
Appendices
A Code and Data

All our data and models can be found at https://www.synapse.org/DART_Eval_Benchmark
unless otherwise specified. Our code can be found at https://github.com/kundajelab/
DART-Eval.

B Extended Background

B.1 The Genome and Non-Coding Regulation

DNA, present in every cell, stores the complete set of instructions essential for life. It consists of
a chain of nucleotides—adenine (A), thymine (T), guanine (G), and cytosine (C)—whose specific
sequences encode functional elements. While genes, which code for proteins, are the most recognized
of these elements, they constitute only a fraction of the genome. The complete DNA sequence of an
organism is referred to as its genome.

Within genes, coding sequences specify the amino acid composition of proteins. Through the
processes of transcription and translation, nucleotide triplets (codons) in these sequences are translated
into amino acids, which form the building blocks of proteins.

However, in humans, coding sequences account for just around 1.5% of the genome. The remaining
98.5% includes vast regions of non-coding DNA, some of which play essential roles in regulating
when, where, and to what extent genes are expressed. In multicellular organisms, gene activation
and suppression are highly context-specific, enabling a single genome to support the development of
diverse cell types across tissues and organs, each responding dynamically to internal and external
signals.

Among the non-coding regions, regulatory elements play a crucial role in controlling gene expression
according to cellular context. Unlike coding regions that directly produce proteins, these regulatory
sequences contain nucleotide patterns that interact with specific DNA-binding proteins known as
transcription factors (TFs). These interactions can alter the 3D structure of DNA, recruiting the
molecular machinery required to activate or repress nearby genes.

Understanding non-coding regulatory elements remains challenging due to their sparse, combinatorial,
and context-dependent nature. DNA-binding proteins vary in presence and behavior across different
cell types, making the syntax of non-coding regulatory elements highly cell-type-specific. In this
way, each gene is regulated by an array of elements, such as promoters and enhancers, each with
distinct properties. Promoters are located close to the transcription start site, directly adjacent to the
genes they regulate, while enhancers can reside thousands of base pairs away yet still regulate gene
expression.

In summary, although non-coding regulatory elements do not produce proteins, they govern the
spatiotemporal patterns of gene expression, enabling the complex regulatory landscapes that underpin
cellular diversity and adaptive responses in multicellular organisms.

B.2 Deep learning models of DNA elements

In recent years, several deep learning models have been developed to learn representations of different
classes of DNA elements and predict their context-specific properties and activity. These models
generally fall into two categories: supervised models, which are explicitly trained to map DNA
sequence to associated properties or experimental measurements of biochemical activity, and self-
supervised models, which learn representations of DNA sequences without any labeled data.

Supervised deep learning models have shown impressive results in modeling various types of
biological sequences. For example, they have been successfully used to predict RNA splicing,
a key post-transcriptional regulatory process [11], to predict protein structure from amino acid
sequences [12, 13] and to predict chromatin and transcriptional activity from regulatory sequences in
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diverse cell types [2, 1, 18]. These models rely on labeled data to learn mappings from sequence to
structure or functional activity.

In contrast, self-supervised learning has shown great success in training protein language models.
These models capture the complex syntax of protein-coding sequences [15, 21] by training on massive
protein sequence datasets without requiring explicit functional labels. Due to the high information
density and conserved syntax of protein-coding DNA across species, these models have proven
especially adept at learning generalized protein representations that can be fine-tuned for downstream
applications such as prediction of structure, interactions and even functional properties.

Recently, self-supervised DNA language models (DNALMs) have emerged as a novel approach,
extending beyond protein-coding sequences to learn representations of entire genomes [17, 3, 6, 22].
Unlike protein language models, DNALMs are trained to capture the syntax across all classes of
DNA elements, including diverse types of non-coding functional elements that often encode comlex
and context-dependent syntax. By modeling the full spectrum of genomic sequences, DNALMs aim
to capture both coding and non-coding syntax, potentially serving as foundation models for a wide
array of downstream prediction tasks, potentially reducing the need for training specialized models
from scratch.

C Datasets

C.1 ENCODE candidate cis-regulatory elements

This dataset consists of a set of approximately 2.3 million high-confidence regulatory regions as
curated by the ENCODE consortium. These regions are mainly enhancers or promoters, and they
are active in at least one of a wide variety of cell types. Candidate regions were first identified by
integrating cell type-specific DNAse-seq chromatin accessibility data with ChIP-seq data for the
H3K27ac and H3K4me3 histone marks, which are biochemical markers associated with enhancers
and promoters respectively. The final set of regions, available online on the ENCODE project website,
is capped at a maximum length of 350 bp. We specifically used the cCRE list produced as part of
phase IV of ENCODE, which provides an over-two-fold increase in identified cCREs from phase
III. This extensive dataset serves as an ideal benchmark for evaluating language models’ ability
to capture essential regulatory DNA features. The dataset was downloaded from https://www.
encodeproject.org/files/ENCFF420VPZ/. All ENCODE data is available for unrestricted use.

