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1 SUMMARY
In this supplementary material, we provide additional information.
Concretely, we mainly supplement "Complexity analysis of com-
petitors" in Section 2.1, "Proofs of Theorem 1 and Theorem 2" in
Section 2.2, and "Parameter Analysis and Convergence" in Section
2.3, respectively. The codes and benchmark dataset for this paper
are also provided for repetition.

2 CONTENT
2.1 Complexity Analysis
As shown in Table 1, both space complexity and time complexity
are linear to 𝑛, which enables handling large-scale datasets with
100, 000 ≤ 𝑛.

Table 1: Complexity analysis.

Method Space Complexity ≈Time Complexity ≈
Our method O(𝑛) O (𝑛)
TBGL [13] O(𝑛) O (𝑛)
MVBGC [5] O(𝑛) O (𝑛)
FastMICE [2] O(𝑛) O (𝑛)
UDBGL [1] O(𝑛) O (𝑛)
SDAFG [9] O(𝑛) O (𝑛)
FPMVS [12] O(𝑛) O (𝑛)
FMCNOF [16] O(𝑛) O (𝑛)
SFMC [7] O(𝑛) O (𝑛)

SMVSC [11] O(𝑛) O (𝑛)
LMVSC [4] O(𝑛) O (𝑛)
BMVC [17] O(𝑛) O (𝑛)
PMSC [3] O(𝑛2 ) O

(
𝑛3

)
FMR [6] O(𝑛2 ) O

(
𝑛3

)
AMGL [10] O(𝑛2 ) O

(
𝑛3

)

2.2 Optimization

min
B𝑟 ,W𝑟 ,A𝑟 ,J

𝛾

𝑣∑︁
𝑟=1

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

∥b𝑟𝑖 − (W𝑟 )⊺x𝑟𝑗 ∥
2
𝐹𝑎

𝑟
𝑖 𝑗 + 𝛼 ∥A𝑟 ∥2𝐹 + ∥A∥I𝜔,𝑆𝑝

s.t.(A𝑟 )⊺1 = 1,A𝑟 ≥ 0, (W𝑟 )⊺W𝑟 = I𝑚, (B𝑟 )⊺B𝑟 = I𝑚
(1)
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To solve Eq. (1), the auxiliary variableK is introduced tomake Eq.
(1) separable. Then, Eq. (1) is rewritten as the following augmented
Lagrangian function

min
B𝑟 ,W𝑟 ,
A𝑟 ,Y,K

𝛾

𝑣∑︁
𝑟=1

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

∥b𝑟𝑖 − (W𝑟 )⊺x𝑟𝑗 ∥
2
𝐹𝑎

𝑟
𝑖 𝑗 + 𝛼 ∥A𝑟 ∥2𝐹

+ ∥K∥I𝜔,𝑆𝑝 + 𝜇

2 ∥J − K + Y

𝜇
∥2𝐹

s.t. A𝑟 ≥ 0, (A𝑟 )⊺1 = 1, (W𝑟 )⊺W𝑟 = I𝑚, (B𝑟 )⊺B𝑟 = I𝑚,

J = Ψ(A1,A𝑟 , · · · ,A),J = K

(2)

Eq. (4) could be separately solved by developing an alternating
iterative algorithm as follows.
▷ Step-1: Solving A𝑟 with B, W, A𝑏 , and K fixed. Then, A𝑟 -
subproblem of Eq. (4) changes to

min
𝑎𝑟
𝑖 𝑗
≥0,(a𝑟 )⊺1=1

𝛾

𝑣∑︁
𝑟=1

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

∥b𝑟𝑖 − (W𝑟 )⊺x𝑟𝑗 ∥
2
𝐹𝑎

𝑟
𝑖 𝑗

+ 𝛼 ∥A𝑟 ∥2𝐹 + 𝜇

2 ∥A𝑟 − K𝑟 + Y𝑟

𝜇
∥2𝐹

(3)

