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ABSTRACT

Label noise in multiclass classification is a major obstacle to the deployment of
learning systems. However, unlike the widely used class-conditional noise (CCN)
assumption that the noisy label is independent of the input feature given the true
label, label noise in real-world datasets can be aleatory and heavily dependent on
individual instances. In this work, we investigate the instance-dependent noise
(IDN) model and propose an efficient approximation of IDN to capture the instance-
specific label corruption. Concretely, noting the fact that most columns of the IDN
transition matrix have only limited influence on the class-posterior estimation, we
propose a variational approximation that uses a single-scalar confidence parameter.
To cope with the situation where the mapping from the instance to its confidence
value could vary significantly for two adjacent instances, we suggest using instance
embedding that assigns a trainable parameter to each instance. The resulting
instance-confidence embedding (ICE) method not only performs well under label
noise but also can effectively detect ambiguous or mislabeled instances. We validate
its utility on various image and text classification tasks.

1 INTRODUCTION

In modern machine learning, large-scale data has become indispensable (Russakovsky et al., 2015;
Wang et al., 2019a). A prevalent approach to collecting large-scale labeled datasets is to use imperfect
sources such as crowdsourcing and web crawling (Fergus et al., 2005; Schroff et al., 2010; Wang
et al., 2019a), which is usually less expensive and time-consuming than manual annotation by domain
experts. However, such methods inevitably introduce label noise that may lead to overfitting and hurt
the generalization of deep models (Arpit et al., 2017; Zhang et al., 2017).

In such situations, it is often beneficial to (i) remove mislabeled data or abstain from using confusing
instances (Hara et al., 2019; Thulasidasan et al., 2019); (ii) increase robustness and reduce harmful
influences of noisy labels (Malach & Shalev-Shwartz, 2017; Mirzasoleiman et al., 2020; Liu et al.,
2020); or (iii) explicitly model the transition from the unobservable true label to the noisy observation
(Goldberger & Ben-Reuven, 2017; Patrini et al., 2017; Xia et al., 2020). In this work, we focus on
explicit modeling of the label corruption process, which is model-agnostic and data-efficient.

Most existing studies in this direction employ the class-conditional noise (CCN) assumption, i.e., the
noisy label is independent of the input feature given the true label (Angluin & Laird, 1988; Natarajan
et al., 2013; Patrini et al., 2017). However, this assumption could be too strong to fit some real-world
data well (Xiao et al., 2015; Chen et al., 2021; Liu, 2021). More importantly, CCN only captures
the general label flipping patterns between classes for all instances. In applications such as data
cleansing and human-in-the-loop interaction, instance-specific noise information itself could be of
central interest. This urges us to consider not only the class-conditional noise pattern but also the
instance-specific noise modeling.

To handle this problem, in this work, we study the instance-dependent noise (IDN) model, where
the noisy label also depends on the input. Several methods have been reported in the literature, but
they either only focus on binary classification under strong assumptions (Menon et al., 2018; Cheng
et al., 2020), are based on domain-specific knowledge (Xia et al., 2020), or need extra supervision
(Berthon et al., 2021). In contrast, we propose a simple domain-agnostic approximation method for
the multiclass IDN model, referred to as instance-confidence embedding (ICE). Concretely, to avoid
estimating the noise transition matrix for each instance, we propose a variational approximation that
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Figure 1: Graphical representations of noise models, including the class-conditional noise (CCN)
model, the instance-dependent noise (IDN) model, and the proposed instance-confidence embedding
(ICE) approximation of IDN. Here, X is the input feature, Y is the true label, Ỹ is the noisy label,
and C ∈ [0, 1] is a scalar confidence parameter.

uses a scalar confidence parameter (Section 3.2). Then, we suggest using instance embedding that
assigns a trainable parameter to each instance because the mapping from the instance to its confidence
value could be non-smooth and is usually not required to generalize to unseen examples (Section 3.3).
Lastly, we show the effectiveness of the proposed method and its ability to detect ambiguous or
mislabeled instances through experiments on various image and text classification tasks (Section 5).

2 PROBLEM: INSTANCE-DEPENDENT NOISE

In this section, we give a brief overview of learning with instance-dependent noise (IDN).

2.1 NOTATION

Consider a K-class classification problem, where X ∈ X is the input feature and Y ∈ {1, . . . ,K} is
the unobservable categorical true label. We assume that the clean class-posterior p(Y |X) comes
from a parametric family of distributions:

pφ(Y |X) := Categorical(Y |p = f(X;φ)), (1)

where p ∈ ∆K−1 is the probability parameter for Y in the (K − 1)-dimensional probability simplex
∆K−1, and f : X → ∆K−1 is a differentiable function parameterized by φ that maps the feature X
to its corresponding probability parameter p. Then, let Ỹ ∈ {1, . . . ,K} be the noisy label. The goal
is to predict Y from X based on a finite i.i.d. sample of (X, Ỹ )-pairs.

2.2 DEPENDENCE

Next, we introduce the dependence structure between X , Y , and Ỹ , which characterize different
noise models. The graphical representations of noise models are illustrated in Fig. 1.

In IDN, we assume that the joint distribution of X , Y , and Ỹ can be factorized as follows:

p(X,Y, Ỹ ) = p(Ỹ |Y,X)pφ(Y |X)p(X). (2)

That is, the noisy label Ỹ depends on both the instance X and the true label Y . Then, the noisy
class-posterior p(Ỹ |X) can be obtained by marginalizing p(Y, Ỹ |X) over Y :

pφ(Ỹ |X) := Categorical(Ỹ |q =
∑K
Y=1 p(Ỹ |Y,X)pφ(Y |X)), (3)

where q ∈ ∆K−1 denotes the probability parameter for Ỹ .

Note that p(Ỹ |Y,X) plays a central role in IDN. Since both Y and Ỹ are categorical random variables,
for a certain instance x, p(Ỹ |Y,X = x) can be seen as a K ×K stochastic matrix T (x), whose
elements are Tij(x) := p(Ỹ = j|Y = i,X = x) for i, j ∈ {1, . . . ,K}. Conventionally, T (x)

is called a noise transition matrix (Patrini et al., 2017). Then, p(Ỹ |Y,X) can be regarded as a
matrix-valued function T : X → [0, 1]K×K that maps each instance x to its corresponding IDN
transition matrix T (x). Without any restriction, we need K ×K parameters for each instance x.
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2.3 APPROACH

Owing to its complexity, IDN has only been studied to a limited extent but is of great interest recently.
A straightforward method is to jointly estimate the matrix-valued function T (x) as well as the clean
class-posterior pφ(Y |X) using neural networks (Goldberger & Ben-Reuven, 2017). However, the
estimation error of T (x) could be high, which deteriorates the classification performance. Another
direction is to restrict the problem under certain conditions, so that we can provide theoretical
guarantees (Menon et al., 2018; Cheng et al., 2020). However, existing work mainly focused on
binary classification.

A promising approach is to approximate IDN using a simpler dependence structure, such as a mixture
of noises with different semantic meanings (Xiao et al., 2015) or a weighted combination of noises
that depend on parts of the instance (Xia et al., 2020). In this work, we also suggest that it might
be unnecessary to obtain a K ×K matrix for each instance x: Note that pφ(Ỹ |x) can be seen as a
linear combination of columns of T (x) weighted by pφ(Y |x); If the maximum value of pφ(Y |x) is
close to 1, i.e., the label of the instance x is almost deterministic, the estimation of K − 1 columns
of T (x) has only limited influence on the estimated noisy class-posterior p̂(Ỹ |x). This suggests the
possibility of using a relatively simple model to approximate p(Ỹ |X) in real-world applications. In
this work, we consider a single-parameter approximation for each instance, which is introduced in
Section 3.2 and illustrated in Fig. 2.

