Additionally, we extend our tests to earlier [2A datasets, which also show
the superiority of SpatialSonic in the Appendix [G.3]
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Table 4: 2-C audio quality comparison of popular methods in Table 5: 2-C audio quality comparison in an in-
12A generation. “S&H” means Seeing-and-Hearing. teractive I2A generation.
Objective Subjective Subjective Clarity

Task  Method | ;p  Gcc CRW  FSAD | MOS MOS Prompt  Method MOS MOS | GCC  CRW
Scoret MSE| MSE| 1 Events T Direction 1 Events T Direction T | MAT MA?T
GT Simulation 6.241 - - - 4.61 4.68 See2sound 3.55 347 1.91 8.11
See2sound | 1410 9790 60.73 249 | 3.09 317 BBox  S&H! 344 331 291 10.37
vaa S&H 4737 - - - 3.53 - SpatialSonic |  3.68 3.64 1460 17.32
S&HT 4591 9611 6255 208 | 3.39 347 See2sound 347 330 102 7.1
SpatialSonic | 5.618  80.20 57.37 052 | 3.68 3.79 Point  S&H T 3.26 343 277 891
SpatialSonic |  3.58 3.61 1591 18.11

Comparison on 2-C Interactive I2A Baseline: Given the absence of a ground truth audio for our interactive
objective, we construct a small comprising around 150 images, 300 bounding boxes, and 300 click points
derived from authentic user interactions (accessible in the Appendix [C.3). We then evaluate the generation
quality across two dimensions using subjective metrics. Additionally, the clarity of direction is reflected by
calculating the mean absolute ILD as GCC MA and CRW MA.

Table 6: Ablation study of the coarse and fine strategy on differ-

ent subseLs. Table 7: The ablation study on the textual guid-

. FSAD ESAD ESAD ance with 20% of training data BEWO-1M.

Training Inference
@M-set | @RW-set| @I2A | Text Encoder | Comverge CLAP FSAD
w/o. Coarse & Fine  w/o. Matrix S 0.53 0.60 1.41 TOTAP Igt(e)lt @Amzilggaps 1 @B(;I-Ssgt 4
y 5 J w/. 3 ..

Coarse & Fi w/o. Matg" s g'gg 8'2; 8'2‘2‘ w/. TS 135K 2.35 0.24

w/. Coarse & Fine  w/. Fine - - - w/. TS+CLAP | 105K 231 0.40
w/. Coarse S 0.16 0.28 0.96

Ablation on Each Component: 1) Text encoder: Just as stated in Sec. although T5 converges slowly, it
has significant advantages in capturing spatial and temporal information, as shown in Tab.[/| 2) Coarse and
fine azimuth matrix: The results in Tab. [6]indicate that coarse guidance is more suitable for the T2A task,
while fine guidance is necessary for the T2A task. Quantitatively, using fine guidance in T2A causes too
strict azimuth guidance, even for noise, whereas coarse guidance in I2A results in a less unstable generation
for complex scenarios.

More Experiments: Notably, extensive statistics, detailed experiments, and comprehensive user studies are
presented in the appendix. More insights in Appendix|Glare strongly recommended to readers for a thorough
understanding of the challenges, including how azimuth guidance and caption length affect audio quality.

6 DISCUSSION AND CONCLUSION

Discussion: It is believed that BEWO-1M is able to facilitate widespread application in various areas such
as 1) spatial cross-modal retrieval, 2) contrastive language-audio pre-training, 3) spatial audio captioning, 3)
large-scale audio-language pertaining model. From a methodology perspective, our SpatialSonic model rep-
resents a pioneering effort to achieve controllable spatial audio generation. However, there is still potential
for improvement. For example, the current image encoder’s limited size restricts its ability to fully compre-
hend the dynamics and behaviors across datasets with more diverse classes or in open-world scenarios.

Conclusion: In this work, we introduce a novel task to generate stereo audio from spatial context, which
requires the machine to understand multimodal information and generate rational stereo audio. To advance
this field, We develop the first open-source, large-scale spatial audio dataset, BEWO-1M, for training and
evaluation. Our proposed SpatialSonic model further establishes a robust baseline with enhanced spatial
perception. During experiments, we compare our SpatialSonic with several existing models training on
BEWO-1M and demonstrate SpatialSonic’s promising performance in generating high-quality stereo audio
adhering to spatial locations. Our task and dataset have great potential in applications such as AR/VR and
embodied Al to create immersive experiences. In the future, we plan to further expand the scale of the
current dataset with 5.1-channel audios, a higher sampling rate, and more visual data, including images and
videos, to meet the growing data demands in the era of generation.
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A COMPARISON WITH TO PREVIOUS WORK

Compared to the generation tasks supported by other models, our model not only supports T2A and 12A as
shown in Tab.[A8]but also enables controllable spatial audio generation. Overall, our model mainly supports
various related generation tasks based on spatial audio.

Table A8: Comparison of audio generation methods. “T2A” means text-to-audio. “I2A” means image-to-
audio. “V2A” means video-to-audio. “A2A” means audio-to-audio (audio impainting, style transfer...).
means “support”. X means “not supported”. # means “partial support”; although the networks were not
specifically designed for this purpose, their model demonstrates some capability to meet the demand.

Supported Modality Controllable Features
T2A 12A  V2A A2A interactive2A | temporal stereo spatial

audiogen (Kreuk et al.|[2022) X X X X X X X
uniaudio (Yang et al.|[2023) X X X X X X
Unified-IO 2 (Lu et al.[|[2024) X X X X X X X
Make-an-audio (Huang et al.[[2023b) X X X X X X
Make-an-audio 2 (Huang et al.|[2023a) X X X X X X
AudioLDM (Liu et al.[[2023) X X X X X X
AudioLDM 2 (Liu et al.[|2024a) X X X X X X
TANGO (Ghosal et al.{[2023) X X X X X X X
TANGO 2 (Majumder et al.[[2024) X X X X X X
PicoAudio (Xie et al.[|2024b) X X X X X X
Amphion (Zhang et al.[|2023) X X X X X X
Seeing-and-hearing (Xing et al.|2024) X X X X X
V2A-Mapper (Wang et al.[[2024) X X X X X X
audiobox (Vyas et al.|[2023) X X X X X X
stable-audio-open (Evans et al.;[2024b) X X X X X X
SpatialSonic(Ours) X X x

B DATASET CONSTRUCTION PIPELINE

B.1 DATA PREPARATION

We utilize data from AudioCaps (Kim et al.| [2019), WavCaps (Mei et al.| [2024), FSD50K (Fonseca et al.|
2022), ESC50 (Piczak, 2015) and VGG-Sound (Chen et al., 2020) as raw data sources to construct our
dataset. We first filter out samples with captions describing multiple sound sources to ensure each audio
clip contains only a single sound event. We then apply active detection on each audio and obtain 10-second
active segments. If the active part is shorter than 1 second, it is discarded, as short clips may lack sufficient
information and be difficult to simulate as a moving source. If the audio duration is less than 10 seconds,
we pad it to reach 10 seconds. Then, following Xu et al.| (2024)); Xie et al.|(2024a); Huang et al.|(2023b), a
CLAP model (Wu et al.| |2023) evaluates the similarity between each audio clip and its caption, discarding
clips with similarity scores below 0.3. When an audio-caption pair is used in the simulation, we randomly
select one from all the corresponding 10-second segments. Tab. [BY] provides statistics for the raw data
collected from different sources before and after processing.

Table B9: Statistic of raw data and processed data. Since some datasets contain long-form audio with a
single global caption that may not represent the local description, activity detection and CLAP filtering with
cropping is needed. So, the necessary decrease of data is acceptable.

Data source Before Processing After Processing

Num. of Audio  Total duration | Num. of Audio Total duration
AudioCaps 39597 110 Hours 12,400 34.4 Hours
WavCaps: FreeSound 262,300 6264 Hours 10,844 30.4 Hours
WavCaps: BBC Sound Effects | 31,201 997 Hours 4,047 11.2 Hours
WavCaps: SoundBible 1,232 4 Hours 683 1.9 Hours
WavCaps: AudioSet SL 108,317 300 Hours 8,294 23.0 Hours
FSD50K 51,197 108.6 Hours 16,981 47.2 Hours
VGGSound 199,467 550 Hours 157,230 436.8 Hours
ESC50 2,000 2.8 Hours 2,000 2.8 Hours
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Table B10: The attributes frequently used to describe the simulated audio and corresponding options lists.
Beyond these words, with the help of fine guidance and GPT, we still are able to generate a description of “A
dog is barking at 15°to the front left”. The moving speed ratio is used as the denominator, so faster speeds
have smaller values.

Attribute Options List Value
outdoors 100m
Scene size large 40 ~90m
moderate 20 ~ 40m
small 5~ 20m
left N(180°,121°)
front left N(145°,121°)
Source direction 6 front N(90°,121°)
front right N(45°,121°)
right N(0°,121°)
far U(0.6,0.9)
Source distance (ratio) d moderate U(0.3,0.6)
near U(0.1,0.3)
Movement still B
moving -
slow U(0.75,0.85)
4
Moving speed (ratio) « mofc; zate ggggg 822;
instantly -

As for the real-world subset (RW-world), we manually select around 200 samples from FairPlay (Gao &
Grauman) 2019) for musical instruments and STARSS23 (Shimada et al., [2024) and SimBinaural (Garg
et al.| [2023) for audio events. Then, invite experts to write the descriptions of spatial audio.