Denote ∥b𝑟
𝑖
− (W𝑟 )⊺x𝑟

𝑗
∥2
𝐹

= 𝑑𝑟
𝑖 𝑗
, with elimination of irrelevant

variables for 𝑟 -th view, Eq. (3) becomes to the following problem

min
𝑎𝑟
𝑖 𝑗
≥0,(a𝑟

𝑗
)⊺1=1

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝛼 (𝑎𝑟𝑖 𝑗 )
2 + 𝜇

2 (𝑎
𝑟
𝑖 𝑗 )

2 − 2[ 12 𝜇𝑓
𝑟
𝑖 𝑗 −

1
2𝛾𝑑

𝑟
𝑖 𝑗 ]𝑎

𝑟
𝑖 𝑗

⇔ min
𝑎𝑟
𝑖 𝑗
≥0,(a𝑟 )⊺1=1

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

(𝑎𝑟𝑖 𝑗 )
2 − 2

[ 12 𝜇𝑓
𝑟
𝑖 𝑗
− 1

2𝛾𝑑
𝑟
𝑖 𝑗
]

(𝛼 + 𝜇
2 )

𝑎𝑟𝑖 𝑗

⇔ min
𝑎𝑟
𝑖 𝑗
≥0,(a𝑟

𝑗
)⊺1=1

∥𝑎𝑟𝑖 𝑗 − 2
1
2 𝜇𝑓

𝑟
𝑖 𝑗
− 1

2𝛾𝑑
𝑟
𝑖 𝑗

(𝛼 + 𝜇
2 )

∥2𝐹
(4)

where 𝑓 𝑟
𝑖 𝑗
is element of F𝑟 = T𝑟 − Y𝑟

𝜇 , respectively. Then, updating
a𝑟 converts to the following column form

min
a𝑗



a𝑗 − â𝑗


2
𝐹
, s.t. ∀𝑖 𝑗, a𝑗1 = 1, 𝑎𝑖 𝑗 ≥ 0 (5)

where â𝑟
𝑗
=

1
2 𝜇f𝑟

𝑗
− 1

2𝛾d𝑟
𝑗

(𝛼+𝜇 ) . Each column a𝑗 could be optimized via the
following Theorem 1.
Theorem 1. Given arbitrary 𝑣 vectors {â𝑗 }𝑣𝑗=1, we obtain the follow-
ing closed-form solution a∗

𝑗

a∗𝑗 = arg min
a𝑗



a𝑗 − â𝑗


2
𝐹
, s.t. a⊺

𝑗
1 = 1, a𝑗 ≥ 0 (6)

Proof. For ease of presentation, we first substitute a𝑗 and â𝑗 to
the vectors a and g, respectively. Then, by denoting the Lagrange
multipliers 𝜑 and e for the constraints a⊺1 = 1 and a𝑗 ≥ 0, respec-
tively, the Lagrangian function of Eq. (6) is rewritten as

L (a, 𝜑, e) = 1
2 ∥a + g∥22 − 𝜑 (a⊺1 − 1) − e⊺a . (7)

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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We suppose that the optimal solutions of a, 𝜑 , and e in (27) are a∗,
𝜑∗, and e∗, respectively. According to KKT condition, we have the
following equation:

∀𝑗, 𝑎∗
𝑖 𝑗
+ 𝑔 𝑗 − 𝜑∗ − 𝑒∗

𝑗
= 0

∀𝑗, 𝑎∗
𝑖 𝑗
𝑒∗
𝑗
= 0

∀𝑗, 𝑎∗
𝑖 𝑗
⩾ 0

∀𝑗, 𝑒∗
𝑗
⩾ 0 ,

. (8)

Writing the first term of Eq.(28) in a vector form as a∗+g−𝜑∗1−e∗ =
0. Considering the constraint a⊺1 = 1, we derive 𝜑∗ =