C.2 HOCOMOCO transcription factor binding motifs

Each transcription factor recognizes specific DNA sequence motifs. To evaluate the models’ ability to
identify regulatory sequence features, we analyzed each motif independently. Among available motif
databases, HOCOMOCO is widely used in the research community. It compiles motifs derived from
ChIP-seq and HT-SELEX data, which measure protein-DNA binding, and uses the ChIPMunk motif
discovery method to generate motif sequences. Version 12 of HOCOMOCO provides position-weight
matrices (PWMs) for 949 human transcription factors, encompassing 1,443 unique motifs when
accounting for subtypes. Each PWM provides nucleotide probabilities at each motif position, from
which we derive consensus sequences by selecting the most probable nucleotide per position. The
HOCOMOCO database also groups transcription factors into families, facilitating higher-level analy-
ses. The database was downloaded from https://hocomoco12.autosome.org/final_bundle/
hocomoco12/H12CORE/formatted_motifs/H12CORE_meme_format.meme. HOCOMOCO data
is available under the WTFPL license.

C.3 ATAC-seq and DNase-seq Peaks

The peak sets are summarized in Table S1 and Table S2. The cell-type-specific peak sets, identified
by DESeq2, can be visualized in Figure S1.

ATAC-seq peaks and DNase-seq peaks are defined as regions of high chromatin accessibility in the
genome. These datasets were downloaded from ENCODE. The GM12878 ATAC-seq peaks were
obtained from ENCFF748UZH. The H1ESC ATAC-seq peaks were obtained from [18]. The HEPG2
ATAC-seq peaks were obtained from ENCSR291GJU. The IMR90 ATAC-seq peaks were obtained
from ENCFF243NTP. The K562 ATAC-seq peaks were obtained from ENCFF333TAT. Amongst the

2

https://www.encodeproject.org/files/ENCFF420VPZ/
https://www.encodeproject.org/files/ENCFF420VPZ/
https://hocomoco12.autosome.org/final_bundle/hocomoco12/H12CORE/formatted_motifs/H12CORE_meme_format.meme
https://hocomoco12.autosome.org/final_bundle/hocomoco12/H12CORE/formatted_motifs/H12CORE_meme_format.meme


Figure S1: Correlations of per-motif embedding-based accuracies for each pair of models. Diagonals
represent accuracy distribution for each model

Table S1: Overview of chromatin accessibility peak datasets used in training and evaluation: links to
peaks

Cell Type ATAC-seq Peaks DNase-seq Raw Files

GM12878 ENCFF748UZH ENCSR000EMT
H1ESC [18] ENCSR000EMU
HEPG2 ENCSR291GJU ENCSR149XIL
IMR90 ENCFF243NTP ENCSR477RTP
K562 ENCFF333TAT ENCSR000EOT

Table S2: Overview of chromatin accessibility peak datasets used in training and evaluation: number
of peaks

Cell Type # ATAC-seq Peaks # DNase-seq Peaks # DNase IDR Peaks # Differentially Accessible Peaks

GM12878 277,999 127,079 70,897 45,184
H1ESC 104,250 103,000 48,188 49,208
HEPG2 279,739 184,583 119,403 33,948
IMR90 265,247 234,313 44,807 50,783
K562 269,800 194,321 137,722 37,623

ATAC-seq datasets, there are a total of 277999 GM12878 peaks, 104250 H1ESC peaks, 279739
HEPG2 peaks, 265247 IMR90 peaks, and 269800 K562 peaks. All ENCODE data is available for
unrestricted use.

The final set of DNase-seq peaks for all cell lines was obtained from [18]. The raw files were
obtained from ENCODE and processed according to [18]. The GM12878 raw files were obtained
from ENCSR000EMT. The H1ESC raw files were obtained from ENCSR000EMU. The HEPG2 raw files
were obtained from ENCSR149XIL. The IMR90 raw files were obtained from ENCSR477RTP. The
K562 raw files were obtained from ENCSR000EOT.

The final sets of high confidence, reproducible peaks for all cell lines were also obtained from [18].

C.4 Variants that influence chromatin accessibility (caQTLs and dsQTLs)

Molecular quantitative trait loci (QTLs) are genetic variants that influence variation of a molecular
activity (e.g. gene expression or chromatin accessibility) in a particular cell type across multiple
individuals. DNase-seq QTLs (dsQTLs) are genetic variants associated with variation in chromatin
accessibility, as measured by DNase-seq experiments. Chromatin accessibility QTLs (caQTLs)
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Table S3: Cell-Type specific motifs in differentially accessible peaks
HOMER -log10(q-value)