B.2 GPT-BASED ATTRIBUTES DERIVATION AND CAPTION TRANSFORMATION

Attributes. As mentioned previously, the audio simulator requires certain essential attributes to simulate
realistic audio, including sound objects, scene size, sound source location, moving direction, and speed. The
inferred attributes with corresponding audio clips are used to construct an audio-object pool and retrieve
audio from images. Afterward, we convert the attributes selected by GPT-4 and GPT-40 into numerical
values for audio simulation. All attributes and their mapping to values can be found in Tab. The use of
these attributes is detailed in Sec.[B.4

To obtain reasonable attributes and captions, we apply the Chain of Thought Prompting (CoT) (Wei et al.,
2023) to enhance the common sense reasoning ability of GPT-4 and GPT-40. We predefined several can-
didates to describe each attribute, with each being an attribute element, such as “far”, or “near” for the
distance attribute. We require GPT to select attribute labels that match the input information. For direction,
we require GPT to provide more detailed values, such as when specific angles appear in the caption or when
reasoning with images.

For attributes in audio-image pairs, we provide image-caption pairs with object positions to GPT-40, and it
infers all attributes because the image and text caption carry enough information. Based on the provided
positions, GPT-40 can infer more precise object directions instead of selecting from a list. This makes our
generation more accurate. However, for audio-caption pairs, we provide the caption to GPT-4, and it only
infers room size and moving speed based on the caption, as other attributes are not related to the text caption.
The other attributes of audio-caption pairs are randomly chosen from the attribute lists.

Caption Transformation. As part of the prompts, we also utilize GPT-4 and GPT-40 to transform raw
captions into merged captions with positional and movement phrases. We also back up the merged captions
without spatial and movement information for further training. Noticing that merging multiple audio-caption
pairs results in long and complex captions, we instruct GPT to shorten the final output.
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Appendix [H| presents all prompts used here with real examples.

B.3 AUDIO RETRIEVAL FROM IMAGE

We retrieve audio from the audio-object pool mentioned earlier to construct image-audio pairs. The current
visual-caption pair (Wu et al., |2023) widely used in VLM excels at conveying visual information but lacks
plausible acoustic descriptions. For instance, when describing a photo of a woman, typical VLM descriptions
focus primarily on the visual semantics, including behavior, appearance, and the surrounding environment,
to form the description like “A woman with the white shirt is standing on the left.”. However, if we aim
to use language-driven approaches to generate corresponding stereo sounds for images, we seek to capture
acoustic-rich details about the direction and sounds from the image, e.g., “A woman’s laughter comes from
left side”. Therefore, we utilize LLM to obtain multiple alternative acoustic captions about objects in the
image that may produce sound and finally obtain the description of the direction and possible moving of
those sounds.

Since we choose a text modality with abstract semantics as a bridge to connect multi-channel audio and
other modalities, we develop a method to obtain tri-modal triplets based on three modalities in order to
further promote the development of multi-modal guided audio generation.

We employ two methods to utilize images as cues for audio retrieval: 1) 2-C Audio Retrieval via Language
Bridge: By using sentence embedding, we match visual and audio elements through text, considering sam-
ples with a threshold exceeding 0.9 to be similar. 2) 1-C Audio Retrieval with Simulation: Building on
previous research, we initially identified the sound subjects from the GPT-40. Utilizing these subjects, we
extract multiple samples from the audio-subject pool. Taking a holistic view, these two methods are basically
the same.

Finally, we allow each image to correspond to up to 10 possible audio clips, rather than just one. This
approach of one-to-multi correspondence enhances the diversity of our I2A generation.

B.4 AUDIO SIMULATION

In this section, we introduce the details of audio simulation and how we use the attributes. We use audio
simulators like Pyroomacoustics and gpuRIR to simulate spatial audio.

For static audio, Pyroomacoustics uses inputs such as room size, microphone location, sound source loca-
tions, and RT60. RT60 represents the time it takes for sound energy to diminish by 60 dB once the source
stops. We randomly sampled RT60 values between 0.3 and 0.6 seconds to ensure data diversity. The simu-
lated rooms are cubic, with sizes defined as

[R()aRl,RQ} == [T+£T’Oar+£7’lar+§7’2]a (9)

where &.; ~ U(—0.1r,0.1r) and r is the room size. The room size value can be obtained from its attribute
label inferred from GPT-4 or GPT-40. For the room size attribute, each label corresponds to a specific
range. The value is randomly sampled from these ranges: [“small”: U(5,20), “moderate”: U(20, 40),
“large”: U (40, 90), “outdoor”: 100]1. An anechoic room mode is used for outdoor scenes. Microphones are
positioned centrally, using a 2-microphone array with a 0.16-0.18m separation. The array’s center is

R R R
70 + 6m07 71 + fmla 72

where &,,; ~ U(—0.1r,0.1r). The two microphones are positioned at [My, My + £., M|, where £, ~
U(0.08,0.09). We sample the angle 6 from a normal distribution with a standard deviation of 11° based on
the source direction attribute label: [“left”: N(180°,121°), “front left”: N(135°,121°), “directly front™:
N(90°,121°), “front right”: N(45°,121°), “right”: N(0°,121°)]. The distance ratio oy that controls

[Mo, My, Ms] = | + Emal, (10)
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the distance between the microphone array center and the source is sampled from [“near”: U(0.1,0.3),
“moderate”: U(0.3,0.6), “large”: U(0.6,0.9)]1. The sound source is located at this angle, with a distance
from the microphone array center of

d:ad Xmin(Ro—Mo,Rl—Ml,Mo,Ml). (11)
Using variables in equation[I0]and equation[TT} the position of the source fipcgin can be calculated as
Hbegin = [Mo + dsin 6, My + dcos 0, M. (12)

For dynamic scenes, gpuRIR simulates moving sources with specified trajectories. Room size, microphone
location, and source position are determined as in static scenes. In the outdoor scene, the absorption weights
of six walls are set to 1 x 10° to simulate an anechoic chamber. Additional parameters include the speed and
endpoint of the moving source jie,q. The speed of the moving source is

Ototal
V= % 13)
where d;414; presents the displacement from the start position to the end position, and 7" donates the moving

interval. We can obtain 7"
T=aox Ttotala

where « is sampled based on moving speed attributes: [“slow”: U(0.75,0.85), “moderate”: U (0.45, 0.55),
“fast”: U(0.25,0.35)]. We also sample a Tpeg;r, = U(0,0.15) X Tj01q; to indicate when the source starts to
move. GpuRIR can simulate the moving source by the source trajectory [Py, P, ..., P;], and each point on
the trajectory P, are calculated as

P = {,ubegm fort < Thegin

14
Hbegin +tV  for Tbegin <t< Tbegin + T, (14)

where iy 44r, 15 the start position of source. We calculate the source position every 10ms. In instantly moving
scenes, the source changes position to end position suddenly at a random ¢, = U(0.2,0.8) X Tiotai-

In the mixed subset, we use gpuRIR to simulate both stationary and moving sources in an outdoor scene.
All other operations are the same as in the dynamic scene.

In the dataset construction process, some attribute labels are randomly chosen from the list for audio-caption
pairs, like source direction, distance, and moving speed. We record all attribute values (including RT60 and
microphone location) for model training and statistics. During inference, all attribute labels can be inferred
from input captions or images with object positions.

C DATASET AND BENCHMARK STATISTICS

C.1 AuUDIO-CAPTION SUBSET
The dataset is divided into five subsets based on the number and motion state of the sound source:

* Single Static Subset (SS-set): One stationary audio.
* Double Static Set (DS-set): Two stationary sound sources.
 Single Dynamic Set (SD-set): A single moving sound source.

* Mixed Set (M-set): 1 to 4 sound sources including both stationary and moving sources

Real-world Set (RW-set): naturally recorded audios with manually written descriptions for testing.
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Figure C5: Jaccard similarity between raw descriptions and our rewritten captions in the single static subset.
We follow |[Mei et al.| (2024)) to conduct this analysis to show a generally low level of lexical overlap across
various sources.

For the single static subset, we utilize all single-source clips. To synthesize an audio clip in the double static
subset, we sample and mix two different audios from the single-event database. In the single dynamic subset,
sound sources move in two modes: gradual, where the source moves from the start to the end position at
a constant speed; and instant, where the source changes position suddenly. For “instant”, we perceive in
the caption that two sound sources emit sound sequentially from different positions. For the mixed subset,
we choose 1 to 4 sources from the single-event database, with the possibility of moving. All captions are
rewritten by LLM to include spatial and moving instruction. The test and validation subsets from AudioCaps
are used to construct our test set, while all other data is used for the training set. The specifics of our dataset
are detailed in Tab.[CI1] As mentioned in Appendix we also retrieve audio from images to construct
image-audio captions. Tab. [CI12|shows the detailed number of each modality pair in BEWO-1M.

Table C11: Audio-caption subsets statistics of BEWO-1M dataset. The four main subsets have rather uni-
form distribution. Moreover, a real-world subset is constructed manually to verify the perception consistency
between simulation and real-world.