Another issue is that existing methods still introduce some level of smoothness w.r.t. x into T (x)
(Goldberger & Ben-Reuven, 2017; Xiao et al., 2015; Xia et al., 2020). In real-world problems,
however, we can only access a finite sample of (X, Ỹ )-pairs that are possibly annotated by non-
experts or web crawlers (Fergus et al., 2005). Thus, the label noise could be aleatory and T (x)
could vary significantly for two adjacent instances. Also, the classifier pφ(Y |X) is desired but
the generalization of T (x) to unseen examples is usually dispensable. This inspires us to use
instance embedding instead of neural network approximation, which is discussed in Section 3.3 and
demonstrated in Fig. 3.

3 PROPOSED METHOD

In this section, we present our proposed method, instance-confidence embedding (ICE).

3.1 VARIATIONAL LOWER BOUND

Note that T (x) serves as a linear mapping from p to q (Eq. (3)). Due to the difficulty of estimating
the matrix-valued function T (x), we use a simpler function qθ,φ(Ỹ |X) parameterized by θ as a
variational approximation to pφ(Ỹ |X). The choice of the approximation family is discussed in
Section 3.2.

Then, let us consider the expected log-likelihood as the learning objective, which can be rewritten as

E
Ỹ∼p(Ỹ |X)

[log p(Ỹ |X)] = DKL(pφ(Ỹ |X) ‖ qθ,φ(Ỹ |X)) + L(θ, φ;X), (4)

where DKL denotes the Kullback-Leibler (KL) divergence, and the second term is

L(θ, φ;X) := E
Ỹ∼p(Ỹ |X)

[log qθ,φ(Ỹ |X)]. (5)

Since the KL-divergence is always non-negative, this term gives a variational lower bound of the
expected log-likelihood. Then, we have the following learning objective to maximize:

L(θ, φ) := E
X∼p(X)

[L(θ, φ;X)] = E
X,Ỹ∼p(X,Ỹ )

[log qθ,φ(Ỹ |X)]. (6)

In practice, the expectation can be approximated using the empirical distribution based on a finite
i.i.d. sample of (X, Ỹ )-pairs.
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Figure 2: An illustration of the transformation (N 7→ H) from the clean class-posterior pφ(Y |x) (the
leftmost) to the noisy class-posterior pφ(Ỹ |x) (the rightmost). The outer black triangle depicts the
probability simplex ∆2 projected to the 2-dimensional space for 3-class classification. We can see
that when the label is almost deterministic (N is close to a vertex), the estimation of K−1 columns of
the transition matrix T (x) (the two deviated vertices of the dotted triangle) has only limited influence
on the estimated noisy class-posterior p̂(Ỹ |x) (M is still close to H). This inspires us to go a step
further and use single-parameter approximations (N 7→ O) qθ,φ(Ỹ |x) (Eqs. (8) and (9)).

3.2 VARIATIONAL APPROXIMATION

Next, we discuss the choice of the variational approximation family of qθ,φ(Ỹ |X).

To approximate the effect of multiplying an IDN transition matrix T (x) that requires K × K
parameters for each instance x, in this work, we use a simpler transformation from p to q, which
is not necessarily linear. Compared with estimating a full matrix for each instance without any
restriction (Goldberger & Ben-Reuven, 2017), obtaining only an approximation may cause higher
approximation error, but on the other hand, it may reduce estimation error and thus improve the
classification performance. The high estimation error of complex models might be more harmful,
which is empirically validated in Section 5. It is also the case when using CCN as an approximation
of IDN to balance this trade-off. The difference is that CCN obtains a complete transition matrix
common to all instances, but ICE aims to obtain an approximated trend for each instance, which
gives useful instance-specific noise information.

Then, we suggest to use a single-scalar parameter C ∈ [0, 1] for each instance to control this
approximation, which is useful for sorting and comparing training examples. This design might also
be useful in data cleansing, learning with rejection, or active learning (Hara et al., 2019; Thulasidasan
et al., 2019; Charoenphakdee et al., 2021). This parameter is referred to as the confidence and is
obtained via a function g : X → [0, 1] parameterized by θ, i.e., C = g(X; θ). Then, θ can be
regarded as the collection of C for all instances. The confidence C plays a central role in our method,
where C = 0 means that the instance is ambiguous or mislabeled and thus the classifier should not
give a confident prediction.

Finally, we need to design a transformation from p to q parameterized by the confidence C. We
denote this function by h : ∆K−1 → ∆K−1. In summary, qφ,θ(Ỹ |X) takes the following form:

qφ,θ(Ỹ |X) := Categorical(Ỹ |q = h(f(X;φ); g(X; θ))). (7)

Next, we analyze what characteristics h needs to have. First, we suggest that h needs not necessarily
to be a linear transformation because the transformation is instance-dependent and any function
that maps p to q as close as possible for a certain instance x would suffice. Second, we require
that arg max(p) = arg max(q), i.e., q = h(p;C) should be an argmax-preserving function so that
the top-1 index of the probability vector does not change. This is because h should only affect the
confidence of the prediction, not the final decision. Otherwise, if h is too flexible and is able to map a
confident prediction to a different confident prediction, then the output of f could be arbitrary, and
consequently, no information of the true label can be learned from the noisy label supervision.

Based on this motivation and the aforementioned semantics of C, we require that h(p; 1) = p
and h(p; 0) = u, where u ∈ ∆K−1 is the uniform probability vector (ui = 1

K ). Then, when the
confidence C is high, the classifier gives a prediction closer to the original confident prediction p;
and when the confidence C is low, the classifier tends to give a random guess u.
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Figure 3: An example of the learned class-posteriors using (a) the usual cross entropy without
any modification; (b) weight decay; (c) modified confidence of the prediction (Eq. (8)) with neural
network approximation for g : X → [0, 1]; and (d) instance-confidence embedding. The points
with black edges are mislabeled instances. We can observe that noisy labels affect the decision
boundary and the model complexity. Comparing the last two panels, modifying the confidence of the
prediction works better with instance embedding than neural network approximation. ICE can reduce
the influence of ambiguous or mislabeled instances to improve the class-posterior estimation.

Here, we propose two functions for h that satisfy the above conditions:
qi = Cpi + (1− C)ui, (linear interpolation) (8)

qi =
pCi∑K
j=1 p

C
j

∝ pCi , (power transformation) (9)

for i = 1, . . . ,K. The visualization of these two transformations for K = 3 is given in Fig. 2.

3.3 INSTANCE EMBEDDING

The last piece of our method is the choice of g : X → [0, 1], the function that maps the instance x
to its confidence value C. It is also possible to use a neural network to approximate this function.
However, because we usually only have a limited number of training examples and g could be
non-smooth w.r.t. its input x, g may not be well approximated by a neural network with similar
complexity to the classifier f , which is illustrated in an example in Fig. 3. Further, g may be rarely
needed after training so its generalization ability is not required in many cases.

Based on these facts, we propose to use instance embedding, i.e., to assign a trainable parameter to
each instance x. In other words, the only feature for an instance we use is its index in the training
dataset. In this way, g is expressive and flexible but cannot be used for predicting the confidence
of unseen instances. Accordingly, for a training dataset of size N , we need N parameters for a
one-dimensional instance embedding.

This seems to be a high additional computational cost when the dataset size is large, but it is
often acceptable, because (i) in modern deep learning, it is common to use over-parameterized
models (Nakkiran et al., 2019), and the number of instances is usually not as large as the number of
parameters of the classifier f (e.g., CIFAR-10 (Krizhevsky, 2009): 5× 104, ResNet-18 (He et al.,
2016): ∼ 1× 107); and (ii) the gradient of the instance embedding is sparse and only a small subset
of parameters needs to be updated at each iteration.