1⊺g−1⊺e∗
𝑛

since g⊺1 = 1⊺g and (e∗)⊺1 = 1⊺e∗. Thus, the optimal solution a∗

can be solved by

a∗ =
1
𝑛

(
1 − 1⊺e∗

)
1 − g − 1

𝑛
1⊺g1 + e∗ , (9)

and its scalar form becomes

𝑎∗𝑖 𝑗 =
1
𝑛
− 1⊺e∗

𝑛
− 𝑔 𝑗 +

1
𝑛

1⊺g + 𝑒∗𝑗 . (10)

Denote 𝑒∗ = 1⊺e∗
𝑛 and 𝑔 𝑗 = 1

𝑛 − 𝑔 𝑗 + 1
𝑛 1⊺g, then 𝑎∗

𝑖 𝑗
becomes

𝑎∗𝑖 𝑗 = 𝑔 𝑗 + 𝑒∗𝑗 − 𝑒∗, ∀𝑗 (11)
According to the 2 − 4 terms of Eq.(28) and Eq.(31), we have 𝑎∗

𝑖 𝑗
=

⌊𝑔 𝑗 − 𝑒∗⌋+, where ⌊𝑔 𝑗 − 𝑒∗⌋+ = max(0, 𝑔 𝑗 − 𝑒∗). Namely, if the
optimal solution 𝑒∗ is known, we can gain the corresponding op-
timal solution 𝑎∗

𝑖 𝑗
. We gain 𝑒∗

𝑗
= 𝑒∗ + 𝑎∗

𝑖 𝑗
− 𝑔 𝑗 due to Eq.(31) and

𝑒∗
𝑗
= ⌊𝑒∗ − 𝑔 𝑗 ⌋+ according to the 2 − 4 terms of Eq.(28). Note that

we have denoted 𝑒∗ = 1⊺e∗
𝑛 , thus we gain the optimal solution of

𝑒∗ as

𝑒∗ =
1
𝑛

𝑛∑︁
𝑗=1

⌊𝑒∗ − 𝑔 𝑗 ⌋+ . (12)

So far, the Newton method can be employed to obtain the optimal
solution 𝑒∗ by defining a cost function as

Ψ (𝑒) = 1
𝑛

𝑛∑︁
𝑗=1

⌊𝑒 − 𝑔 𝑗 ⌋+ − 𝑒 . (13)

where Ψ denotes the functional symbol. When the root searching
problem of Ψ(𝑒) = 0 is solved, the optimal 𝑒∗ will be obtained. Since
𝑒 ≥ 0, Ψ′ (𝑒𝑡 ) ≤ 0, and Ψ′ (𝑒𝑡 ) ≤ 0 is a piecewise linear and convex
function, the Newton method can be used to obtain the root of
Ψ(𝑒) = 0 via

𝑒𝑡+1 = 𝑒𝑡 − Ψ
(
𝑒𝑡
)
·
[
𝜕Ψ

(
𝑒𝑡
)

𝜕𝑒𝑡

]−1
(14)

where Ψ′ (𝑒𝑡 ) = 𝜕Ψ(𝑒𝑡 )
𝜕𝑒𝑡

is first-order derivative of Ψ(𝑒𝑡 ). □
▷ Update-2: Solving W with A, B, and W fixed. In this case,
W-subproblem of Eq. (4) can be written as

max
W𝑟

Tr((W𝑟 )⊺E𝑟 ) s.t.W𝑟 (W𝑟 )⊺ = I𝑘 , (15)

where E𝑟 = X𝑟 (A𝑟 )⊺ (B𝑟 )⊺ . Eq. (15) can be solved via the Sin-
gular Value Decomposition (SVD) Theorem 2 with complexity
O(𝑣𝑑 (𝑛𝑚 + 𝑘2 + 𝑘𝑚)) for each iteration, where 𝑑 =

∑𝑣
𝑝=1 𝑑

𝑟 .
Theorem 2. Letting the SVD of E ∈ R𝑑×𝑙 be E = UGV⊺ , where U ∈
R𝑑×𝑙 ,G ∈ R𝑙×𝑙 andV ∈ R𝑙×𝑙 , the optimal solution of max

W⊺W=I
Tr(W⊺E)

is W = UV⊺ .