Subset | Total Duration | Num. of Audio | Avg. Caption Len | Max. Caption Len | Min. Caption Len
Single Static Subset 835.03 Hours 319,259 12.44 Words 52 Words 2 Words
Double Static Subset 573.95 Hours 205,880 19.54 Words 92 Words 4 Words
Single Dynamic Subset | 572.15 Hours 205,975 13.06 Words 77 Words 3 Words
Mixed Subset 791.74 Hours 285,028 24.20 Words 64 Words 6 Words
Real-World Subset 0.6 Hours 200 14.17 Words 34 Words 6 Words

Table C12: The details of modality pairs involved in BEWO-1M.

BEWO-1M | number
Text-Audio pairs 1,016k
Image-Text pairs 3.2k

Image-Audio triplets | 113K (20K unique audios)

Fig. presents the Jaccard similarity scores, it shows that our caption is quite different from the original
caption. Coupled with the observed increase in length that includes spatial information, this suggests that
transformed captions have significantly changed from the original descriptions and incorporate substantial
additional information.
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Table C13: Examples of captions in our dataset. The final caption should not only involve the spatial context
but also maintain the concise of the sentence.

Task Raw Caption Final Caption
Single still A cell phone is vibrating. A cell phone is vibrating on the right side of the scene.
Double still Printer printing. The printer is printing on the right of the scene,
) Playing didgeridoo. while the person is playing the didgeridoo directly in front.
Single dynamic | Trumpet is being played. Trumpet sound moves from right to front left at a moderate speed.
Mixed A Vehicle_’s engine starts to die down. ] An engine slowly dying dowr? is_noticed on the Iefl, ] ]
Young children are whistling and laughing. | as children’s laughter and whistling gently move from directly in front to the left.

Table C14: Correctness statistics of captions for each training subset without manual correction. A random
samples from each subset was checked to ensure captions match the simulated audio.

Subset | Correctness
Single Static Subset 97.87%
Double Static Subset 87.23%
Single Dynamic Subset 95.74%
Mixed Subset 91.48%

We show some caption examples in Tab. [CI3] more examples are provided in our demo page
https://immersive-audio.github.io/. We offer the raw caption and final caption to the readers for reference.
Tab. [C14] presents the correctness for different training subsets without manual check. We also test the over-
all accuracy of attribute inference and caption transformation in the inference process, and overall, and it
achieves an acceptable performance of 91.52%.

C.2 I2A BENCHMARK SUBSET

As mentioned in Appendix[B.3] we retrieve audio based on the image-caption pairs to construct our dataset.
We use COCO-2017 (Lin et al.l 2014) to obtain the train set and test set of I2A. The LLM we use to
obtain the acoustic semantic description is GPT-40. During text retrieval, we extract the sentence embedding
using SentenceTransforme In constructing Image-Text-Audio triplets, we employ the FAISS E]library to
perform exact retrieval using Euclidean distance (L2). Our algorithm restricts each image to match with up
to 10 audio files. For the approach of 1-C retrieval with simulation, the extra simulation based on inferred
attributes similar to Appendix [B.4]should be carried out after retrieval. Ultimately, we generate 113k triplets
to form a dataset comprising 3.2k images and 20k audios. For the test set, experts are invited to evaluate the
audio and image correspondence and drop all the low-quality samples manually.

C.3 INTERACTIVE2A BENCHMARK SUBSET

We select 150 images from the COCO-2017 test set and use them to allow real users to choose the objects of
interest. Each image is annotated by at least 4 participants, who identify the objects using boxes and points
using makesenseﬂ In total, there are about 300 boxes and 300 points used for testing.

C.4 DATASET LICENCE

We have taken investigation into each previous dataset involved in our BEWO-1M. For the purpose of
open access, we follow each dataset involved in BEWO-1M and apply the license including the Creative
Commons Attribution (CC BY) license to any Author Accepted Manuscript version arising.

“https://sbert.net/
Shttps://github.com/facebookresearch/faiss
®https://www.makesense.ai/
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Figure C6: Interactive box labeling. Figure C7: Interactive point labeling.

D BASELINE DETAILS

D.1 TEXT-TO-SPATIAL-AUDIO BASELINE

We select three popular T2A models to construct the baselines: AudioLDM 2, Make-an-audio 2, and Stable
Audio Open. The model structures of them remain unchanged. They extract features from the text using
TS5 and CLIP and use these features to guide the audio generation process. AudioLDM 2 and Make-an-
audio 2 can only generate mono audio, so we apply a learnable conditional filter 2020) based
on U-Net, which has been proven effective. Same as the previous approach (Xu et al., 2021}, [Zhou et all,
2020), this filter also leverages position features as conditions to derive a suitable mask based on ITD and
ILD training in a mono-to-binarual reconstruction task. This mask, combined with basic operations on the
generated mono audio, results in stereo audio. To facilitate a more comprehensive comparison of different
baselines, we fine-tune and optimize the previously advanced mono audio generation models while ensuring
consistency in all training datasets. Stable Audio Open can generate stereo audio directly, so we directly
fine-tune it based on our training dataset.

While the filter performance appeared promising according to [Xu et al| (2021)); [Zhou et al.| (2020), when
confronted with our large-scale dataset, low performance persisted despite our efforts to scale up the number

of layers and parameters, as illustrated in Tab.[3] Moreover, on the demo page, we have presented qualitative
comparative cases showing that techniques relying on mono-channel generation models and filters exhibit
fluctuating ILD and inadequately capture ITD. This underscores the strengths of our end-to-end dual-channel
audio generation approach.

D.2 IMAGE-TO-SPATIAL-AUDIO BASELINE

Similar to the construction method of the Text-to-Spatial-Audio baseline, we utilize an Open-domain Image-
to-Audio model 2024) to generate monophonic audio. Additionally, we sequentially append a
filter based on image conditions at the end of the model to facilitate the transition from mono-channel to
binaural audio.
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D.3 INTERACTIVE-TO-SPATIAL-AUDIO BASELINE

See2Sound (Dagli et al.l 2024) also leverages the Rol strategy to capture positional information of different
objects. See2Sound begins by performing universal image segmentation to identify regions of interest for
various objects in the image. Consequently, we naturally employ a filtering and selection approach to extract
a small number of Rols in an image based on user-interacted bounding boxes and points, while keeping other
components like the Depth-anything model unchanged. This zero-shot method is then used to establish the
baseline.

Additionally, to create other comparable baselines, we enhance the Image-to-Spatial-Audio model (Xing
et al} [2024) by incorporating the SAM to set the relevant pixels transparent. By focusing on the region of
interest that is not transparent, we then proceed with spatial audio generation based on the processed image
as discussed in Sec.

E MODEL DETAILS

E.1 MODEL STRUCTURE

Continuous Auto-encoder: We use the oobleck (Jang et al.,|2023) pre-trained by Stableﬂ The configuration
of our model includes an audio setup with 2 channels. The encoder features a hidden size of 128, while
the decoder operates with an input channel size of 64 and an overall channel configuration of 128. The
architecture employs channel multiples set at [1, 2, 4, 8, 16] and utilizes downsampling ratios of [2, 4, 4,
8, 8], effectively capturing the complexities of the audio data. This configuration is crucial for achieving
the desired fidelity and efficiency in our audio processing tasks. It is trained by multi-resolution STFT
loss with the left, right, summation, and subtraction of the dual channel. Moreover, a discriminator like
EnCodec (Défossez et al.,[2022) can refine audio with multi-resolution to achieve finer quality.

Diffusion Transformer: Our diffusion model is tailored to process 10-second audio samples with two chan-
nels upon Stabl It integrates a conditioning mechanism consisting of multiple configurations: a text-based
prompt processed by a TS transformer model (“T5-base” with a maximum length of 128), and azimuth state
encoding with an output dimension of 768. The conditioning dimension is set at 768. The diffusion compo-
nent utilizes a Diffusion transformer (DiT) with settings that include 64 input/output channels, an embedding
dimension of 1536, 24 layers, 24 attention heads, and both local and global conditioning dimensions of 768
and 1536, respectively. Notably, the transformer operates with projecting condition tokens and adheres to a
continuous transformer architecture. For training, an exponential moving average (EMA) is used alongside
an AdamW optimizer with a learning rate of 2e — 5, beta values of [0.9, 0.999], and a weight decay of 1e — 3,
complemented by an InverseLR scheduler that features an inv_gamma of 1e6, a power of 0.5, and a high
warmup proportion of 0.99. This configuration underscores our commitment to refining audio quality and
temporal alignment in generative tasks. During inference, we use the DPMSolver++|Lu et al.| (2022)) for 100
steps with classifier-free guidance (scale of 6.0). The adapter mentioned in this paper is a one-layer MLP.

Text Encoder: A pre-trained T5-basenc0der is utilized in the main experiment. The CLAP encoder we
use in the ablation study is from Laion

Image Encoder: The classic Mask-RCNN (He et al. [2017) is used as the detection model. Since the
regional feature of Mask-RCNN is about the class itself rather than the behavior, the regional CLIP feature
is then used to understand both the behavior and class of each object. Our bidirectional multimodal encoder

"https://github.com/Stability-Al/stable-audio-tools
$https://github.com/Stability-Al/stable-audio-tools
*https://huggingface.co/google-t5/t5-base
"https://huggingface.co/laion/clap-htsat-unfused
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comprises a stack of 12 transformer blocks, each featuring a self-attention layer and a fully connected layer,
enhanced by residual connections. Similarly, our decoder consists of another 12 blocks stack mirroring
the encoder’s architecture but with each block augmented by an additional cross-attention layer. The text
prefix is set to “image acoustic captioning:”. The image network with regional perception is first trained as
the image caption task and supervised by the acoustic description of the image. We train this bidirectional
multimodal encoder for 100 epochs on 1 x NVIDIA RTX 4090. After training the T2A model, the pertained
image encoder is built on top of the T2A model. After another 100 epochs of fine-tuning, all the I2A tests
and Interactive2A tests are carried out on the same checkpoints.