The idea of associating an entity with a scalar or vector embedding using a simple lookup table with
a fixed dictionary size has been widely used in natural language processing (Mikolov et al., 2013;
Pennington et al., 2014; Peters et al., 2018; Devlin et al., 2019) due to the discrete nature of tokens,
and can be seen recently in contrastive learning (Wu et al., 2018; He et al., 2020) for vision tasks.
Instance embedding enables the function to take any possible value on all observed instances but
cannot generalize to any unseen token or image.

Combining the components introduced above, the learning objective Eq. (6) is in the following form:

L(θ, φ) = cross-entropy(

q, fixed transformation, Eqs. (8) and (9)︷ ︸︸ ︷
h( f(X;φ)︸ ︷︷ ︸

p, neural network classifier, Eq. (1)

; g(X; θ)︸ ︷︷ ︸
C, instance-confidence embedding

), Y ).

We also provide code snippets in Appendix A for practitioners and gradient analysis in Appendix B
for theoretical implications.
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4 RELATED WORK

In this section, we review related problem settings and methods.

Class-conditional noise (CCN). Compared with the IDN model, the instance-independent and
class-conditional noise (CCN) model has an additional assumption: p(Ỹ |Y,X) = p(Ỹ |Y ), i.e., the
noisy label Ỹ only depends on the true label Y . CCN has been well studied in both binary (Angluin
& Laird, 1988; Long & Servedio, 2010; Natarajan et al., 2013; Van Rooyen et al., 2015; Liu & Tao,
2015) and multiclass (Patrini et al., 2017; Xia et al., 2019; Yao et al., 2020; Zhang et al., 2021b;
Zhu et al., 2021) classification. Also, robust loss functions (Ghosh et al., 2017; Zhang & Sabuncu,
2018; Wang et al., 2019b; Charoenphakdee et al., 2019; Ma et al., 2020; Feng et al., 2020; Lyu &
Tsang, 2020; Liu & Guo, 2020) have been mainly developed under the CCN setting. In practice,
CCN methods can serve as practical approximations of IDN but the assumption could be too strong
to fit some real-world data well (Xiao et al., 2015).

Label smoothing. Note that Eq. (8) is similar to the label smoothing (LS) technique (Szegedy
et al., 2016; Pereyra et al., 2017; Lukasik et al., 2020), where the empirical distribution is linearly
interpolated with a uniform distribution with a fixed mixing parameter. It is also related to the
soft/hard bootstrapping loss (Reed et al., 2015), where the observed label is mixed with the predicted
probability/predicted label. In contrast, in our method, it is the prediction p that is “smoothed”, not
the label. We elucidate their relations and differences in Appendix C.

Temperature scaling. If we use softmax as the final layer of the neural network for pφ(Y |X), the
proposed method is closely related to the temperature scaling (TS) technique (Guo et al., 2017).
Concretely, if pi ∝ exp{fi(X;φ)} for i = 1, . . . ,K, then Eq. (9) becomes

qi ∝ exp{Cfi(X;φ)}, (10)

which shows that C is the reciprocal of the temperature. The difference is that the parameter C is
instance-dependent in our formulation, rather than being fixed for all instances. Also, TS (Guo et al.,
2017) and its extensions (Kull et al., 2019; Rahimi et al., 2020) have been mainly used as post-hoc
confidence calibration methods, while our method is used during training.

Sample selection. In a broader sense, the proposed method belongs to a category of methods that
treat training examples differently in order to reduce the harmful effects of mislabeled instances.
Besides the class-posteriors that our method uses, these methods exploit the training dynamics,
loss characteristics, gradient information, or information of data itself from various perspectives.
Examples include data cleansing (Liu et al., 2008; Northcutt et al., 2019; Hara et al., 2019) that
first removes harmful instances and then (re-)trains the model on the remaining subset; dynamic
training sample selection (Malach & Shalev-Shwartz, 2017; Jiang et al., 2018; Han et al., 2018;
Wang et al., 2018; Yu et al., 2019; Mirzasoleiman et al., 2020; Wu et al., 2020; Chen et al., 2021;
Cheng et al., 2021; Zhang et al., 2021a) that selects training examples dynamically during training;
training techniques (Menon et al., 2020; Liu et al., 2020) that are designed to increase robustness and
avoid memorization of noisy labels; learning with rejection or selective classification (El-Yaniv &
Wiener, 2010; Thulasidasan et al., 2019; Mozannar & Sontag, 2020; Charoenphakdee et al., 2021)
that abstains from using confusing instances while improving the classification performance on
accepted instances; and semi-supervised learning (Nguyen et al., 2020; Li et al., 2020) that exploits
unlabeled data. We discuss the relationship with some of them in more detail in Appendix D.

In the same spirit, our proposed method also attempts to detect harmful instances and reduce their
influences automatically so as to improve the robustness of the class-posterior estimation. However,
unlike explicit sample selection methods, the resulting algorithm is lightweight and has a low
computational cost. Also, because the proposed method only affects the class-posterior, it is usually
compatible with other training methods. Thus, the proposed method can be used alone or integrated
into an existing training pipeline to further improve the performance.
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Table 1: Accuracy (%) on the MNIST, FMNIST, KMNIST, SVHN, CIFAR-10, and CIFAR-100
datasets with instance-dependent noise. The overall noise rate is around 45% to 55%. “Mean
(standard deviation)” for 10 trials are reported. Outperforming methods are highlighted in boldface
using one-tailed t-tests with a significance level of 0.05.

MNIST FMNIST KMNIST SVHN CIFAR-10 CIFAR-100

CCE 95.26(0.50) 85.41(0.56) 82.64(0.59) 76.93(1.86) 74.72(1.70) 51.90(0.38)
Bootstrapping 97.40(0.22) 87.22(0.40) 85.69(0.79) 79.60(1.93) 78.70(0.74) 52.60(0.50)

Adaptation 94.94(0.49) 84.91(0.42) 81.23(1.74) 69.97(3.41) 74.71(0.84) 39.18(1.51)
Forward 95.47(0.45) 85.78(0.55) 83.71(0.86) 75.17(4.21) 75.08(0.87) 52.12(0.50)
Dual-T 97.05(0.40) 86.54(0.49) 84.91(0.86) 79.49(1.84) 81.10(0.47) 52.77(0.48)
DAC 95.78(0.29) 86.19(0.50) 83.21(1.05) 79.39(2.33) 74.95(0.85) 52.17(0.33)
GCE 97.69(0.18) 87.10(0.54) 86.50(1.04) 79.64(1.89) 81.65(0.51) 55.75(0.30)

ICE-LIN 97.39(0.25) 87.07(0.29) 87.08(0.50) 77.16(2.19) 82.07(0.39) 56.04(0.34)
ICE-POW 97.94(0.18) 87.90(0.36) 87.73(0.62) 81.82(0.99) 82.37(0.29) 55.07(0.48)
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Figure 4: Ridgeline plots of the confidence C during training. The red/blue curves represent the
confidence of instances with flipped/original labels, respectively.

5 EXPERIMENTS

In this section, we experimentally verify if the proposed instance-confidence embedding (ICE)
method is able to differentiate mislabeled instances from correct ones and consequently improve the
classification performance. We also demonstrate that there already exist ambiguous or mislabeled
training examples in the original datasets which can be detected by the proposed method.