Motif Name GM12878 H1ESC HEPG2 IMR90 K562

IRF1 10 0 0 0 0
IRF2 10 0 0 0 0
SpiB 10 0 0 0 0
Oct4 0 10 0 0 0
Sox2 0 10 0 0 0
Sox6 0 10 0 0 0
Hnf4a 0 0 10 0 0
FoxA1 0 0 10 0 0
Hnf1 0 0 10 0 0
ATF3 0 0 0 10 0
Fosl2 0 0 0 10 0
Jun-AP1 0 0 0 10 0
Gata1 0 0 0 0 10
KLF4 0 0 0 0 10
Gata2 0 0 0 0 10

Table S4: Overview of variant datasets
Dataset Name # Total Variants # Significant Variants # Control Variants Original Source Filtered Source

Chromatin QTLs in African LCLs 219,382 6,821 77,999 [5] syn59449898
DNase QTLs in Yoruban LCLs 28,309 560 26,813 [4] syn59449898

are genetic variants associated with variation in chromatin accessibility measured using ATAC-seq
experiments. Genomic elements with strong ATAC-seq or DNase-seq signal are typically regulatory
elements bound by TFs. We used two QTL datasets to evaluate all the models (Table S4). We
downloaded the processed CaQTLs from [18] (File variant_effect_benchmarking.tsv.gz
from Synapse repository syn59449898).

caQTLs in African LCLs. The first dataset consists of 219,382 variants and their effect sizes and
statistical significance of association with variation of ATAC-seq signal across 100 lymphoblastoid
cell-lines from individuals 6 African ancestry subpopulations (ESN, GWD, LWK, MSL, YRI, and
MKK) [5]. After filtering the variants using the procedure described in [18], we were left with
77,999 control variants and 6,821 statistically significant caQTLs. Variants are restricted to fall within
ATAC-seq peaks identified in the entire cohort in order to enrich for likely causal caQTLs. The data
is available under the Creative Commons Attribution 4.0 International License.

DNase QTLs in African LCLs. We obtained a dataset from [4], which comprises 560 statistically
significanct DNase I sensitivity QTL (dsQTL) variants and 26,813 control variants. We filtered the
variants using the procedure described in [18]. Variants are restricted to fall within DNase-seq peaks
identified in the entire cohort in order to enrich for likely causal caQTLs

D Models

D.1 Zero-Shot Model Evaluations

All pre-trained models used in this study were obtained from HuggingFace using the documentation
provided in each model’s README.

For all models, sequence embeddings were derived from the output of the last hidden layer when
performing inference on the input sequence. Embeddings for auxiliary tokens like <CLS>, <start>,
and <end> were removed, and the remaining embeddings were averaged to produce an overall
sequence representation. For models using byte-pair encodings, where tokens represent variable
numbers of nucleotides, this average is weighted by the number of nucleotides in each token. This
embedding process is used in all embedding comparison tasks in this study.

To calculate model (pseudo-)likelihoods for an input sequence, obtain the predicted logits for each
token. For autoregressive models, this can be done with a single forward pass, where each token
is conditioned on preceding tokens. For masked models, we successively masked each token and
compute predicted logits at the masked position conditioned on all other tokens. Unscaled logits
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were then converted into log-likelihoods using log softmax, and the log-likelihood for the true token
choice at each position is isolated. These token-level log-likelihoods were then summed across
tokens (multiplied in log space) to produce the overall sequence likelihood. This sequence-level
log-likelihood methodology was used for all likelihood-based comparisons in this study.

D.2 Probed and Fine-Tuned Models

For final-layer probing, the base pre-trained model weights were frozen. Outputs from the final
hidden layer were passed to an additional CNN-based probing head. Embeddings were converted
from token space to sequence space by repeating each token embedding by the number of nucleotides
spanned by the token, as in [16] and [20]. The probing head consists of a linear projection to 32
dimensions, two convolutional layers of width 8 and 32 filters, a sum pooling layer, and a linear layer
to produce the final output. ReLU activations are applied after each intermediate layer. Probing heads
were trained using Adam with a learning rate of 2e−3.

Fine-tuning utilized LoRA, a widely-used parameter-efficient fine-tuning method that performs
low-rank updates to model parameters [10]. For consistency across multiple architectures, we applied
fine-tuning to all linear and convolutional layers. We used each model’s included classifier head,
trained from scratch. LoRA parameters included a rank of 8, an α of 16, and a dropout of 0.05.
Optimization used AdamW with a learning rate of 1e−4 and a weight decay of 0.01.

We used a consistent train, validation, and test split across all experiments, at an approximate 4:1
train and validation to test split, and an approximate 9:1 train to validation split. Our test set consists
of chromosomes 5, 10, 14, 18, 20, 22. Our validation set consists of chromosomes 6 and 21, and our
training set consists of all other chromosomes. For all models, we evaluated the checkpoint with the
lowest validation loss. All reported numbers were computed on the test set unless otherwise stated.