Azimuth Fusion Module: This module consists of a 4-layer of cross-attention module with 4 heads. The
m mentioned in Fig. [ equals to 4.

Interactive Matching: 1) A straightforward method for matching and filtering is at the coordinate level.
Initially, we use SAM to generate a high-quality mask, which is then matched with region coordinates C
detected globally using the Intersection over Union (IoU). To enhance this baseline approach, we adopt the
maximum continuation strategy, enabling the selection of multiple areas of interest for feature generation. 2)
We further advance this by introducing a feature-level matching technique, where we conduct feature-level
retrieval using CLIP between interactive areas and detected regions.

E.2 DIMENSION DETAILS

L is variable depending on the complexity of text and image. L is the sample size that relates to the sampling
rate and audio interval. But the overall condition we use to condition the whole diffusion is 768-channel,
which means Lies = diert = dimg = Lelip = dime = 768. The variance o = 4 is obtained empirically from
the real-world distribution. The maximum region number is N, 4, = 38 following|Cho et al.|(2021)). L,,; is
set to 64 and L is set to 80.

E.3 TRAINING MATRIX AND CAPTION COMPOSITION

During data construction, in addition to the spatial caption, we also transform and preserve the caption
without spatial phrases for future training enhancement.

During T2A model training, three types of guidance compositions are used: coarse azimuth matrix with
the transformed caption, fine azimuth matrix with the original caption, and fine azimuth matrix with the
transformed caption. This joint training method requires the model to consider both the description and
azimuth state matrix to generate the spatial audio.

However, for I2A training, only the fine azimuth matrix is used to train the model.

F METRICS DETAILS

F.1 1-C METRIC DETAILS

We use several common metrics in 1-C evaluation. 1) Fréchet Distance (FD) measures the similarity between
two distributions. 2) Inception Score (IS) evaluates data generation by assessing diversity and resemblance to
real data. 3) Kullback-Leibler divergence (KL) quantifies divergence between two probability distributions.
4) Fréchet Audio Distance (FAD) assesses audio quality by comparing generated audio to real audio samples.
5) CLAP score evaluates the alignment between audio and text for coherence in multimedia tasks. 6) overall
impression (OVL) subjectively measures the general quality and appeal of generated content. 7) Audio-text
relation (REL) assesses coherence and relevance between audio content and accompanying text. 8) The
CLIP score measures the alignment between images and text using the CLIP model’s shared space.
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F.2 GCC-PHAT AND STEREOCRW DETAILS

The objective of the interaural time difference estimation problem is to ascertain the difference in arrival
times of a sound at two microphones. In a stereo recording scenario with 1, x2 € R™ denoting waveforms,
and a function h : R” — R™*? which calculates features for each temporal sample, a frequently employed
approach involves selecting a time delay 7 that maximizes the generalized cross-correlation.

Ry o (7) = By [ (£) - ha(t — 7)) (15)

where h; = h(z;) are the features for x;, and h;(t) is the d-dimensional feature embedding for time ¢. The
visualizations of TDOA over the I2A task can be found in Fig. [F8]

. : A g - I\V\V\_/\M
AR i e v ) DS | W |

(a) Naturally recorded sample (b) Baseline sample (c) Ours sample

Figure F8: The visualization of DTOA across the time. (a) The real-world recorded sample is selected from
FairPlay. (b) Baseline sample from BEWO-1M image test set. (c) Our sample BEWO-1M from our image
test set.

GCC-PHAT: The popular Generalized Cross Correlation with Phase Transform (GCC-PHAT) tech-
nique (Knapp & Carter} [1976} [Salvati et all, [2021)) whitens the audio signal by normalizing it with the
magnitude of the cross-power spectral density. This method offers the maximum likelihood solution in
specific ideal, low-noise scenarios.

StereoCRW: As a more advanced deep learning-based method for ITD estimation, StereoCRW
aims to autonomously acquire these connections by utilizing advancements in tracking techniques.
By modifying the contrastive random walk approach, a cycle-consistent representation is developed from
unlabeled stereo sounds.

GCC MSE and CRW MSE: This metric computation process involves averaging the ITD results of the
entire audio and then calculating the mean square error, treating the video as a perceived difference in overall
auditory channels. While this method exhibits high accuracy and computational efficiency for determining
the direction of a single sound source, its limitations are apparent in scenarios involving moving sources
and multiple sources in different directions. Specifically, when calculating ITD, a time unit of 0.1 seconds
is employed. Subsequently, the overall video’s ITD is augmented for significance by multiplying it with a
coefficient of 100.

FSAD: To address scenarios with moving and multiple sound sources, we adapted the FAD methodology by
leveraging the features from the final layer of StereoCRW, supplemented with adaptive pooling to derive a
2560-dimensional representation for the entire audio. Subsequently, FD is computed using this representa-
tion. Through this approach, we have successfully developed a model for evaluating the generation task in
complex sound source scenarios.
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All evaluation codes will be publicly accessible.

F.3 FSAD ANALYSIS

FSAD processes the ITD features from multiple time slots to obtain the distance of temporal perception.
Given that the GCC MSE and CRW MSE represent only the temporal average I'TD, in some moving scenar-
ios, the effects from the left and right parts counteract each other. In the samples of Table[FI3] changes in
the moving direction between No.l and No.2 are not reflected by the MSEs, but perfectly reflected by the
FSAD. Therefore, in moving scenarios, FSAD can be treated as a better metric.

Table F15: Some cases to show the effectiveness of FSAD.

Type No. | Source audio Target audio GccPHAT MSE CRW MSE  FSAD
Single Dynamic 1 A car is moving from left to right. ~ A car is moving from left to right. 0.73 0.63 0.08
Single Dynamic 2 A car is moving from left to right. A car is moving from right to left. 0.58 0.45 443
Single Stationary 3 A duck is quacking on the left. A duck is quacking on the right. 132.13 107.19 4.90

F.4 MOS DETAILS

Table F16: Objectives and Interfaces of different tasks.

Prompt Type | Objective Interface
Text (1-C) Fidelity & Consistency (previously called OVL and REL) Figure ’l;|9_!T
Image (1-C) Fidelity & Consistency (previously called Fidelity and Relevance) | Figure
Bounding Box | Event relevance & Direction relevance Figure|F11
Point Event relevance & Direction relevance Figure[F12|
Image Event relevance & Direction relevance Figure[FT3]
Text Event relevance & Direction relevance Figure[FT4|

We conduct all subjective evaluations online with 15 participants using Amazon Mechanical TurkE]
(AMT) (Crowston, |2012). Listeners evaluate the fidelity, consistency, and relevance of the events or di-
rection of each sample on a 5-point Likert scale while listening through headphones in a quiet setting. The
evaluation consists of six tasks:

Participants are provided with an audio clip and an optional text caption. They evaluate the natu-
ralness of the audio and its relevance to the caption. (See Fig.[F9).

Participants receive an audio clip and an optional image. They rate the naturalness of the audio and
its relevance to the image. (See Fig.[F10).

Participants are presented with an image containing a bounding box and corresponding audio. They
score the agreement between the sound event and the object in the bounding box, as well as the
directional accuracy of the sound relative to the bounding box. (See Fig. [F11).

Participants receive an image with a point and corresponding audio. They evaluate how well the
sound event matches the pointed object and the directional accuracy of the sound relative to the
point. (See Fig.[F12).

Participants are given an entire image and corresponding audio. They assess the alignment between
the sound event and the image, and how accurately the sound direction matches the image. (See
Fig. [FT3).

Participants receive a caption and corresponding audio. They score the alignment between the
sound event and the caption, and the directional accuracy of the sound concerning the caption. (See

Fig.[FT4).

https://requester.mturk.com/
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The evaluation objectives and interfaces are shown in Tab. [F16 In the first four tasks, the scale options
are: “1. Excellent - Completely faithful events/direction”, “2. Good - Mostly faithful events/direction”, “3.
Fair - Equally faithful and inconsistent events/direction”, “4. Poor - mostly inconsistent events/direction”,
“5. Bad - Completely inconsistent events/direction”. In the other two tasks, the scale options are: “I.
Excellent - Completely natural/faithful”, “2. Good - Mostly natural/faithful”, “3. Fair - Equally natu-
ral/faithful and unnatural/inconsistent”, “4. Poor - mostly unnatural/inconsistent”, “5. Bad - Completely
unnatural/inconsistent”. Note that the scoring order in the Turk interface is reversed compared to that in our
paper: in Turk, a score of 1 represents the best, while in the paper, a score of 5 represents the best.

G SUPPLEMENTARY EXPERIMENTS

G.1 COMPARISON OF 1-C METRICS ON CLOTHO

Although it is now more common to use real-data AudioCaps as the test set including Make-An-Audio 1&2,
AudioLDM 1&2, Tango 1&2, we still manage to conduct zero-shot experiments on Clotho (Drossos et al.|
2020) to showcase the comparative performance. As shown in Table.|G17] our SpatialSonic demonstrates
comparative performance across almost several metrics, particularly in FD, FAD, and ISc. It slightly lags
behind the popular methods on some metrics but overall, it appears to be the effective model among those
listed for generating high-quality and relevant audio content.