5.1 IMAGE CLASSIFICATION

Datasets. We evaluated our method on six image classification datasets, namely MNIST (Le-
Cun et al., 1998), Fashion-MNIST (FMNIST) (Xiao et al., 2017), Kuzushiji-MNIST (KMNIST)
(Clanuwat et al., 2018), SVHN (Netzer et al., 2011), CIFAR-10, and CIFAR-100 (Krizhevsky, 2009)
datasets. We used a method similar to the one used in Zhang et al. (2021a) to generate instance-
dependent label noises whose overall noise rate is around 45% to 55%. See Appendix E for details
and more experimental results.

Methods. We compared the following nine methods: (1) (CCE) categorical cross-entropy loss;
(2) (Bootstrapping) (hard) bootstrapping loss (Reed et al., 2015) that regularizes the output with
the predicted label; (3) (Adaptation) noise adaptation layer (Goldberger & Ben-Reuven, 2017) that
estimates a full K ×K transition matrix for each instance; (4) (Forward) forward correction (Patrini
et al., 2017) that estimates a transition matrix for all instances; (5) (Dual-T) dual-T estimator (Yao
et al., 2020) that uses the normalized confusion matrix to correct the transition matrix; (6) (DAC) deep
abstaining classifier (Thulasidasan et al., 2019) that uses abstention for robust learning; (7) (GCE)
generalized cross-entropy loss (Zhang & Sabuncu, 2018) as a robust loss; (8) (ICE-LIN) instance–
confidence embedding with the linear interpolation (Eq. (8)); and (9) (ICE-POW) the one with the
power transformation (Eq. (9)). For a fair comparison, we implemented aforementioned methods
using the same network architecture and hyperparameters.

Models. For MNIST, FMNIST, and KMNIST, we used a sequential convolutional neural network
(CNN) and an Adam optimizer (Kingma & Ba, 2015). For SVHN, CIFAR-10 and CIFAR-100, we
used a residual network model ResNet-18 (He et al., 2016) and a stochastic gradient descent (SGD)
optimizer with momentum (Sutskever et al., 2013). Hyperparameters are provided in Appendix E.
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index: 3275
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label: 3
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label: 6
guess: 4

index: 29598
label: 9
guess: 7

index: 13752
label: 8
guess: 2

index: 4568
label: 9
guess: 4

index: 15932
label: 8
guess: 5

index: 39001
label: 9
guess: 7

index: 46434
label: 9
guess: 8

index: 10242
label: 9
guess: 4

index: 3030
label: 2
guess: 1

index: 37250
label: 7
guess: 2

(a) MNIST
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label: deer
guess: dog

index: 34123
label: cat
guess: horse

index: 21714
label: truck
guess: bird

index: 25282
label: bird
guess: airplane

index: 28332
label: horse
guess: deer

index: 26002
label: bird
guess: dog

index: 22399
label: dog
guess: horse

index: 18468
label: dog
guess: cat

index: 11900
label: horse
guess: cat

index: 9530
label: deer
guess: dog

index: 10311
label: dog
guess: horse

index: 337
label: cat
guess: dog

index: 4174
label: bird
guess: airplane

index: 38843
label: cat
guess: frog

index: 31269
label: ship
guess: airplane

index: 25586
label: dog
guess: cat

index: 30120
label: cat
guess: deer

index: 6743
label: deer
guess: horse

index: 11640
label: cat
guess: deer

index: 30022
label: deer
guess: cat

index: 7798
label: dog
guess: deer

index: 39798
label: bird
guess: airplane

index: 32802
label: horse
guess: dog

index: 17603
label: cat
guess: bird

index: 13282
label: bird
guess: airplane

index: 17288
label: cat
guess: deer

index: 11745
label: dog
guess: deer

index: 1036
label: cat
guess: frog

index: 29273
label: bird
guess: airplane

index: 4551
label: cat
guess: deer

index: 35248
label: airplane
guess: ship

index: 26267
label: bird
guess: airplane

(b) CIFAR-10

Figure 5: The 32 most low-confidence training examples in the MNIST and CIFAR-10 datasets,
ordered left-right, top-down by increasing confidence. The index in the dataset, original label, and
predicted label are annotated above each image for verification.

(a) MNIST (b) CIFAR-10

Figure 6: The class-wise spectra from high-confidence (left) to low-confidence (right) training
examples in the MNIST (digit 3 and 4) and CIFAR-10 (cat and dog) datasets.

Improving classification performance. To verify if the proposed method is able to improve the
classification performance under label noise, we constructed semi-synthetic noisy datasets so that the
true labels are known. We regarded the original labels as clean labels, although as will be shown in
the next experiment, label errors already exist in the original datasets to some extent. We ran 10 trials
and reported the means and standard deviations of the test accuracy in Table 1.

We can observe that the proposed method generally outperforms the baseline methods. It is worth
noting that when there are a large number of classes (e.g., CIFAR-100), estimating a full transition
matrix for each instance (Adaptation) may deteriorate drastically because it requires an additional
K × K output and the estimation error could be high. On the contrary, the complexity of our
single-parameter approximation does not increase as the number of classes increases. Additionally,
in the ridgeline plots in Fig. 4, we can observe the separation of instances with flipped/original labels
using the learned confidence C, which may explain the performance improvement.

Detecting ambiguous/mislabeled instances. Next, we demonstrate that the proposed method can
be used for detecting ambiguous or possibly mislabeled instances. We trained the model on the
original datasets with the proposed method. A benefit of using a single-parameter approximation
is that it naturally derives an order of the training examples. We sorted the training examples via
the confidence and showed the 32 most low-confidence ones in Fig. 5. We also extracted high-
/low-confidence training examples for each classes as shown in Fig. 6. Results of other datasets are
provided in Appendix E.

We can observe that, surprisingly, in these supposedly clean datasets, a number of instance might
be mislabeled. In MNIST and SVHN, we found clearly mislabeled images. There are ambiguous
images such as 2-7 and 4-9 pairs in MNIST and shirt/T-shirt/pullover/coat photos in Fashion-MNIST.
In CIFAR-10, it is interesting that images in the animal category are more likely to have a low
confidence. We conjecture that the spurious correlation between the object and the background color
plays an important role. We also found multi-modality issues, e.g., kiwi, owl, and chicken are all
labeled as bird but are not visually prototypical birds. This phenomenon suggests the possibility of
using the proposed method for diagnosing label issues in large-scale datasets.

8



Under review as a conference paper at ICLR 2022

Table 2: Performance (%) on the GLUE benchmark for natural language understanding. We reported
Matthews correlation coefficient on CoLA, F1 score/accuracy on MRPC and QQP, and accuracy
otherwise. MNLI-(m/mm) denotes MultiNLI matched/mismatched, respectively.

CoLA SST2 MRPC QQP MNLI-(m/mm) QNLI RTE WNLI

CCE 54.76 92.55 88.04/82.35 87.80/90.96 83.83/84.31 90.77 66.43 50.70
ICE 57.83 92.20 89.54/85.05 87.85/90.92 83.81/84.36 91.14 63.90 56.34

Table 3: Six selected low-confidence training examples in the CoLA dataset.

Index Label Guess Text

390 acceptable unacceptable He I often sees Mary.

7756 acceptable unacceptable That monkey is ate the banana.

8332 acceptable unacceptable I wanted Jimmy for to come with me.

2801 unacceptable acceptable Paula hit the sticks.

2479 unacceptable acceptable Kelly buttered the bread with butter.

6795 unacceptable acceptable Henry wanted to possibly marry Fanny.

Further, in the class-wise spectra of training examples (Fig. 6), we can observe that the confidence
values may capture the level of ambiguity of instances. This suggests the possibility of using the
proposed method in other tasks such as data cleansing, learning with rejection, and active learning.