Proof. Letting E = UGV⊺ ∈ R𝑑×𝑙 and according to the rotation
invariance of trace norm, Tr(W⊺E) converts to

Tr(W⊺E) = Tr(W⊺UGV⊺) = Tr(GV⊺W⊺U) (16)

Denote D = V⊺W⊺U, we have Tr(W⊺E) = Tr(GD), where G and
D denote their 𝑖-th diagonal elements as 𝑔𝑖𝑖 and 𝑑𝑖𝑖 , respectively.
Considering DD⊺ = I, we have |𝑑𝑖𝑖 | ≤ 1;. Further, the singular
value 𝑔𝑖𝑖 should enjoy 𝑔𝑖𝑖 ≥ 0. So far, we could deduce

Tr(W⊺E) = Tr(GD) =
𝑘∑︁
𝑖=1

𝑔𝑖𝑖𝑑𝑖𝑖 ≤
𝑏∑︁
𝑖=1

𝑔𝑖𝑖 (17)

Based on inequality Eq.(17), the maximization of Tr(W⊺E) could be
reached when 𝑑𝑖𝑖 = 1. This further deduces W = U[I𝑑 ; 0]V⊺ , where
D = [I𝑑 ; 0] ∈ R𝑙×𝑑 and D = V⊺W⊺U. According to the above
analysis, the potimal solution of max

W⊺W=I
Tr(W⊺E) is W = UV⊺ by

performing the tiny SVD on E. □
▷ Step-3 update B𝑟 : Optimizing B𝑟 with the irrelevant variables
fixed is equivalent to the following optimization problem

max
B𝑟

Tr((B𝑟 )⊺C𝑟 ) s.t.(B𝑟 )⊺B𝑟 = I𝑚 (18)

where C𝑟 = 𝛾 (W𝑟 )⊺X𝑟 (A𝑟 )⊺ . The optimal solution of optimizing
B𝑟 can be effectively obtained via Theorem 2.
▷ Step-4 update K: Ignoring the irrelevant items w.r.t. K, updat-
ing K subproblem is

min
K

∥K∥𝑝
I𝜔,𝑆𝑝

+ 𝜇

2 ∥K − (J + Y

𝜇
)∥2𝐹 (19)

According to [8], Eq. (21) can be solved into two steps as follows:
(1) minimizing the core matrix, and (2) minimizing 𝑡-TSN.
(1) Updating core matrix as

min
𝔓(T )

∥𝔓(T)∥∗ +
1
2𝜆 ∥F − (J + Y

𝜇
)∥2𝐹 (20)

where regularization parameter 𝜆 = 1/(𝑚𝑎𝑥 (𝑚, 𝑣)𝑛)
1
2 . And the

tensor T is obtained from 𝑡-SVD on the temporary variable F, i.e.,
F = U ∗ T ∗ V.
(2) Updating K as

min
K

∥K∥𝑝
I𝜔,𝑆𝑝

+ 𝜇

2 ∥K − L∥2𝐹 (21)

With the learned low-rank core matrix 𝔓(T), we can use 𝑡-
product to reconstruct a tensor as L = U ∗ 𝔓(T)−1 ∗ V. The
learned L can further produce a closed-form solution via the fol-
lowing Theorem 3.
Theorem 3. Consider L ∈ R𝑛1×𝑛2×𝑛3 , with 𝑟 = min(𝑛1, 𝑛2). Let
L𝑓 = U 𝑓 M𝑓 V