Table G17: The 1-C zero-shot generation comparison on less usual dataset Clotho. All the methods listed
below is tested on the_evaluation set of Clotho.

Model Objective Subjective
CLAPT FD| FAD| 1ISct KL| | OVLT RELt
Make-an-audio 0331 2732 610 694 3.15]| 327 332
Make-an-audio2 0343 19.10 348 819 247 | 3.56 3.58
Audioldm2 0340 2539 349 793 262 | 347 3.48
Tango2 0363 2272 339 9.66 221 | 3.3 3.49
SpatialSonic (Ours) | 0.361 18.81 337 1031 2.36 | 3.61 3.63

G.2 COMPARISON OF 1-C METRICS ON DIFFERENT SUBSETS

Previous mono-channel metrics tested on dual-channel text-to-audio systems have revealed significant limi-
tations. The CLAP score struggles to adapt to the challenges posed by dual-channel audio and longer texts.
Since CLAP is trained on mono-channel data and text lacking directional information, its utility in eval-
uating dual-channel audio is insufficient. Metrics such as FD, IS, KL, and FAD, though widely used, are
originally designed for mono-channel applications and do not fully capture the quality of channel differences
in dual-channel generation. Therefore, the overall mono-channel evaluation remains somewhat inadequate
for stereo audio.

For deeper insights, we analyze mono-channel evaluation metrics across various subsets in BEWO-1M by
channel-wise average in Tab. Notably, CLAP’s overall evaluation scores are relatively low due to its in-
capacity to handle long-form captions and spatial phrases. Furthermore, from the mono-channel evaluation
metrics, it is evident that audio generation for single sources is relatively straightforward. However, as com-
plexity increases with factors like long captions, multiple sources, and motions, the difficulty of generation
also rises, leading to a corresponding variance in quality.
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Table G18: 1-C audio objective comparison of different subsets in our dataset. RW-set is a completely
unseen set, so there still exists a distribution gap between ground truth audio and generated audio. But it
does not impediment the validation of using such a matrix on source azimuth evaluation.

BEWO-1M Objective

Subset FD| ISt KL| FAD| CLAPt
SS-set 2462 1033 1.66 230 0.4026
SD-set 17.33  13.09 1.60 2.14  0.3501
DS-set 2520 7.74 209 216  0.3437
M-set 2177 959 225 179 0.3824
RW-set 3337 587 136 426 0.3873

G.3 COMPARISON ON PREVIOUS I2A BASELINE

ImageHear (Sheffer & Adi, [2023)) is an evaluation dataset containing images of specific categories used in
previous mono-channel audio. Given that our model relies on a close-set detection model on COCO-2017
for region-level perception, certain objects in ImageHear are undetectable. To address this limitation, we
employ the GPT-40 and a suitable prompt to generate a dual-channel output in a language-driven approach,
which is then averaged to produce a mono-channel video. Our evaluation of performance metrics is outlined

in Table.

Table G19: Image guided single channel audio generation test on Imagehear. V2A-mapper' is not open-
source for now, in which we use the demo in their demo page to carry out the testing.

Objective Subjective
Method CLIJP-Score Fidelity ! Relevance
Im2Wav 9.843 3.43 3.13
CLIPSonic-IQ 11.392 3.70 3.03
V2A-mapper’ 11.950 3.77 341
SpatialSonic(Ours) 11.976 3.75 3.42

Overall, our model demonstrates commendable generalization on the ImageHear dataset in comparison to
mono-channel audio.

Furthermore, based on the previous work [Dagli et al.| (2024), we also attempt to compute previous eval-
uation metrics. We utilize the audio outputs and images to create modified scene-guided audio generated
using AViTAR. We present the average audio similarity scores among multiple such generated audios in

Table.[G20)

Table G20: Image guided multi-channel audio generation on AViTAR.

See2Sound Eval Set BAG Bench Eval Set
(+AViIiTAR) MFCC-DTW| ZCR?T Chromat Spectf | MFCC-DTW| ZCRft Chromaf Spectf
CoDi 0.800 x10~3 0.80 0.70 0.85 0.730 x10~3 0.78 0.53 0.37
SEE-2-SOUND 0.034 x1073 0.95 0.77 0.95 0.026 x10~3 0.91 0.61 0.51
SpatialSonic(Ours) | 0.027 x10~3 0.97 0.77 0.97 0.021 x10~3 0.93 0.63 0.53

G.4 x%-TEST OF USER PREFERENCE

In previous studies (Dagli et al.,[2024]), researchers initially assume a uniform distribution of generated audio
quality and spatial information. Then they survey different samples and utilize chi-square (y?) tests to reject
this hypothesis of uniform distribution. This process further substantiates a strong correlation between the
generated spatial audio and human perception elements like audio quality and spatial awareness. While this
evaluation metric holds statistical validity, it proves insufficient for supervised generation assessment.

Nevertheless, we still conduct statistical analysis of the survey, yielding a series of significant p-values in
Tab. We maintain the initial hypothesis that the responses adhere to a uniform distribution. Instead of
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relying on continuous perception as in (Dagli et al.| 2024)), we formulate multiple-choice questions for each
target. In these questions, we designate 3, 4, and 5 as correct choices on a 1-5 scale. Our user testing involves
approximately 120 human evaluators, and we present the relevant metrics from our human evaluation. This
p-value indicates that users express a statistically significant preference for spatial audio quality, sound
direction, and overall audio quality.

Table G21: y2-test with the hypothesis of the responses following a uniform distribution. The significance
of human preference is evaluated with x2-tests at p < 0.05.

Metric p-value ()
Spatial Audio Quality

Realism 3.99 x 1074
Immersion 5.18 x 1073
Accuracy 7.97 x 1076
Clarity 9.08 x 1073
Consistency 2.09 x 1076
Audio Identification

Overall Localization 6.52 x 1078
Audio Direction Identification 2.27 x 1078
Distance Identification 1.93 x 1073
Audio-Image Matching

Events Identification 2.09 x 1076
Spatial Identification 1.81 x 1077
Audio-Bounding Box Matching

Events Identification 1.26 x 1076
Spatial Identification 3.18 x 10~¢
Audio-point Matching

Events Identification 9.11 x 1076
Spatial Identification 1.82 x 1.57°

G.5 AUDIO-LANGUAGE RETRIEVAL

We follow the Audio-Language Retrieval experiments of WavCaps (Mei et al., 2024), where the retrieval
model learns Acoustic Semantic Embeddings (ASE) to map audio clips closer to their paired captions in the
embedding space.

a) Models: Our model architecture integrates an audio encoder for audio representation and a language
encoder for text representation. Specifically, we employ HTSAT (Chen et al.,[2022a)), a transformer network,
as the audio encoder and a pre-trained BERT (Devlin et al., 2019) network as the text encoder. To project
features into a shared embedding space, we implement a 2-layer MLP as the adapter for both encoders.

b) Experimental Setup: For single-channel experiments, we first establish baseline models trained on Au-
dioCaps and Clotho datasets. We then develop zero-shot models using WavCaps and BEWO-1M, utilizing
30% of the total training data from BEWO-1M. For stereo audio in BEWO-1M dataset, we perform chan-
nel averaging to convert it to mono. To demonstrate BEWO-1M’s pre-training capability, we subsequently
fine-tune these zero-shot models using AudioCaps and Clotho datasets, respectively. The baseline and zero-
shot models are trained for 15 epochs with a batch size of 128 and a learning rate of 5 x 10~5 with the
Adam optimizer while fine-tuning is conducted for 20 epochs on AudioCaps and Clotho. All audio inputs
are standardized to 10-second segments through cropping or padding, and model checkpoints are selected
based on validation performance. We evaluate the performance using Recall at rank £ (R@k) on the test sets
of AudioCaps and Clotho. R@k% is 1 if the correct match appears in the top k retrieved items, and O other-
wise, averaged across all queries. For dual-channel experiments, we maintain settings identical to those of
the single-channel setup. We first establish a baseline by evaluating the BEWO-1M test set on a WavCaps-
pretrained model using channel averaging. Another dual-channel retrieval model is trained on 30% data of
the BEWO-1M training set.
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Table G22: The evaluation results of 1-C audio-language retrieval on the test sets of AudioCaps and Clotho.
A higher score means better performance. “ZS” refers to zero-shot, “FT” refers to fine-tune, “A—B” means
the model is pre-trained on the dataset “A” and then fine-tuned on the dataset “B”.

AudioCaps Clotho
Model Training Data Text-to-audio Audio-to-text Text-to-audio Audio-to-text
R@I? R@57 R@10t R@It R@57 R@10} | R@lt R@5F R@10f R@It R@5! R@I0t
HTSAT-BERT (Baseline) AC+Clotho 392 749 86.5 495 819 915 15.6 384 52.0 21.0 438 55.7
HTSAT-BERT-ZS WavCaps 28.6 61.1 75.8 40.2 69.4 80.3 16.5 38.8 50.9 20.0 433 56.6
HTSAT-BERT-ZS BEWO-1IM 23.6 56.3 70.8 28.2 57.9 71.6 12.0 31.0 423 12.6 28.4 40.0
HTSAT-BERT-FT WavCaps— AC+Clotho 422 76.5 87.1 54.6 852 92.4 19.7 45.7 59.4 269 52.6 64.9
HTSAT-BERT-FT BEWO-1M—AC+Clotho | 41.6 713 87.7 53.8 839 92.9 185 43.0 56.3 21.0 43.7 574

Table G23: The evaluation results of 2-C audio-language retrieval on the test sets of BEWO-1M.