5.2 TEXT CLASSIFICATION

We discovered that noisy label issues also exist in text datasets. We conducted similar experiments on
the GLUE benchmark (Wang et al., 2019a), which is a collection of datasets for natural language
understanding. We trained a BERT-base model pretrained using a masked language modeling (MLM)
objective (Devlin et al., 2019) with a default AdamW optimizer (Loshchilov & Hutter, 2017). The
performance in terms of the suggested evaluation metric was reported in Table 2.

We can observe that, except on the RTE dataset, the performance was improved or approximately the
same compared with the default CCE method, which shows the benefits of using instance-specifically
adjusted confidences. Although, if the dataset is relatively clean, the improvement might be marginal.

We also found mislabeled or ambiguous instances in these datasets. A typical example is the
Corpus of Linguistic Acceptability (CoLA) (Warstadt et al., 2019) dataset, which consists of English
grammatical acceptability judgments. Six selected low-confidence training examples are given in
Table 3. We found that several ungrammatical sentences were mislabeled as acceptable, and some
syntactically acceptable sentences were labeled as unacceptable by annotators possibly because they
have semantic errors. In this way, we may use the proposed method to probe if the model prediction
is consistent with our intent. More results are provided in Appendix E.

6 CONCLUSION

We have introduced a novel variational approximation of the instance-dependent noise (IDN) model,
referred to as instance-confidence embedding (ICE). Compared with existing methods based on the
class-conditional noise (CCN) assumption, the proposed method is able to capture instance-specific
noise information and consequently improve the classification performance. The use of the one-
dimensional instance embedding naturally derives an order of training examples which can be used
for detecting ambiguous or mislabeled instances. For future directions, it is interesting to explore
its combination with other training techniques and its extensions in data cleansing, learning with
rejection, or active learning.
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A IMPLEMENTATION

In this section, we provide some implementation details of the proposed method for practitioners.
Here, we only extract and highlight the core part to explain our method.

First, thanks to the development of PyTorch (Paszke et al., 2019), the instance embedding part can be
actually implemented easily using torch.nn.Embedding. This is also partially why we choose
“embedding” as part of the name of the proposed method. The weight is initialized to be 0 for all
instances and the embedding is followed by a sigmoid layer so the confidence value is within [0, 1].

def embedding(size):
"""
size: the number of training examples
"""
embed = nn.Embedding(size, 1, sparse=True)
embed.weight.data.fill_(0.) # initialization
embed = nn.Sequential(embed, nn.Sigmoid())
return embed

Second, assume that a neural network model is defined and the index i of each training example is
also provided, the learning objective can be calculated as follows:

def loss(i, x, y):
"""
i: index [batch_size]
x: input [batch_size, ...]
y: label [batch_size, num_classes]
"""
t = model(x) # Section 2.1 Eq. (1)
c = embed(i) # Section 3.3 instance embedding
s = transformation(t, c) # Section 3.2 Eqs. (8) or (9)
l = cross_entropy(s, y) # Section 3.1 Eq. (6)
return l

Here, the transformation function corresponds to the approximation family Eqs. (8) and (9).
Please note the slight difference that t and s are the logits (output without softmax), not the
probabilities for the purposes of easy implementation and numerical stability. We can choose it from
the following functions:

def linear_interpolation(t, c):
# Section 3.2 Eq. (8)
return log(c * softmax(t, dim=1) + (1 - c) * 1 / t.shape[1])

def power_transformation(t, c):
# Section 3.2 Eq. (9) and Section 4 (temperature scaling)
return c * t

Finally, The parameters of both embed and model can be optimized simultaneously using any
gradient-based method such as torch.optim.SGD and torch.optim.Adam.
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B GRADIENT ANALYSIS
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Figure 7: Contours of the log-likelihood w.r.t. pi and C using the linear interpolation (Eq. (8)) for K
in {2, 3, 5, 7, 10}.
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Figure 8: Contours of the log-likelihood on the simplex when K = 3 using the linear interpolation
(Eq. (8), top) and the power transformation (Eq. (9), bottom) for C in {0.1, 0.3, 0.5, 0.7, 0.9}.

In this section, we provide a basic gradient analysis and visualization for our proposed method.

The gradients of the log-likelihood using Eqs. (8) and (9) are

∂

∂C
log(qi) =

pi − 1
K

Cpi + (1− C) 1
K

, (linear interpolation) (11)

∂

∂C
log(qi) =

K∑

j=1

pCj log
pi
pj
, (power transformation) (12)

respectively. Their sign boundaries are pi =
1

K
and pi = e−H(q,p), respectively, where H(·, ·)

denotes the cross-entropy. We can find that for the linear interpolation (Eq. (8)), when pỹ <
1

K
,

∂L

∂C
< 0 and when pỹ >

1

K
,
∂L

∂C
> 0. Similarly, for the power transformation (Eq. (9)), when

pỹ < e−H(q,p),
∂L

∂C
< 0 and when pỹ > e−H(q,p),

∂L

∂C
> 0.

The contours of the likelihood for different parameters are plotted in Figs. 7 and 8. Note that the class-
posterior p is obtained from a neural network, so it can be influenced by other instances, especially
adjacent instances. On the other hand, the confidence C is obtained via instance embedding, so it
can take any value independently. If the predicted class-posterior pỹ for an instance x is low (e.g.,
because this instance is mislabeled and the majority of adjacent instances are predicted to belong to
other classes), then the classifier tends to decrease its confidence value so as not to overfit this possibly
mislabeled instance. The gradient magnitude is the largest when C is high and pỹ is low (confident
wrong prediction), the smallest when both C and pỹ are high (confident correct prediction), and in
the middle when C is low (uncertain prediction like a random guess). In this way, we can equip the
neural network model with an option of changing the confidence of prediction for individual training
examples to mitigate overfitting possibly mislabeled instances.
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C LINEAR INTERPOLATION
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Figure 9: Illustration of related methods, including the categorical cross-entropy (CCE), label smooth-
ing (LS), soft/hard bootstrapping loss (SB/HB), and the proposed instance-confidence embedding
(ICE) with the linear transformation (Eq. (8)).

Linear interpolation between some properties of an instance and other value is a widely used technique
for regularization in machine learning, such as the bootstrapping loss Reed et al. (2015) and the label
smoothing technique (Szegedy et al., 2016; Pereyra et al., 2017; Lukasik et al., 2020). In this section,
we briefly summarize related techniques and compare their differences.

Concretely, let p be the predicted probability vector for Y (Eq. (1)), y be the one-hot vector for
the observed label, ŷ = arg maxp is the one-hot vector for the predicted label, u be the uniform

probability vector (ui =
1

K
for i ∈ {1, . . . ,K}). Here, p,y, ŷ,u ∈ ∆K−1 are all in the probability

simplex. Let C ∈ [0, 1] be a scalar linear interpolation parameter.

Then, as also shown in Fig. 9, the learning objectives are equivalent to the following KL-divergences:

DKL(y ‖ p), (categorical cross-entropy) (13)
DKL(Cy + (1− C)u ‖ p), (label smoothing) (14)
DKL(Cy + (1− C)p ‖ p), (soft bootstrapping loss) (15)
DKL(Cy + (1− C)ŷ ‖ p), (hard bootstrapping loss) (16)
DKL(y ‖ Cp + (1− C)u). (instance-confidence embedding) (17)

We can see that the label smoothing and the bootstrapping loss methods smooth the target, but the
proposed ICE method smooths the prediction. Note that it is impossible to let C be an instance-
dependent parameter in other methods, because when C = 0, the supervision signal Y can be
completely lost.