D.3 Ab initio Models

For the chromatin accessibility regression models - which were also used in the variant interpretation
task - our Ab initio baseline was ChromBPNet, a convolutional neural network that can predict the
magnitude and shape of chromatin accessibility profiles at base-pair resolution from an input DNA
sequence. ChromBPNet takes as input a one-hot encoded DNA sequence of length 2,114, passing
it through a single convolutional layer followed by 8 dilated residual layers of increasing kernel
size. The output of these layers is used to make two predictions. First, a Global Average Pooling
(GAP) layer is applied, followed by a linear layer to predict the total ATAC-seq or DNase-seq read
counts within the central 1,000 bp of the input. Only this prediction was used to compare with
the probed and fine-tuned language models. Second, the convolutional output is passed through
another convolutional layer with a large kernel and only one channel, producing a predicted base-level
probability profile of reads over the output region. By multiplying both model outputs together, one
can obtain the predicted read counts at each position in the output region. The count prediction was
trained using mean squared error loss, while the profile head was trained using log-likelihood loss
based on a multinomial distribution. Separate ChromBPNet models are trained on each chromatin
accessibility dataset. We utilized already trained ChromBPNet models from the ENCODE project for
each dataset in this study.

For all tasks except chromatin accessibility regression and variant effect prediction, we compared
against a small custom-trained CNN resembling the probing head we use, as it has a similar model
capacity. This model consists of two parts: an embedding block - designed to produce simple
sequence embeddings of similar dimensionality to DNALM embeddings - followed by an output head.
The architecture of the output head is identical to the head used for probing. The embedding block
takes in a one-hot encoded DNA sequence as input and applies a single convolutional layer of width
41 and 256 channels. This output is summed with a learned single-channel positional embedding,
up-projected to 256 channels. The resulting embeddings then serve as the input to the output head.
Models were trained using Adam with a learning rate of 1e−3.

For the cell type-specific regulatory DNA task, we implemented an additional larger Ab initio baseline
resembling the ChromBPNet architecture. Differences from ChromBPNet are (1) 7 dilated residual
convolutional layers instead of 8, (2) removal of the base-pair-resolution prediction head, and (3) the
addition of a single-channel learned positional encoding, incorporated after the initial convolutional
layer. Models were trained using Adam with a learning rate of 1e−4.
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Train, validation, and test folds are identical to those used for fine-tuning and probing.

E Tasks and Results

Model training and evaluations were performed on Kundaje Lab machines, the Stanford Sherlock
HPC cluster, and Google Cloud VMs. We utilized a combination of NVIDIA L40S, A100 (40 and 80
GB), V100, and Titan X GPUs depending on availability.

E.1 Distinguishing regulatory DNA from background sequences

Our first task tests whether models could discriminate regulatory elements from synthetic background
sequences. For our positive set of regulatory elements, we used the ENCODE cCRE list of approxi-
mately 2.3 million high-confidence regulatory regions. We then performed dinucleotide shuffling on
each cCRE sequence to produce a matched set of synthetic negative background sequences, in which
negative sequences retain the same sequence composition as their positive counterparts but lack the
binding motifs that promote activity. To ensure reproducibility of the shuffling process, the algorithm
was seeded by the SHA-256 hash of the input region’s genomic coordinates.

We then tested the models’ binary classification performance in zero-shot, probed, and fine-tuned
settings. In the zero-shot setting, we calculated the likelihood for each cCRE and background
sequence, with a correct prediction defined as a higher likelihood for a cCRE than its corresponding
background sequence. For both the probing and fine-tuned settings, we trained classifiers to predict
which category a sequence belongs to.

For the zero-shot evaluation, performance metrics included accuracy and a one-sided Wilcoxon
Rank-Sum Test between the cCRE and control likelihoods. For the other settings, metrics included
accuracy, AUROC, and AUPRC.

E.2 Assessing sensitivity to known regulatory sequence motifs

Models were then evaluated for their ability to recognize individual transcription factor binding motifs.
We used a list of 1,443 consensus transcription factor (TF) motif sequences from the HOCOMOCO
v12 database. 100 neutral background sequences were randomly chosen from the cCRE classification
task background set. Specifically, for each combination of neutral sequence and motif, the following
sequences were considered:

1. Neutral: the original neutral sequence
2. Positive: the neutral sequence with the motif inserted at the center (for a length-n motif, the

central n nucleotides of the sequence were replaced with the motif)
3. Negative: the control sequence with a shuffled version of the motif inserted at the center
4. Reverse complement of the neutral (1)
5. Reverse complement of the positive (2)
6. Reverse complement of the negative (3)

Taken together, this procedure resulted in a dataset of 577,400 unique sequences.

We employed likelihood and embedding-based approaches for this task. For the likelihood approach,
we determined whether the predicted likelihood was higher for each positive sequence than for
each corresponding negative sequence. 200 such pairs exist in the dataset for each motif, and we
defined a model’s accuracy for that motif as the proportion of pairs where the positive sequence had a
higher predicted likelihood. We also utilized the results to compute a one-sided Wilcoxon Rank Sum
significance test for each motif. Note that neutral sequences were not used for this analysis.