- Text-to-audio Audio-to-text
Model TrainingData | £ 611 R@st R@IOF | R@1t R@5T R@107
HTSAT-BERT (Baseline) WavCaps 10.9 39.3 54.1 11.6 38.6 53
HTSAT-BERT BEWO-1M 14.5 46.8 61.2 16.0 46.2 61.5

¢) Results and Analysis: The 1-C retrieval results presented in Tab. demonstrate that our dataset
achieves a comparative performance to the popular models across all metrics, showcasing pre-training ca-
pabilities comparable to other large-scale datasets. In the dual-channel experiments, Tab. [G23] shows that
the 2-C retrieval model trained on BEWO-1M achieves superior retrieval performance compared to the one
trained on WavCaps on the BEWO-1M test set. Notably, the BEWO-1M dataset and the retrieval model
are not specifically designed for 2-C audio retrieval tasks; therefore, the experiments in this section provide
sufficient proof for the extensive value and impact of our dataset.

G.6 AUDIO CAPTIONING

Audio captioning aims to represent audio content using natural language descriptions. In this part, we follow
the Automated Audio Captioning experiments in WavCaps.

a) Models: Audio captioning typically employs an encoder-decoder architecture. The audio encoder extracts
acoustic features, which are then utilized by a language decoder to generate natural language captions. In our
implementation, we adopted CNN14 from PANNSs (Kong et al.,|2020) as the audio encoder and a pre-trained
BART (Lewis et al., 2019) model as the language decoder.

b) Experimental Setup: The setup of audio captioning is similar to our audio retrieval experiments. For
single-channel data, we first train zero-shot models separately using WavCaps and BEWO-1M. Only 30%
data of the BEWO-1M training set is used to train the model. Subsequently, we fine-tuned these pre-trained
models on AudioCaps and Clotho datasets. The zero-shot models are trained for 15 epochs with a learning
rate of 5x 10~5. Then, upon training on BEWO-1M, models are fine-tuned for 20 epochs with a learning rate
of 5x 1076, The final checkpoints are selected based on validation performance, and evaluation is performed
on the test sets of AudioCaps and Clotho. We employ standard captioning metrics for evaluation, including
BLEU (Papineni et al.,2002), ROUGE (Lin, |2004), METEOR (Banerjee & Lavie, 2005)), CIDEr (Vedantam
et al., 2015)), SPICE (Anderson et al., 2016)), and SPIDEr (Liu et al., 2017). For dual-channel evaluation,
models are evaluated on the BEWO-1M test set. When evaluating models pre-trained on WavCaps, the
audio input is converted to mono through channel averaging. The dual-channel audio captioning models are
trained on 30% data of the BEWO-1M training set with minor adjustments on the baseline model.

c¢) Results and Analysis: As shown in Tab. [G24] after fine-tuning, the 1-C model pre-trained on BEWO-
IM demonstrates comparable performance to that pre-trained on WavCaps, with only marginal differences.
This is particularly noteworthy given that WavCaps is specifically designed for 1-C audio captioning tasks.
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However, in 2-C evaluations, Tab. [G25] shows the model trained on BEWO-1M significantly outperforms
that pre-trained on WavCaps.

Table G24: The evaluation results of 1-C audio captioning on the test sets of AudioCaps and Clotho. A
higher score means better performance. “ZS” refers to zero-shot, “FT” refers to fine-tune, “A — B” means
the model is pre-trained on dataset “A” and then fine-tuned on dataset “B”.

Model Training Data ‘ AudioCaps Clotho
BLEU; ROUGE;f METEOR? CIDErf SPICEt SPIDErf | BLEU;4 ROUGE;f METEOR{ CIDErt SPICEt SPIDErt
CNN-BART-ZS WavCaps 55.1 37.1 18.6 453 11.9 28.6 29.9 29.3 12.0 24.8 8.7 16.7
CNN-BART-ZS BEWO-IM 15.8 189 7.5 22.6 6.5 14.5 10.3 13.5 5.8 7.6 37 7.6
CNN-BART-FT ~ WavCaps—AC+Clotho | 69.3 49.9 24.7 75.6 17.9 46.8 60.1 40.0 18.5 48.8 13.3 31.0
CNN-BART-FT BEWO-1M—AC+Clotho ~ 63.4 449 20.7 57.2 15.6 36.4 549 36.4 16.7 385 11.4 25.0

Table G25: The evaluation results of 2-C audio captioning on the test sets of BEWO-1M.

Model Training Data BEWO-1M test sefs

BLEU;1 ROUGE;f METEOR{ CIDErf SPICEt SPIDErt
CNN-BART WavCaps 7.5 14.1 59 14.1 7.5 10.3
CNN-BART BEWO-1M 31.9 353 16.3 45.1 22.5 33.8

G.7 EVALUATION ON THE SCALE OF CLASSIFIER FREE GUIDANCE

20 0.68
18 < 0.67
16 0.66
14 0.65
12
0.64
10
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8
6 0.62
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AudioCaps@IS?  ===AudioCaps@FD| === AudioCaps@CLAP? 0.6
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0 0.59
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Figure G15: The impact of CFG scale. Overall the scale of 6 is recommended as the balance of the trade-off.

Due to the impact of different CFG scales on the generated audio, we conduct inference experiments using
various CFG scales. As previously discussed, finding the most reasonable trade-off is crucial for achieving
the best results. In Table.[G26]and Fig.[GI3] our experiments demonstrate that a CFG scale of 6 provides rel-
atively optimal outcomes. Thus, unless otherwise specified, we will set the CFG scale to 6 in all subsequent
experiments.

G.8 EVALUATION ON PERTAINING OF IMAGE ENCODER.

Since not all images have acoustic semantic captions, we conduct tests on the image dataset of BEWO-1M.
The performance, pre-trained on our acoustic semantic captions, is shown in Tab. [G.8]for reference. Since we
only update the encoder for modality alignment, this performance might seem limited. However, we believe
that the limited performance in visual captioning will not impede our model’s ability to develop regional
perception of images. Additionally, the boost in performance with regional perception further demonstrates
the effectiveness of the strategy.
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Table G26: The impact of CFG scale. Overall the setting of 6 is recommended as the balance of the trade-off.

CFG scale w |w=4 w= w=6 w=7 w=8 w=9 w=10
AudioCaps@CLAPT | 0.624 0.666 0.672  0.675 0.672  0.670 0.663
AudioCaps @ISt 10.63 13.30 13.79 13.94 14.13 13.90 13.15
AudioCaps@FD| 17.89 9.07 14.01 15.31 16.53 17.50 18.74

Mix-set@FSAD| 0.147  0.153  0.160 0.167 0.168  0.191 0.243

Table G27: We use the metric of the caption generation to test the performance of the pre-trained image
encoder and decoder.

Image Captioning on BEWO-1M | CIDErf METEORT SPICEt
w/. regional perception 68.3 21.7 17.3
w/o. regional perception 62.1 20.4 16.6

G.9 SOURCE DIRECTION IMPACT ON THE AUDIO QUALITY

We maintain the overall caption and text length while only modifying the directional description in a few
simple samples to assess the quality of the generated audio. Interestingly, we observe that a larger disparity
between the ears (as the sound source moves further left or right) leads to a reduction in audio quality, as
shown in Tab.[G28] However, it is not due to any bias in the dataset regarding sound source locations because
we control its proportion in simulated audio. We attribute this to the fact that the entropy of the latent code
is limited, and the additional positional information competes with and displaces part of the original latent
code, thereby slightly degrading the audio quality.

Table G28: A larger disparity between the ears (as the sound source moves further left or right) leads to a
reduction in audio quality.

Direction IS¢t FD] FAD]
Left 10.72 18.70  5.08
Front left 11.01 1834 5.15
Front 11.60 16.06 2.52
Frontright | 11.00 17.47  4.33
Right 10.86 18.80 4.75
Moving 1048 18.51 4.89

G.10 CAPTION LENGTH IMPACT ON THE AUDIO QUALITY

We conduct extensive generation on 5000 audios to generate simple dog barks, using GPT-4 to extend the
length of captions with less meaningful words. We roughly analyze the relationship between caption length
and the generated audio CLAP score. It is found that increases in caption length led to a significant decrease
in the CLAP score in Table. On one hand, longer captions pose challenges for the generation. On
the other hand, the CLAP score does not accurately reflect the quality of longer captions. To determine the
specific reasons, further analysis and statistics are required.

G.11 POTENTIAL CLASS LEVEL BIAS

Inherent bias is a significant concern for professionals. We conduct further observations to gain deeper
insights. Before we begin the analysis, let’s clarify this important question. For instance, when a piano is
recorded, the output from the LLM is typically static and indoors. In contrast, when it comes to living beings
like humans or dogs, the LLM often assumes they are moving and outdoors. Therefore, this is a potential
inherent bias in the data and the LLM itself.
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Figure G16: The chart of caption length causing a decrease and fluctuating on CLAP score.