⊺
𝑓
, then the optimization problem for weight tensor

Schatten 𝑝-norm can be formulated as

min
K

𝜂∥K∥𝑝𝝎,𝑠𝑝
+ 1
2 ∥K − L∥2𝐹 (22)

and its optimal solution is

K
∗ = ifft(U 𝑓 ∗ D𝜂,𝝎,𝑝 (L𝑓 ) ∗ V

⊺
𝑓
) (23)

where M𝑘
𝑓
= diag(𝜹 (M𝑘

𝑓
)) and D𝜂,𝝎, 𝑝 (L𝑘

𝑓
) = diag(𝜽 (L𝑘

𝑓
)) are

the 𝑘-th frontal slices of M𝑓 and D𝜂,𝝎, 𝑝 (L𝑓 ) in the Fourier do-
main with respect to 𝜽 (L𝑘

𝑓
) = GST(𝜹 (M𝑘

𝑓
), 𝜂 ∗ 𝝎𝑘 , 𝑝).
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Proof: Eq. (22) becomes to

min
K 𝑓

𝑛3∑︁
𝑙=1

(
𝑟∑︁
𝑗=1

𝜂 ∗ 𝜔𝑘
𝑗 ∗ 𝜃

𝑟
𝑗 (K

𝑘
𝑓
)) + 1

2 ∥K𝑘
𝑓
− L𝑘

𝑓
∥2𝐹 (24)

in which 𝜃 𝑗 (K𝑘
𝑓
) denotes the 𝑗-th singular value of K𝑘

𝑓
, and its

corresponding weight is 𝜔𝑘
𝑗
= 1

𝜃𝑟
𝑗
(K𝑘

𝑓
)+𝜀 . Initially, each weight 𝜔𝑘

𝑗

is set as 𝜔𝑘
𝑗
= 1

𝛿 𝑗 (M𝑘
𝑓
)+𝜀 since 𝜃 𝑗𝑟 (K𝑘

𝑓
) is unavailable in the first

iteration, and updated based on the previous iteration of 𝜃 𝑗𝑟 (K𝑘
𝑓
).

Eq. (24) can be solved separately for different 𝑘 as

min
K𝑘
𝑓

𝑟∑︁
𝑗=1

𝜂 ∗ 𝜔𝑘
𝑗 ∗ 𝜃

𝑟
𝑗 (K

𝑘
𝑓
) + 1

2 ∥K𝑘
𝑓
− L𝑘

𝑓
∥2𝐹 (25)

The solvers are derived using the followingTheorem4 andLemma
1.
Theorem 4. Consider the singular value decomposition (SVD) of
matrixT ∈ R𝑛1×𝑛2 asT = U𝐴∗D𝐴∗V⊺

𝐴
, where𝜂 > 0, 𝑟 = min(𝑛1, 𝑛2),

and 0 ≤ 𝜔1 ≤ 𝜔2 ≤ . . . ≤ 𝜔𝑟 . The global optimal solution for the
following weighted Schatten 𝑝-norm minimization problem, adapted
from [14], is as follows:

min
K

𝜂∥K∥𝑝𝝎,𝑠𝑝
+ 1
2 ∥K − T∥2𝐹 (26)

As shown in [15], the optimal solution of Eq. (26) is given by

K∗ = U𝐴D𝜂,𝝎,𝑝 (T)V⊺𝐴 (27)
where D𝐴 = diag(𝜹), D𝜂,𝝎, 𝑝 (T) = diag(𝜽 ). The vector 𝜹 =

𝛿 𝑗 (T) 𝑗 = 1𝑟 represents the singular values of T, each of which can be
obtained using Lemma 1 [18].
Lemma 1. Consider the 𝑘-th subproblem of Eq. (26), expressed as

min
𝜃 (K𝑘

𝑓
)≥0

𝑓 (𝜃 𝑗 (K𝑘
𝑓
)) = 1

2 (𝜃 𝑗 (K
𝑘
𝑓
) − 𝛿 𝑗 (L𝑘𝑓 ))

2 + 𝜂𝜔 𝑗𝜃 𝑗 (K𝑘
𝑓
)𝑝 (28)