Another technique using linear interpolation is mixup (Zhang et al., 2018), which also interpolates the
input features X between two instances. Therefore its characteristics could be more different than
the methods mentioned above.
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D SAMPLE SELECTION

Our method can be regarded as a “soft” sample selection method that de-emphasizes the supervision
from possibly mislabeled training examples to some extent. In the literature, several “hard” sample
selection methods have been reported recently, e.g., Cheng et al. (2021); Zhang et al. (2021a). In this
section, we discuss their relationship and the pros and cons of these methods.

Soft vs. hard. Hard sample selection methods usually use a predefined thresholding rule based
on the regularized loss [(Cheng et al., 2021), Eq. (4)] or the predicted probability [(Zhang et al.,
2021a), Section 2.2] to select a subset of possibly correct training examples at each iteration. The
threshold is either determined dynamically (Cheng et al., 2021) or decreased via a manually designed
schedule (Zhang et al., 2021a). Optionally, possibly incorrect labels can be flipped to the current
model predictions (Zhang et al., 2021a).

We can find that such “hard” sample selection methods have two options for a training example: it is
either completely reliable or not reliable at all. However, since mislabeled instances are more likely to
be near the decision boundary, such hard decision rules may result in unstable training. To cope with
this issue, they often requires the confidence regularization, warm-up training, or a manually designed
threshold decay schedule, which introduces more hyperparameters such as the regularization weight,
the number of warm-up epochs, and the threshold schedule.

In contrast, in our method, the confidence C – the “soft” threshold — is continuous in [0, 1] and
is updated smoothly using the current prediction and gradient information so the training may be
more stable. We do not need to introduce other hyperparameters. Although we do need to specify an
optimizer for it, we found that a simple SGD optimizer works well enough in experiments.

Another benefit of using continuous weights [0, 1] instead of discrete selections {0, 1} is that we can
naturally derive a total order of training examples, which can be used for other tasks.

Gradient-based optimization vs. optimal solution. Next, let us focus on the soft sample selection.
Note that the confidence C might have an optimal solution and can be obtained directly. However, it
is only optimal given the current predicted probability p. If the model is still under training and the
estimation of p is not good enough yet, it is not always beneficial to give a definite prediction of C,
which may cancel out the advantage of the soft sample selection.

More specifically, to give a prediction of C, we have the following choices. Their characteristics are
also listed below.

1. using a neural network
• generalizes to unseen instances
• depends on the trajectory of training, gradient-based optimization (heavy)
• time: smooth, space: smooth

2. using instance embedding
• does not generalize to unseen instances
• depends on the trajectory of training, gradient-based optimization (light)
• time: smooth, space: non-smooth

3. using a predefined rule based on the probability
• generalizes to unseen instances (via the classifier)
• does not depend on the trajectory of training, no optimization
• time: smooth (soft)/non-smooth (hard), space: non-smooth

Here, “smoothness” means if the values change gradually during training (time) and if adjacent
instances tend to have similar values (space). We can use gradient-based optimization for instance
embedding so it is smooth in time (for stable training) and non-smooth in space (for instance-
dependent noise). Mathematically, the proposed method takes accounts of not only gradient direction
but also gradient magnitude. Intuitively, recording previous confidences C allows the model to have
“memory” so C is not solely decided by the current prediction. For the above reasons, we prefer soft
sample selection and gradient-based optimization.
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E EXPERIMENTS

E.1 IMAGE CLASSIFICATION

Data. We used the MNIST,1 Fashion-MNIST,2 Kuzushiji-MNIST,3 SVHN,4 CIFAR-10, and
CIFAR-1005 datasets. The MNIST, Fashion-MNIST, Kuzushiji-MNIST datasets contain 28 × 28
grayscale images in 10 classes. The size of the training set is 60000 and the size of the test set is
10000. The SVHN dataset contains 32 × 32 colour images in 10 classes. The size of the training
set is 73257 and the size of the test set is 26032. The CIFAR-10 and CIFAR-100 datasets contain
32 × 32 colour images in 10 classes and in 100 classes, respectively. The size of the training set
is 50000 and the size of the test set is 10000. We used 20% of the training sets for validation. We
added synthetic label noise into the training and validation sets. We used a method similar to Zhang
et al. (2021a) to generate synthetic instance-dependent noise. Concretely, we first approximated the
clean class-posterior using the original clean datasets, and corrupted the label from the most confident
prediction to the second most confident one. The overall noise rate was controlled to be around 45%
to 55%, depending on the datasets. The test sets were not modified.

Models. For MNIST, Fashion-MNIST, and Kuzushiji-MNIST, we used a sequential convolutional
neural network with the following structure: Conv2d(channel=32) ×2, Conv2d(channel=64) ×2,
MaxPool2d(size=2), Linear(dim=128), Dropout(p=0.5), Linear(dim=10). The kernel size
of convolutional layers is 3, and rectified linear unit (ReLU) is applied after the convolutional layers
and linear layers except the last one. For SVHN, CIFAR-10 and CIFAR-100, we used a ResNet-18
model (He et al., 2016). To ensure that C ∈ [0, 1], we simply apply the sigmoid function that maps R
to [0, 1] to the embedding.

Optimization. For MNIST, Fashion-MNIST, and Kuzushiji-MNIST, we used an Adam optimizer
(Kingma & Ba, 2015) with batch size of 512 and learning rate of 1× 10−3. The model was trained
for 2000 iterations (17.07 epochs) and the learning rate decayed exponentially to 1× 10−4. For
CIFAR-10 and CIFAR-100, we used a stochastic gradient descent (SGD) optimizer with batch size
of 512, momentum of 0.9, and weight decay of 1× 10−4. The learning rate increased from 0 to
0.1 linearly for 400 iterations and decreased to 0 linearly for 3600 iterations (4000 iterations/40.96
epochs in total). For SVHN, the setting was the same as CIFAR-10 except the model was trained for
1000 iterations.

Results. The ridgeline plots of the confidence C during training are given in Fig. 10. The densities
seem bimodal in the early stage for MNIST, FMNIST, and KMNIST because we did not log the
result at the end of each epoch but based on the number of batch iterations. Therefore, the confidence
of some instances may have been updated more times than it of the others. In the final stage, the
confidence also converges and instances with flipped/original labels are almost separated by the
learned confidence. Low-confidence training examples are given in Fig. 11, which are partially
presented in Fig. 5. The class-wise spectra are given in Fig. 12, which are partially presented in
Fig. 6.

E.2 TEXT CLASSIFICATION

We implemented the BERT-base model (Devlin et al., 2019) using PyTorch (Paszke et al., 2019)
and HuggingFace’s transformers (Wolf et al., 2020) libraries. We used a pretrained model6 and
an AdamW optimizer (Loshchilov & Hutter, 2017). The batch size was 32 and the weight decay

1 MNIST (LeCun et al., 1998) http://yann.lecun.com/exdb/mnist/
2 Fashion-MNIST (Xiao et al., 2017) https://github.com/zalandoresearch/

fashion-mnist (MIT license)
3 Kuzushiji-MNIST (Clanuwat et al., 2018) http://codh.rois.ac.jp/kmnist/ (CC BY-SA 4.0

license)
4 SVHN (Netzer et al., 2011) http://ufldl.stanford.edu/housenumbers
5 CIFAR-10, CIFAR-100 (Krizhevsky, 2009) https://www.cs.toronto.edu/~kriz/cifar.

html
6 bert-base-cased: https://huggingface.co/bert-base-cased
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Figure 10: Ridgeline plots of the confidenceC during training. The density is estimated via Gaussian
kernel density estimation (KDE). The red/blue curves represent the confidence of instances with
flipped/original labels, respectively.

was 0.01, otherwise we used the default hyperparameters. The model was trained on 4 NVIDIA
Tesla P100 GPUs in parallel with the mixed precision training option (fp16) enabled. For the
CoLA, MRPC, RTE, and WNLI datasets, the model was trained for 5 epochs and otherwise 3 epochs.
Low-confidence training examples are given in Tables 6 to 13.