Therefore, We evaluated five common classes individually. Only minor differences between them are ob-
served, likely due to complex reasons like data scale and individual differences. Generally, everything
appears normal except for the generation of airplane echo sounds. It seems that LLM in data collection con-
sistently assumes that airplanes cannot exist in a small Reverberating room, thereby introducing a specific
type of bias.

It is interesting and somehow controversial. Is this bias good or bad? We are trying to use “rationality” to
avoid unrealistic scenarios like “an Airplane is passing by in the small reverberating room”. In this case,
this scenario is unrealistic and unnecessary at all. So, it could be a coin of two sides. But as a pioneer work,
we still prove that most of the common objects do not suffer from such bias. The rest of this potential bias
is more than welcome to explore in the future.

Table G29: To observe the potential class-wise bias, we select 5 common classes and evaluate each of them
separately. Reverberation and distance means the special factor described in prompts and ¢ means the
ability to control.

Target Classes | Stationary (FSAD) Moving (FSAD) Reverberation Distance
Dog 0.141 0.137 [%4 ['4
Man speaking 0.170 0.177 v v
Airplane 0.179 0.164 X v
Piano 0.243 0.215 (4 v
Violin 0.267 0.251 (%4 v

G.12 VISUALIZATION OF COARSE AND FINE GUIDANCE

In addition to using captions, we also use attributes to guide audio generation. Fig.[GI7] visualizes the
guidance. By defining speed, azimuth, moving time, etc., we can fine-tune and infer guidance.

H PROMPTS USED IN DATA CONSTRUCTION AND INFERENCE

We design several prompts for GPT-4 and GPT-40 for captions transformation and attribute inference.

* Tab[H30} Dataset construction of audio-caption pair. We provide captions and pre-selected at-
tributes (start/end positions and movements) to GPT-4. Then we require other attributes (scene size
and speed) and the transformed caption.
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—

(a) Coarse guidance of (b) Coarse guidance of (c) Coarse guidance of self-
moving from left to right sound on left front of the defined azimuth matrix
scene

(d) Fine guidance of moving (e) Fine guidance of sound (f) Fine guidance of self-
from left to right on left front of the scene defined azimuth matrix
Figure G17: The visualization of azimuth state matrix before normalization. Time for x-axis and angle for
y-axis. Through this guidance, we can define speed, azimuth, moving time, etc.

* Tab[H3T} Dataset construction of image-caption pair. We provide a caption, an image, and a po-
sition list of detected objects. Then we require sound objects with attributes (scene size, start/end
position, and speed) and the transformed caption.

* Tab[H32} Inference with caption input. We provide a caption to GPT-4. Then we require sound
objects with attributes (scene size, start/end positions, and speed).

* Tab[H33} Inference and interaction with image input. We provide an image and a position list of
detected objects. Then we require sound objects with attributes (scene size, start/end position, and
speed) and the transformed caption.
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Data construction of audio-caption pair

I will provide you with captions and some attribute lists to describe an audio clip.

The caption and elements in the lists are in the same order. You have to return a new caption and other
attributes - scene size and speed based on my input. Please follow the procedures step-by-step strictly!

1) Assess the size of the scene in which the audio occurs from: - Scene size choices: ‘1:outdoors’, ‘2:large’,
‘3:moderate’, ‘4:small’.

2) Identify objects’ sounds description and add their init directions from input - Basic description: ‘laugh-
ing’, ‘Speaking’, ‘Meowing’, ‘Blowing’, ‘Pouring’ ...

3) Read the movement of objects from input. If not moving, skip step 4.

4) If the objects are moving, also read their end directions from input, and choose speeds for the moving
object from: - Speed choices: ‘l:slow’, “2:moderate’, ‘3:fast’, ‘4:instantly’.

5) If the speed is ‘4:instantly’, you need to use a special method to rewrite the caption. It’s not an object
moving fast, you have to think of there are two sound sources sounding sequentially from different positions.
For example, if input is “a dog barks”’; movement:[“moving”]; init direction:[“left”]; end direction:[“right”].
And you think its speed is “instantly”. Its caption should be like “a dog barks at left, then another dog barks
at right”.

6) Ensure that the moving speed and scene size you choose correspond realistically with objects in the real
world.

7) Brief me only 1 overall sound description of the possible audio with appropriate direction words. Try to
use less than 30 words for the caption. And ignore the other things that cannot produce sound.

8) All objects should be described with direction and movement. If it’s still, you can drop the movement
words. If an object has no sound description, you have to infer a reasonable sound for it.

9) Provide your response in JSON format beginning with “{” like the examples below.

Example: with input as: caption: [“bus idles”, “woman”]; init direction: [“left”, “right”’]; movement:[“no
moving”, “moving”]; end direction:[“left”,“directly front”]. You should respond: {“size”: 1,“objects™
{“Bus”: {},“Woman™: {“speed™:1}, ...}, “one_sentence_brief_only_audio_caption”: “The bus engine idles
on the left and a woman walks from right to front slowly.”}

Input
Caption: [“A dog is barking”,“guitar”]; init direction: [“front”, “right”]; movement:[*“no moving”, “mov-
ing”’]; end direction:[“front”,“front left”].

Output
{ “size”: 2, “objects”: { “Dog”: { }, “Guitar”: { “speed”™ 2 } }, “one_sentence_brief_only_audio_caption”:
“A dog barks in front while a guitar strums from right to front left moderately.” }

Table H30: The prompt and an example in data construction based on audio-caption pair.
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Data construction of image-caption pair

I will provide you with an image with its caption, and a list of positions of objects.

The position list records the locations of some objects,

the top left corner is (0, 0) and the bottom right is (1,1). ,)‘f“

You have to return attributes and a new caption based on my input. "
Please follow the procedures step-by-step strictly! d
1) Determine if the entire scene is likely to produce sound.

Based on the picture and caption, identify the objects that may produce sound. If one object can make a
sound, you can think it can sound. If impossible, skip other steps. - Sounding choices: ‘O: impossible’, ‘1:
possible’

2) Assess the size of the scene in which the audio occurs from: - Scene size choices: ‘l:outdoors’, ‘2:large’,
‘3:moderate’, ‘4:small’.

3) Identify the objects whose positions are in the position list, and think in the original order of the list.
Discard objects that cannot produce sound and those not in the position list. Then add the position with
basic descriptions for each object based on the position list. The descriptions of direction and distance are
based on the absolute position, not the positional relationship between objects. For example, (0.3, y) should
be described as front left. You should consider both direction and distance: - direction choices: ‘1:left’,
“2:front left’, ‘3:directly front’, ‘4:front right’, ‘S:right’. - Distance choices: ‘1:far’, ‘2:moderate’, ‘3:near’.
- Basic description: ‘laughing’, ‘Speaking’, ‘Meowing’, ‘Blowing’, ‘Pouring’ ...

4) Identify if the object is moving or not. If not, skip step 5. - Moving choices: ‘0: No moving’, ‘1: Moving’
5) If some objects move, choose an end position that is different from the init direction, and also choose a
speed for the object from: - Speed choices: ‘1:slow’, “2:moderate’, ‘3:fast’.

6) For both init direction and end direction, note that you can return a decimal number to make result precise
based on the input position. You can simply think the front is 3.0, left is 1.0 and right is 5.0. Thus, with
input position (0.3, y), its direction is 2.2.

7) Ensure that the positions, movements, and scene size you choose correspond realistically with objects in
the real world.

8) Brief me only 1 overall sound description of the possible audio with appropriate direction and movement
words. Try to use less than 30 words for the caption. And ignore the other things that cannot produce sound.
All the objects should consider the position list, raw caption, and image input.

9) All objects should be described with direction and movement. If it’s still, you can drop the movement
words. You are only required to describe distance if it’s at an extreme distance.

10) Provide your response in JSON format beginning with “{” like the examples below.

Example: {“sound”: 1,“size”: 1,“objects”: {“Bus™: {“init_direction”: 1, “init_dis”: 1, “moving”:0,},
“Woman”: {“init_direction”: 5, “init_-dis”:1, “moving”:1, “end_direction”: 3, “end_dis”:2, “speed”:1}},
“one_sentence_brief_only_audio_caption”: “The bus engine idles on the left and a woman walks from right
to front slowly.”, }

Input
Caption: “the large bird is flying threw the air.”; Position: [(0.35, 0.25)]

Output

{ “sound”™ 1, “size”™: 1, “objects”: { “Bird”: { “init_direction™: 2.2, “init-dis”: 2, “moving”: 1,
“end_direction”: 3.5, “end_dis™: 1, “speed”: 2 } }, “one_sentence_brief_only_audio_caption”: “The bird
flaps its wings from front left to directly front at a moderate speed.” }

Table H31: The prompt and an example in data construction based on image-caption pair.
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Inference with caption input

I will provide you with a caption. You have to return attributes based on my input.

Please follow the procedures step-by-step strictly!

1) Determine if the entire scene is likely to produce sound. Based on the input, identify the objects that may
produce sound. If one object can make a sound, you can think it can sound. If impossible, skip other steps.
- Sounding choices: ‘0: impossible’, ‘1: possible’

2) Assess the size of the scene in which the audio occurs from: - Scene size choices: ‘1:outdoors’, ‘2:large’,
‘3:moderate’, ‘4:small’.