Within 𝜔 and 𝑝 , the soft-thresholding function 𝜂𝑝𝐺𝑆𝑇 (𝜔 𝑗 ) is defined
as

𝜂𝐺𝑆𝑇
𝑝 (𝜔 𝑗 ) = (2𝜔 𝑗 (1 − 𝑝))

1
2−𝑝 + 𝜔 𝑗𝑝 (2𝜔 𝑗 (1 − 𝑝))

𝑝−1
2−𝑝 (29)

The minimum 𝑆𝑣𝐺𝑆𝑇 (𝛿 𝑗 , 𝜔 𝑗 ) of Eq. (29) is determined by

𝑇𝐺𝑆𝑇
𝑝 (𝛿 𝑗 , 𝜔 𝑗 ) =

{
0, 𝛿 𝑗 < 𝜂𝐺𝑆𝑇

𝑝

(
𝜔 𝑗

)
sgn(𝛿 𝑗 )𝑆𝐺𝑆𝑇

𝑝 (𝛿 𝑗 , 𝜔 𝑗 ), 𝛿 𝑗 ≥ 𝜂𝐺𝑆𝑇
𝑝

(
𝜔 𝑗

) (30)

in which 𝑆𝐺𝑆𝑇
𝑝 (𝛿 𝑗 , 𝜔 𝑗 ) satisfies

𝑆𝐺𝑆𝑇
𝑝 (𝛿 𝑗 , 𝜔 𝑗 ) − 𝛿 𝑗 + 𝜔 𝑗𝑝

(
𝑆𝐺𝑆𝑇
𝑝 (𝛿 𝑗 , 𝜔 𝑗 )

)𝑝−1
= 0 (31)

Arranging 𝝎 (0 ≤ 𝜔1 ≤ 𝜔2 ≤ . . . ≤ 𝜔𝑟 ) in non-ascending order
and 𝜹 (𝛿1 ≥ 𝛿2 ≥ . . . ≥ 𝛿𝑟 ≥ 0) in non-descending order aids in
determining a global minimizer 𝜽 (𝜃1 ≥ 𝜃2 ≥ . . . ≥ 𝜃𝑟 ) using von
Neumann’s trace inequality, where 𝑟 = min(𝑛1, 𝑛2).

Updating ADMM variables are written as
Y = Y + 𝜇 (J − K)
𝜇 =𝑚𝑖𝑛(𝜌𝜇, 𝜇𝑚𝑎𝑥 )

(32)

In the optimization process, we set 𝜇 = 1𝑒−4 and 𝜇𝑚𝑎𝑥 = 1010,
with a computational complexity of O(𝑛). Algorithm 1 delineates
the entire optimization procedure of Eq. (4), wherein convergence

is assessed by evaluating the objective value 𝑜𝑏 𝑗𝑡 after the 𝑡-th
iteration.

Algorithm 1 IWTSN-FMGC
Input: Multi-view data {X𝑟 }𝑣

𝑟=1, cluster number 𝑐 , latent space dimension
𝑘 , and parameters 𝛼 , 𝛾 .
Initialize Q𝑟 = I𝑘 , and the others matrices as 0.

1: repeat
2: Update A, W, B, and K via Eq (3), Eq. (15), Eq. (18), and Eq. (19),

respectively;
3: Update ADMM variables via Eq. (32);
4: until Satisfy (𝑜𝑏 𝑗 (𝑡 ) − 𝑜𝑏 𝑗 (𝑡−1) )/𝑜𝑏 𝑗 (𝑡 ) ≤ 1𝑒 − 4.
5: Perform SVD on Â =

∑𝑣
𝑟=1 A𝑟 /𝑣.

Output: Clustering metrics.

2.3 Parameter and Convergence
More parameters and convergence analyses are provide in Fig. 1
and Fig. 2.
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Figure 1: The parameter settings (𝛼 and 𝛾 ) on the large-scale datasets, i.e., YTF50 and YTF-20.
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