E.3 MORE EXPERIMENTAL RESULTS

We also conducted the experiment on a common setting where the labels are randomly flipped, i.e.,
instance-independently. The noise rate was 50%. The test accuracy is listed in Table 4.

Table 4: Accuracy (%) on the MNIST, FMNIST, KMNIST, SVHN, CIFAR-10, and CIFAR-100
datasets where 50% of labels are randomly flipped. “Mean (standard deviation)” for 10 trials
are reported. Outperforming methods are highlighted in boldface using one-tailed t-tests with a
significance level of 0.05.

MNIST FMNIST KMNIST SVHN CIFAR-10 CIFAR-100

CCE 94.91(0.43) 85.05(0.52) 80.40(1.25) 71.50(1.68) 68.34(0.82) 47.09(0.65)
Bootstrapping 97.30(0.28) 87.24(0.36) 84.21(1.01) 76.62(0.97) 75.97(0.45) 49.56(0.42)

Adaptation 96.27(0.41) 86.20(0.87) 81.38(2.07) 68.58(6.45) 63.95(5.94) 31.70(1.28)
Forward 95.09(0.56) 85.51(0.45) 80.76(1.29) 74.43(6.42) 68.28(0.62) 47.92(0.31)
Dual-T 97.68(0.25) 88.07(0.35) 86.98(0.80) 72.36(0.88) 78.53(0.32) 50.80(0.40)
DAC 96.60(0.47) 86.87(0.48) 82.77(0.74) 80.97(4.83) 71.55(0.34) 47.01(0.44)
GCE 98.31(0.13) 88.76(0.26) 88.39(0.60) 75.03(0.98) 80.38(0.67) 55.64(0.40)

ICE-LIN 98.64(0.15) 89.41(0.18) 89.61(0.41) 77.51(0.75) 82.08(0.39) 55.30(0.47)
ICE-POW 98.60(0.09) 89.29(0.20) 89.21(0.53) 79.91(0.96) 82.14(0.44) 54.31(0.48)

Further, we tested the proposed method on the Clothing1M dataset (Xiao et al., 2015), which is
a real-world noisy label dataset. We followed the convention and trained a ResNet-50 model (He
et al., 2016) only on the 1M noisy training set for 10 epochs. On this dataset, ICE-POW achieved
the accuracy of 72.67%, which is comparable or superior to some existing works. For reference,
the reported performances of other methods including CCE, Forward, T-Revision (Xia et al., 2019),
dual-T (Yao et al., 2020), PTD (Xia et al., 2020), DMI (Xu et al., 2019), CORES2 (Cheng et al.,
2021), ILFC (Berthon et al., 2021), and PLC (Zhang et al., 2021a), are cited in Table 5.

Table 5: Test accuracy on Clothing1M.

CCE Forward T-Revision Dual-T PTD DMI CORES2 ILFC PLC

68.94 70.83 70.97 71.49 71.67 72.46 73.24 73.35 74.02

Note that some methods are superior to ours in terms of accuracy on Clothing1M. This may be due to
different evaluation settings and training techniques. Further investment is left for future work.
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index: 21470
label: pear
guess: plate

index: 4341
label: possum
guess: chimpanzee

index: 13565
label: crab
guess: mower

index: 1743
label: can
guess: castle

index: 32484
label: leopard
guess: chimpanzee

index: 14105
label: bowl
guess: pepper

index: 12258
label: woman
guess: chimpanzee

index: 19850
label: possum
guess: squirrel

index: 2990
label: shark
guess: crocodile

index: 1371
label: seal
guess: ray

index: 24621
label: flatfish
guess: couch

index: 17047
label: shrew
guess: snail

index: 38037
label: worm
guess: poppy

index: 18921
label: fox
guess: wolf

index: 19264
label: flatfish
guess: bottle

index: 4539
label: seal
guess: dolphin

(f) CIFAR-100

Figure 11: The 32 most low-confidence training examples in the MNIST, FMNIST, KMNIST, SVHN, CIFAR-10 and CIFAR-100
datasets, ordered left-right, top-down by increasing confidence.
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Figure 12: The class-wise spectra from high-confidence (left) to low-confidence (right) training examples in the MNIST, FMNIST,
KMNIST, SVHN, CIFAR-10 and CIFAR-100 datasets.
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Table 6: The Corpus of Linguistic Acceptability (CoLA)

Index Text

390
label:acceptable guess:unacceptable

sentence:He I often sees Mary.

5766
label:acceptable guess:unacceptable

sentence:Heidi believes any description of herself.

2801
label:unacceptable guess:acceptable

sentence:Paula hit the sticks.

1522
label:unacceptable guess:acceptable

sentence:That the sun is out was obvious.

8332
label:acceptable guess:unacceptable

sentence:I wanted Jimmy for to come with me.

300
label:acceptable guess:unacceptable
sentence:They failed to tell me which problem the sooner I solve, the quicker
the folks up at corporate headquarters.

7813
label:acceptable guess:unacceptable

sentence:I went to the shop for to get bread.

5904
label:acceptable guess:unacceptable

sentence:It hailed.

4159
label:unacceptable guess:acceptable

sentence:Fifteen years represent a long period of his life.

2479
label:unacceptable guess:acceptable

sentence:Kelly buttered the bread with butter.

3846
label:acceptable guess:acceptable

sentence:They parted the best of friends.

7371
label:unacceptable guess:acceptable

sentence:The hiker will reach the top of the mountain for an hour.

430
label:unacceptable guess:acceptable

sentence:It’s probable in general that he understands what’s going on.

6795
label:unacceptable guess:acceptable

sentence:Henry wanted to possibly marry Fanny.

1115
label:acceptable guess:acceptable

sentence:He attributed to a short circuit the fire which.

4155
label:unacceptable guess:unacceptable

sentence:Two drops sanitize anything in your house.

1367
label:acceptable guess:acceptable

sentence:We elected president the boy’s guardian’s employer.

7756
label:acceptable guess:unacceptable

sentence:That monkey is ate the banana

4445
label:unacceptable guess:acceptable

sentence:George has went to America.

4015
label:acceptable guess:unacceptable

sentence:He seems intelligent to study medicine.
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Table 7: The Stanford Sentiment Treebank (SST2)

Index Text

50155
label:positive guess:positive

sentence:a thirteen-year-old ’s book report

58416
label:negative guess:negative

sentence:blues

59724

label:negative guess:positive
sentence:‘ synthetic ’ is the best description of this well-meaning ,
beautifully produced film that sacrifices its promise for a high-powered star
pedigree .

24696
label:positive guess:negative

sentence:lamer instincts

34494
label:positive guess:positive
sentence:had released the outtakes theatrically and used the film as a bonus
feature on the dvd

54555
label:negative guess:negative

sentence:pretentious , fascinating , ludicrous , provocative and vainglorious

29155
label:positive guess:negative
sentence:he can be forgiven for frequently pandering to fans of the gross-out
comedy

44610
label:negative guess:positive

sentence:below

66148
label:negative guess:positive

sentence:’s cliche to call the film ‘ refreshing

11869
label:positive guess:negative

sentence:go unnoticed and underappreciated

55848

label:negative guess:positive
sentence:the film is an earnest try at beachcombing verismo , but it would be
even more indistinct than it is were it not for the striking , quietly
vulnerable personality of ms. ambrose .