We also evaluated using an embedding-based approach with the following procedure:

1. Let s□ be a raw or reverse-complemented neutral sequence. Let s+ be the corresponding
positive sequence, and let s− be the corresponding negative sequence.

2. We calculate d+, the embedding distance between s+ and s□, and d−, the embedding
distance between s− and s□. Cosine distance is used as the embedding distance metric.
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3. The prediction for the triplet (s+, s−, s□) is considered correct if d+ > d−.

As with the likelihood evaluation, 200 such pairs exist per motif, allowing us to obtain an accuracy
metric for each motif. Also as before, we evaluated significance using a one-sided Wilcoxon Rank
Sum Test.

We additionally used metadata from the HOCOMOCO database to group motifs into motif families.
We then aggregated per-motif accuracy metrics to the family level.

E.3 Learning cell-type-specific regulatory sequence features

We next evaluated whether models can discriminate accessible regulatory regions in different cell
types that possess distinct sets of active sequence features. We utilized ATAC-seq peaks from five cell
lines: GM12878, H1ESC, HEPG2, IMR90, and K562, with multiple biological replicates for each
cell type. Details are in Appendix C.3. These cell lines are extensively studied and are also known to
differ in the set of key transcription factors that regulate accessibility in each cell-line. We identified
differentially-active peak sequences using DESeq2, a negative-binomial-model-derived statistical
test for read-count-based experimental assays. Specifically, we formed a consensus peak set by
merging and deduplicating peaks from each cell type. Then, we counted the number of ATAC reads
intersecting each consensus peak region in each cell type. Then, we used DESeq2 in a one-vs-others
fashion for each cell type, where the positive class corresponds to Ci, the cell type for which we
are finding the differential peaks, and the negative set = {Cj} with j ̸= i corresponding to all the
other cell types. Our final differential peak sets were chosen with a positive log fold change > 1
and an adjusted p-value < 0.001. We only kept peaks with differential activity in exactly one cell
type. We summarized the number of differentially accessible peaks in each cell type in Table S2. We
validated our differential peak set using Homer [9]. HOMER is a de novo motif discovery algorithm
that scores motifs by looking for motifs with differential enrichment between two sets of sequences.
For our purposes, we used the differentially accessible peak set in one cell type as the target set and
the differentially accessible peak sets in all other cell types as the background set, and we repeated
this for all cell types. HOMER takes the motifs identified from the de novo motif discovery step
and compares them against a library of known motifs in JASPAR [7]. In Table S3, we present the
negative log of the Benjamini-Hochberg-adjusted q values from the HOMER motif discovery, with
−log(q) capped at 10.

In the zero-shot setting, we further restricted the peak sets to the top 5000 differential peaks per cell
line, based on the adjusted DESeq2 p-value. On these peak sets, we produced model embeddings
for each peak sequence. For the baseline, we computed motif scores using FIMO [8], which scans
a collection of DNA sequences for occurrences of one or motifs from the HOCOMOCO database
described in Appendix C.2. We intersected the motif hits with the peaks using BedTools [19] and
constructed bag-of-motifs embeddings for each peak where each entry is the sum of the − log10(FIMO
q-value) for a particular motif in that peak sequence. We then selected for the most variable motifs
using a permutation method comparing the sum of the motif across all the peaks in each subsampled
peak set. We performed the subsampling procedure 1000 times with each subsampled peak set
consisting of 100 peaks. (Note that ground-truth labels are not used at any stage when constructing
baseline embeddings.) We then performed k-means clusterings on each set of embeddings, with k
set to 50. The ability of the clustering to differentiate peaks from different cell lines was quantified
through the adjusted Mutual Information Score between the cluster labels and the true cell line
labels for each peak. The Adjusted Mutual Information (AMI) score, a common method to evaluate
clustering results, measures concordance between two sets of labels. Its maximum value is 1.0, with
values close to 0 indicating random labeling and values close to 1 indicating a perfect match between
clusters and labels. We obtained AMI scores from 100 different k-means clustering runs and define a
conservative 95% confidence interval around the mean as the difference between the mean and the
2.5% quantile or the 97.5% quantile, whichever is greater.

In the probing and fine-tuning settings, we trained a five-way classifier to predict the cell line from
which each peak was derived. Important metrics included accuracy, AUROC, and AUPRC.

E.4 Predicting quantitative measures of regulatory activity from sequence

This task involves predicting quantitative measurements of chromatin accessibility from sequence,
quantified as DNase-Seq read counts over the sequence. DNase-Seq peaks (regions of high accessi-
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bility) and count data were obtained from the ENCODE consortium for the same set of 5 cell lines
used in earlier tasks: GM12878, H1ESC, HEPG2, IMR90, and K562.