3) Identify objects’ sound descriptions. Then determine the position and basic descriptions for each object
based on the input. You should consider both direction and distance: - direction choices: ‘1:left’, ‘2:front
left’, ‘3:directly front’, ‘4:front right’, ‘S:right’. - Distance choices: ‘l:far’, ‘2:moderate’, ‘3:near’.

4) Identify if the object is moving or not. If not, skip step 5. - Moving choices: ‘0: No moving’, ‘1: Moving’
5) If some objects move, choose an end position that is different from the init direction, and also choose a
speed for the object from: - Speed choices: ‘1:slow’, ‘2:moderate’, ‘3:fast’.

6) For both init direction and end direction, note that you can return a decimal number when input involves
a precise description of the angle. e.g. if the input is “a dog barks at front left 70 degree”, you can return
“init_direction”: 2.7, or “init_direction”: 2.8, and you can infer what makes sense.

7) Ensure that the positions, movements, and scene size you choose correspond realistically with objects in
the real world and match the input.

8) Provide your response in JSON format beginning with “{” like the examples below.

Example: with input as: “The bus engine idles on the left and a woman walks from right to front slowly.”.
You should respond: {“sound”: 1, “size”: 1, “objects”: {“Bus”: {“init_direction™: 1, “init-dis™: 1,
“moving”:0,}, “Woman™: {“init_direction”: 5, “init_dis”:1, “moving”:1, “end_direction™: 3, “end_dis”:2,
“speed”:1}}

Input
A man speaks in front while a dog barks from front right to left.

Output
{ “sound”: 1, “size”: 3, “objects™: { “Man”: { “init_direction”: 3, “init_-dis”: 3, “moving”: 0 }, “Dog”: {
“init_direction”: 4, “init_dis”: 3, “moving”: 1, “end_direction”: 1, “end_dis”: 2, “speed™: 2 } } }

Table H32: The prompt and an example in text inference.
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Inference and interaction with image input

I will provide you with an image and a list of objects’ positions.
The position list records the locations of some objects,

the top left corner is (0, 0) and the bottom right is (1,1).

You have to return attributes and a caption based on my input.
Please follow the procedures strictly step-by-step!

1) Determine if the entire scene is likely to produce sound. ;
Based on the picture, identify the objects that may produce sound. If one object can make a sound you can
think it can sound. If impossible, skip other steps. - Sounding choices: ‘0: impossible’, ‘1: possible’

2) Assess the size of the scene in which the audio occurs from: - Scene size choices: ‘1:outdoors’, ‘2:large’,
‘3:moderate’, ‘4:small’.

3) Identify the objects whose positions are in the position list, and think in the original order of the list.
Discard objects that cannot produce sound and those not in the position list. Then add the position with
basic descriptions for each object based on the position list. The descriptions of direction and distance are
based on the absolute position, not the positional relationship between objects. For example, (0.3, y) should
be described as front left. You should consider both direction and distance: - direction choices: ‘1:left’,
“2:front left’, ‘3:directly front’, ‘4:front right’, ‘5:right’. - Distance choices: ‘l:far’, ‘2:moderate’, ‘3:near’.
- Basic description: ‘laughing’, ‘Speaking’, ‘Meowing’, ‘Blowing’, ‘Pouring’ ...

4) Identify if the object is moving or not. If not, skip step 5. - Moving choices: ‘0: No moving’, ‘1: Moving’
5) If some objects move, choose an end position that is different from the init direction and distance, and
also choose a speed for the object from: - Speed choices: ‘1:slow’, ‘2:moderate’, ‘3:fast’.

6) For both init direction and end direction, note that you can return a decimal number to make result precise
based on the input position. You can simply think the front is 3.0, left is 1.0 and right is 5.0. Thus, with
input position (0.3, y), its direction is 2.2.

7) Ensure that the positions, movements, and scene size you choose correspond realistically with objects in
the real world.

8) Brief me only 1 overall sound description of the possible audio with appropriate direction and movement
words. Try to use less than 30 words for the caption. And ignore the other things that cannot produce sound.
All the objects should consider the position list and image input.

9) All objects should be described with direction and movement. If it’s still, you can drop the movement
words. You are only required to describe distance if it’s at an extreme distance.

10) Provide your response in JSON format beginning with “{” like the examples below.

Example: {’sound”: 1,’size”: 1,’objects”: {”Bus”: { init_direction”: 1, “init-dis”: 1, “moving™:0,},
“Woman”: {”init_direction”: 5, “init_dis”:1, “moving”:1, “end_direction”: 3, “end_dis™:2, “speed”:1}},
“one_sentence_brief_only_audio_caption”: “The bus engine idles on the left and a woman walks from right
to front slowly.”}

Input
Position:[(0.6, 0.3),(0.4, 0.7)]

Output

{ “sound”: 1, “size™: 3, “objects”: { “Bird1”: { “init_direction”: 4.2, “init_dis”: 2, “moving”: 0 }, “Bird2":
{ “init_direction”: 2.8, “init_dis”: 2, “moving”: 0 } }, “one_sentence_brief_only_audio_caption”: “Birds
chirp softly from the front left and front right.” }

Table H33: The prompt and an example in image inference.
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I FREQUENT ASKED QUESTIONS

I.1 CLAP SCORE ON GT

Based on our experiments, the CLAP score for the ground truth audio in the AudioCaps test set is 0.67,
which is the same as [Huang et al|(2023a). The process of converting audio to description involves some
information loss, which means that certain sounds in the test set may lack appropriate descriptions, resulting
in a ground truth CLAP score of less than 1. However, advanced models like TANGO 2, Audio-Box, and
SpatialSonic (ours) are currently able to achieve CLAP scores that approach or even exceed the ground truth.
This is a common result of these models accurately following text context. And we are willing and excited
to open our checkpoints and audio samples for public verification.

1.2 DIFFERENCE BETWEEN STEREO AND SPATIAL AUDIO

Stereo audio primarily uses two channels to create a sense of width by directing different sounds to each ear.
However, it can be extended to include more channels in certain setups, enhancing the audio experience with
additional depth and dimension. This allows listeners to perceive sounds from various directions, including
above and below, often using formats like 5.1 or 7.1 surround sound (Herre et al., |2015ab) for a more
immersive experience. Both stereo and spatial audio aim to create an immersive listening experience by
simulating the natural way we perceive sound in our environment. In this work, we focus solely on azimuth
as a metric for stereo and spatial audio. In this context, we equate stereo audio and spatial audio.

.3 ELEVATION AND FRONT-BACK CONFUSION

In audio localization research, sound source localization is divided into two dimensions: azimuth and eleva-
tion. Researchers use more microphones to balance these dimensions (Jekaterynczuk & Piotrowski, 2024).
In our simulation, we use a 2-channel omnidirectional microphone array with consistent sensitivity in all
directions, which is designed for widely-used dual microphone devices. This microphone array in most of
the simulators cannot simultaneously localize azimuth and elevation (Jekaterynczuk & Piotrowskil 2024))
and experiences front-back confusion (van der Heijden & Mehrkanoon, [2022; ivan der Heijden et al.l [2019;
Orr et al., [2023). Therefore, when constructing the BEWO-1M dataset, we do not consider elevation or
front-back, assuming the sound source to be within the front 180° range in azimuth. Adding more micro-
phones, using microphones with artificial human-shaped ears (Yang & Zheng| [2022) and the Head-Related
Transfer Function (HRTF) algorithm can reduce these confusions (Orr et al., [2023)) but bring challenges to
large-scale simulations. Our work proposes a data synthesis and model pipeline, which can be adapted for
more types of simulations and generations in the future, potentially requiring more detailed captions.

I.4 DISTANCE CONTROLLING AND EMBEDDING
The previous See2Sound used the Depth-Anything model for depth perception. However, our model does
not specifically encode the distance attribute in azimuth state matrices. This is because we require GPT-4 or

GPT-40 to describe it in the text when distance is crucial. The distance information is directly presented in
the modality embedding without requiring additional encoding in the azimuth matrix.

J REVISION LoG

Specifically, we have included the revision log here with the date format of dd/mm/yyyy. We welcome
any suggestions that may contribute to the improvement of this paper.
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J.1 BEWO-1.1: 11/17/2024

1. Better Presentation

(a) Revision of the summary of the dataset construction pipeline in Sec. |3| and the model frame-
work in Sec.

(b) Revision of image-related part in Sec.[4.2]and Sec. [4.4]for better integration.
(c) Replace MAE to MSE. Sorry about the mistake.

2. Additional Experiments

(a) Inclusion of supplementary experiments utilizing the less usual dataset Clotho, detailed in
Section[G.1]

(b) Conducting further experiments on text-to-audio retrieval and audio captioning, presented
in Sections|G.5]and[G.6|respectively. These are included even though the primary focus of the
paper remains on generation tasks.

3. Insights and Analysis

(a) Integration of additional analysis regarding the cfg scale, elaborated in Section

(b) Provision of further insights into the potential class-level bias, which is beneficial for the
community, discussed in Section [G.T1]

(c) Extension of analysis concerning the FSAD, documented in Section [F.3]
4. Formatting Adjustments

(a) Minor modifications in Section [2|to ensure the elimination of the widow words.

J.2 POTENTIAL REQUIREMENTS

This section is used to provide the community with maximum effort on spatial audio generation.

Please feel free to contact us at any time if you have any requests from the list below. We will make the
requested version of the data available as open-source.

* BEWO-1M with 44.1K Hz.
* BEWO-1M with 5.1-channel microphone array.
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