57359
label:negative guess:negative

sentence:( ferrera )

42232
label:positive guess:negative
sentence:forgive any shoddy product as long as there ’s a little girl-on-girl
action

15783
label:positive guess:negative

sentence:have finally aged past his prime ...

57186
label:negative guess:positive

sentence:hollywood war-movie stuff

52071
label:positive guess:negative

sentence:the gags

1896
label:positive guess:negative

sentence:missing from the girls ’ big-screen blowout

64779
label:positive guess:negative

sentence:growing strain

3940
label:positive guess:negative
sentence:you to bite your tongue to keep from laughing at the ridiculous dialog
or the oh-so convenient plot twists
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Table 8: Microsoft Research Paraphrase Corpus (MRPC)

Index Text

799

label:equivalent guess:not equivalent
sentence1:We need a certifiable pay as you go budget by mid-July or schools
wont open in September , Strayhorn said .
sentence2:Texas lawmakers must close a $ 185.9 million budget gap by the middle
of July or the schools wont open in September , Comptroller Carole Keeton
Strayhorn said Thursday .

469

label:not equivalent guess:equivalent
sentence1:It ’s also a strategic win for Overture , given that Knight Ridder
had the option of signing on Google ’s services .
sentence2:It ’s also a strategic win for Overture , given that Knight Ridder
had been using Google ’s advertising services .

1037

label:equivalent guess:not equivalent
sentence1:The broader Standard & Poor ’s 500 Index < .SPX > edged down 9 points
, or 0.98 percent , to 921 .
sentence2:The Standard & Poor ’s 500 Index shed 5.20 , or 0.6 percent , to
924.42 as of 9 : 33 a.m. in New York .

1178

label:equivalent guess:not equivalent
sentence1:Sens. John Kerry and Bob Graham declined invitations to speak .
sentence2:The no-shows were Sens. John Kerry of Massachusetts and Bob Graham of
Florida .

1753

label:equivalent guess:not equivalent
sentence1:The Dow Jones industrial average closed down 18.06 , or 0.2 per cent
, at 9266.51 .
sentence2:The blue-chip Dow Jones industrial average < .DJI > slipped 44.32
points , or 0.48 percent , to 9,240.25 .

Table 9: Quora Question Pairs (QQP)

Index Text

216515
label:duplicate guess:duplicate
question1:Why does Quora censor opinions and answers?
question2:Does Quora censor questions and answers, and should they?

343656
label:not duplicate guess:duplicate
question1:Could India’s surgical strike in POK be an elaborate hoax or play?
question2:Did India really conduct a surgical strike on Pakistan?

266594

label:not duplicate guess:not duplicate
question1:Why is financial literacy generally not taught in American high
schools?
question2:Why isn’t financial literacy taught in today’s public schools?

251996
label:not duplicate guess:not duplicate
question1:What is life like in communist countries?
question2:What would life in a legitimate Communist country be like?

7963
label:not duplicate guess:duplicate
question1:What is the best option for Indian politics and politicians?
question2:What are the options of Indian politics and politicians?
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Table 10: MultiNLI (MNLI)

Index Text

218290

label:entailment guess:neutral
premise:The ruins of the huge abbey of Jumiyges are perhaps the most the white-
granite shells of two churches, the Romanesque Notre-Dame and the smaller
Gothic Saint-Pierre.
hypothesis:Notre-Dame is a larger church than Gothic Saint-Pierre.

39431

label:neutral guess:entailment
premise:Unless you feel really safe in French metropolitan traffic, keep your
cycling ’ you can rent a bike at many railway stations ’ for the villages and
country roads.
hypothesis:You should not cycle in the French metropolitan area.

27574
label:contradiction guess:neutral
premise:I don’t think so.
hypothesis:I have no real idea.

258544

label:neutral guess:neutral
premise:A set of stone doors in the wall slid to the side to reveal a screen on
which various torture scenes began to appear.

hypothesis:The doors hid a television screen.

320518

label:contradiction guess:neutral
premise:None seems comfortable with the notion of removing Clinton for sex-
related misdeeds.
hypothesis:People don’t want Clinton touching sex related ordeals

Table 11: Question NLI (QNLI)

Index Text

1659

label:not entailment guess:not entailment
question:What caused Latin America’s right-wing authorities to support coup o’
etats?
sentence:This was further fueled by Cuban and United States intervention which
led to a political polarization.

5876

label:not entailment guess:not entailment
question:What antenna type is a portion of the half wave dipole?
sentence:The monopole antenna is essentially one half of the half-wave dipole,
a single 1/4-wavelength element with the other side connected to ground or an
equivalent ground plane (or counterpoise).

5829

label:entailment guess:entailment
question:How are Toxicara canis infections spread?
sentence:Toxocara canis (dog roundworm)eggs in dog feces can cause toxocariasis.

77419

label:entailment guess:entailment
question:Why did Madrid cede the territory to the US
sentence:Florida had become a burden to Spain, which could not afford to send
settlers or garrisons.

9576

label:not entailment guess:not entailment
question:What has no distinction between the categories of voiced, voiceless,
aspirated and unaspirated?
sentence:Some of the Dravidian languages, such as Telugu, Tamil, Malayalam, and
Kannada, have a distinction between voiced and voiceless, aspirated and

unaspirated only in loanwords from Indo-Aryan languages.
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Table 12: Recognizing Textual Entailment (RTE)

Index Text

2429

label:not entailment guess:entailment
sentence1:Bogota, 4 May 88 - The dissemination of a document questioning
Colombia’s oil policy, is reportedly the aim of the publicity stunt carried out
by the pro-Castro Army Of National Liberation, which kidnapped several
honorary consuls, newsmen, and political leaders.
sentence2:Several honorary consuls were kidnapped on 4 May 88.

2463

label:not entailment guess:entailment
sentence1:The official religion is Theravada Buddhism, which is also practiced
in neighboring Laos, Thailand, Burma and Sri Lanka.
sentence2:The official religion of Thailand is Theravada Buddhism.

1361

label:entailment guess:not entailment
sentence1:The Catering JLC formulates pay and conditions proposals of workers
in the industry which, if approved by the Labour Court, legally binds employers
to pay certain wage rates and provide conditions of employment. However,the
QSFA now contends that the JLC has no right to make such a legally binding
provision, as Section 15 of the Constitution states that the sole and exclusive
power to make laws is vested in the Oireachtas, and no other authority has
power to make laws for the State. It also argued that the existence of the
minimum wage and 25 other pieces of legislation protecting employees’ rights
means that there is no need for JLCs. The chairman of the QSFA, John Grace,
warned that the situation would lead to job losses and closures.
sentence2:John Grace works for QSFA.

Table 13: Winograd NLI (WNLI)

Index Text

266

label:entailment guess:not entailment
sentence1:Susan knew that Ann’s son had been in a car accident, so she told her
about it.
sentence2:Susan told her about it.

478

label:entailment guess:not entailment
sentence1:Joe paid the detective after he delivered the final report on the
case.
sentence2:The detective delivered the final report on the case.

294

label:entailment guess:not entailment
sentence1:Dan had to stop Bill from toying with the injured bird. He is very
compassionate.
sentence2:Dan is very compassionate.

586

label:entailment guess:not entailment
sentence1:Dan took the rear seat while Bill claimed the front because his "Dibs
!" was slow.
sentence2:Dan took the rear seat while Bill claimed the front because Dan’s "
Dibs!" was slow.

243

label:entailment guess:not entailment
sentence1:Mark was close to Mr. Singer’s heels. He heard him calling for the
captain, promising him, in the jargon everyone talked that night, that not one
thing should be damaged on the ship except only the ammunition, but the captain
and all his crew had best stay in the cabin until the work was over.
sentence2:He heard Mr. Singer calling for the captain.
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