ChromBPNet models were trained on the same data and used as our baseline models. We utilized the
same training setup for our probing and fine-tuning models so that inputs and labels were identical to
those for ChromBPNet. Specifically, the ChromBPNet preprocessing pipeline involved filtering peaks
to remove read count outliers and then expanding the remaining peaks to size 2,114. In addition to
accessibility peaks, ChromBPNet is also trained on matched negative genomic background sequences.
Specifically, for each peak, a negative region was selected from elsewhere in the genome with the
same GC content but does not fall within the peak set. The ratio of peaks to negatives in each training
batch is 10:1. Within batches, half the sequences were reverse-complemented, and each sequence
was shifted a maximum of 500bp in either direction, to ensure the area of highest accessibility is not
always at the center of the input. The ground-truth activity for a given input sequence was defined as
the number of read endpoints intersecting the central 1,000 bp.

Quantitative predictions were evaluated using the Pearson and Spearman (rank-normalized) correla-
tion between the predicted accessibility and measured accessibility. Metrics were computed across
peaks only and also across peaks and background sequences. Models were also evaluated based
on their ability to classify peaks from background sequences, quantified by AUROC and AUPRC.
For classification metrics, the set of positives was restricted to high-confidence, reproducible peaks,
identified using the Irreproducing Discovery Rate (IDR) method [14] that determines whether peaks
identified in replicate experiments are rank consistent and reproducible.

E.5 Predicting counterfactual effects of regulatory genetic variants

A critical challenge in human genetics is predicting how genetic variants affect gene regulation
through changes in chromatin accessibility. Models trained to predict regulatory activity from
sequence (S2A models) (such as those in Section??) are typically used in a counterfactual setting to
predict the effects of genetic variants on regulatory activity. This is a particularly challenging task
since the S2A models are never directly trained on genetic variation data. We evaluated the ability of
DNALMs to prioritize and predict the quantitative effects of regulatory genetic variants that impact
chromatin accessibility.

Each variant is a single nucleotide polymorphism (SNP) consisting of a pair of alleles, a reference
allele xref ∈ {A,C,G,T} and an alternate allele xalt ∈ {A,C,G,T}, together with a label y ∈ {1,0},
indicating whether the variant is a statistically significant chromatin accessibility QTL (dsQTL or
caQTL) or a background variant. All genomic variant coordinates for the caQTL dataset are based on
the human reference genome version GRCh38, whereas variant coordinates for the dsQTL dataset
are based on the human reference genome version GRCh37.

Each allele of a variant was scored by taking a sequence of length 2114, where the variant allele was
placed in the center of a 2114-length sequence, with the remaining sequence provided as context.
Both sequences, with reference and alternate alleles respectively, were passed through the model to
obtain scores for each.

In the zero-shot embedding setting, given reference and alternate alleles, two embeddings were
computed, and the cosine distance between the embeddings was used as the allelic effect score of the
variant. In the zero-shot likelihood setting, the variant position was masked out and the likelihoods
at the mask token with respect to the reference and alternate alleles are compared. In supervised
settings, we evaluated the predicted counts log fold change between the two alleles.
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Table S5: Resource requirements of evaluated DNALMs.
Inference Training

Model Variant Parameters Runtime (ms) Memory (GB) Runtime (ms) Memory (GB)

Caduceus ps_131k_d-256_n-16 7,725,568 239.67 ± 1.11 1.07 ± 0.00 834.78 ± 3.67 40.82 ± 0.00
DNABERT-2 117M 117,069,313 104.17 ± 2.06 1.59 ± 0.03 325.93 ± 6.74 8.81 ± 0.17
GENA-LM bert-large-t2t 336,658,433 194.04 ± 5.47 3.17 ± 0.02 502.53 ± 13.54 18.35 ± 0.73
HyenaDNA large-1m 6,550,784 59.51 ± 0.57 0.94 ± 0.00 174.08 ± 3.77 7.57 ± 0.00
Mistral-DNA v1-1.6B-hg38 1,607,677,440 129.63 ± 7.41 9.35 ± 0.03 351.36 ± 13.54 14.69 ± 0.24
Nucleotide Transformer v2-500m-multi-species 494,134,738 289.58 ± 0.76 4.44 ± 0.00 733.30 ± 2.12 22.21 ± 0.00

DNALM resource requirements per batch of 64 sequences of length 2114 bp. Statistics are displayed as mean ± standard deviation. Values
include each model’s classification head. Gradients were computed for all model parameters when measuring training resource requirements.
This evaluation was conducted on an Nvidia L40S GPU.

Table S6: Regulatory element identification extended results
Setting Model Absolute Accuracy Paired Accuracy AUROC AUPRC

Probed

Caduceus 0.7257 ± 4.0344e-04 0.8961 ± 2.7588e-04 0.8203 0.8319
DNABERT-2 0.8467 ± 3.2579e-04 0.9428 ± 2.1003e-04 0.9314 0.9366
GENA-LM 0.8867 ± 2.8661e-04 0.9594 ± 1.7857e-04 0.9580 0.9627
HyenaDNA 0.8475 ± 3.2511e-04 0.9347 ± 2.2338e-04 0.9274 0.9300
Mistral-DNA 0.7591 ± 3.8671e-04 0.8587 ± 3.1503e-04 0.8430 0.8492
Nucleotide Transformer 0.8194 ± 3.4785e-04 0.9168 ± 2.4980e-04 0.9025 0.9043

Fine-Tuned

Caduceus 0.9030 ± 2.6769e-04 0.9707 ± 1.5260e-04 0.9723 0.9746
DNABERT-2 0.9131 ± 2.5467e-04 0.9730 ± 1.4650e-04 0.9745 0.9769
GENA-LM 0.9095 ± 2.5946e-04 0.9722 ± 1.4875e-04 0.9746 0.9772
HyenaDNA 0.8768 ± 2.9721e-04 0.9523 ± 1.9264e-04 0.9505 0.9530
Mistral-DNA 0.8167 ± 3.4986e-04 0.9053 ± 2.6476e-04 0.9017 0.9068
Nucleotide Transformer 0.9200 ± 2.4530e-04 0.9762 ± 1.3775e-04 0.9781 0.9804

Ab initio Probing-head-like 0.8460 ± 3.2640e-04 0.9320 ± 2.2765e-04 0.927 0.931
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Table S7: Quantiles of motif identification accuracies for each model
Setting Model 0% 25% 50% 75% 100%

Likelihood

Caduceus 0.035 0.420 0.570 0.700 1.000
DNABERT-2 0.145 0.495 0.590 0.685 1.000
GENA-LM 0.055 0.475 0.620 0.740 1.000
HyenaDNA 0.000 0.420 0.645 0.820 0.995
Mistral-DNA 0.002 0.455 0.625 0.770 1.000
Nucleotide Transformer 0.200 0.465 0.565 0.658 0.995

Embedding

Caduceus 0.370 0.475 0.500 0.525 0.630
DNABERT-2 0.375 0.480 0.500 0.525 0.635
GENA-LM 0.390 0.485 0.510 0.535 0.630
HyenaDNA 0.370 0.480 0.505 0.530 0.610
Mistral-DNA 0.390 0.475 0.495 0.520 0.635
Nucleotide Transformer 0.390 0.480 0.505 0.530 0.615

Figure S2: Correlations of per-motif likelihood-based accuracies for each pair of models. Diagonals
represent accuracy distribution for each model
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Figure S3: Correlations of per-motif embedding-based accuracies for each pair of models. Diagonals
represent accuracy distribution for each model
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Figure S4: Likelihood-based motif detection accuracy distributions for each motif family
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Figure S5: Embedding-based motif detection accuracy distributions for each motif family
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Table S8: Cell-type specific element classification results (multi-class overall accuracy)
Setting Model Overall Accuracy

Probed

Caduceus 0.281 ± 1.893e-03
DNABERT-2 0.371 ± 2.033e-03
GENA-LM 0.383 ± 2.046e-03
HyenaDNA 0.587 ± 2.073e-03
Mistral-DNA 0.329 ± 1.979e-03
Nucleotide Transformer 0.420 ± 2.078e-03

Fine-Tuned

Caduceus 0.671 ± 1.978e-03
DNABERT-2 0.650 ± 2.008e-03
GENA-LM 0.636 ± 2.025e-03
HyenaDNA 0.610 ± 2.053e-03
Mistral-DNA 0.402 ± 2.064e-03
Nucleotide Transformer 0.632 ± 2.030e-03

Ab initio ChromBPNet-like 0.667 ± 1.984e-03
Probing-head-like 0.474 ± 2.102e-03

Table S9: Cell-type specific element classification results (GM12878 vs. rest)
Setting Model Accuracy AUROC AUPRC

Probed

Caduceus 0.7912 ± 1.7110e-03 0.5354 0.2300
DNABERT-2 0.7891 ± 1.7173e-03 0.6516 0.3225
GENA-LM 0.7919 ± 1.7089e-03 0.6267 0.2949
HyenaDNA 0.8556 ± 1.4798e-03 0.8494 0.6799
Mistral-DNA 0.7912 ± 1.7110e-03 0.5822 0.2745
Nucleotide Transformer 0.8122 ± 1.6440e-03 0.7440 0.4857

Fine-Tuned

Caduceus 0.8854 ± 1.3411e-03 0.8998 0.7839
DNABERT-2 0.8784 ± 1.3761e-03 0.8939 0.7654
GENA-LM 0.8687 ± 1.4219e-03 0.8770 0.7304
HyenaDNA 0.8662 ± 1.4332e-03 0.8755 0.7226
Mistral-DNA 0.7966 ± 1.6947e-03 0.6871 0.3977
Nucleotide Transformer 0.8680 ± 1.4251e-03 0.8800 0.7337

Ab initio Probing-head-like 0.8120 ± 1.6449e-03 0.7538 0.5367
ChromBPNet-like 0.8865 ± 1.3355e-03 0.9026 0.7889

Table S10: Cell-type specific element classification results (H1ESC vs. rest)
Setting Model Accuracy AUROC AUPRC

Probed

Caduceus 0.7775 ± 1.7510e-03 0.6221 0.2889
DNABERT-2 0.7907 ± 1.7126e-03 0.7572 0.4755
GENA-LM 0.8062 ± 1.6640e-03 0.7868 0.5473
HyenaDNA 0.8448 ± 1.5243e-03 0.8893 0.7312
Mistral-DNA 0.7777 ± 1.7503e-03 0.6775 0.3497
Nucleotide Transformer 0.7962 ± 1.6958e-03 0.7953 0.5251

Fine-Tuned

Caduceus 0.8941 ± 1.2956e-03 0.9370 0.8353
DNABERT-2 0.8861 ± 1.3373e-03 0.9300 0.8163
GENA-LM 0.8806 ± 1.3653e-03 0.9229 0.7977
HyenaDNA 0.8684 ± 1.4234e-03 0.9060 0.7612
Mistral-DNA 0.7776 ± 1.7507e-03 0.7623 0.4759
Nucleotide Transformer 0.8811 ± 1.3628e-03 0.9252 0.8054

Ab initio Probing-head-like 0.8289 ± 1.5855e-03 0.8360 0.6458
ChromBPNet-like 0.8856 ± 1.3401e-03 0.9286 0.8230
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Table S11: Cell-type specific element classification results (HEPG2 vs. rest)
Setting Model Accuracy AUROC AUPRC

Probed

Caduceus 0.8167 ± 1.6290e-03 0.6801 0.3466
DNABERT-2 0.8270 ± 1.5925e-03 0.7619 0.4490
GENA-LM 0.8266 ± 1.5939e-03 0.7727 0.4608
HyenaDNA 0.8586 ± 1.4668e-03 0.8620 0.6331
Mistral-DNA 0.8165 ± 1.6297e-03 0.7235 0.4038
Nucleotide Transformer 0.8230 ± 1.6067e-03 0.7831 0.4672

Fine-Tuned

Caduceus 0.8823 ± 1.3567e-03 0.9009 0.7349
DNABERT-2 0.8750 ± 1.3923e-03 0.8910 0.7026
GENA-LM 0.8745 ± 1.3946e-03 0.8871 0.6956
HyenaDNA 0.8623 ± 1.4508e-03 0.8737 0.6539
Mistral-DNA 0.8225 ± 1.6084e-03 0.7344 0.4121
Nucleotide Transformer 0.8706 ± 1.4129e-03 0.8811 0.6797

Ab initio Probing-head-like 0.8223 ± 1.6092e-03 0.7574 0.4163
ChromBPNet-like 0.8739 ± 1.3975e-03 0.8938 0.7062

Table S12: Cell-type specific element classification results (IMR90 vs. rest)
Setting Model Accuracy AUROC AUPRC

Probed

Caduceus 0.7613 ± 1.7945e-03 0.5765 0.2806
DNABERT-2 0.7618 ± 1.7934e-03 0.6907 0.3901
GENA-LM 0.7629 ± 1.7905e-03 0.7137 0.4250
HyenaDNA 0.8377 ± 1.5525e-03 0.8816 0.7216
Mistral-DNA 0.7612 ± 1.7949e-03 0.6428 0.3469
Nucleotide Transformer 0.7759 ± 1.7554e-03 0.7794 0.5197

Fine-Tuned

Caduceus 0.8784 ± 1.3759e-03 0.9294 0.8211
DNABERT-2 0.8626 ± 1.4492e-03 0.9220 0.7993
GENA-LM 0.8582 ± 1.4685e-03 0.9112 0.7811
HyenaDNA 0.8531 ± 1.4901e-03 0.9075 0.7729
Mistral-DNA 0.7775 ± 1.7511e-03 0.7479 0.4938
Nucleotide Transformer 0.8586 ± 1.4669e-03 0.9204 0.7977

Ab initio Probing-head-like 0.8049 ± 1.6683e-03 0.8065 0.5968
ChromBPNet-like 0.8744 ± 1.3951e-03 0.9208 0.7998

Table S13: Cell-type specific element classification results (K562 vs. rest)
Setting Model Accuracy AUROC AUPRC

Probed

Caduceus 0.8533 ± 1.4897e-03 0.5873 0.1940
DNABERT-2 0.8550 ± 1.4821e-03 0.6913 0.2951
GENA-LM 0.8563 ± 1.4766e-03 0.6929 0.3004
HyenaDNA 0.8573 ± 1.4726e-03 0.7991 0.4390
Mistral-DNA 0.8560 ± 1.4782e-03 0.6456 0.2589
Nucleotide Transformer 0.8473 ± 1.5144e-03 0.7109 0.3209

Fine-Tuned

Caduceus 0.8391 ± 1.5469e-03 0.8776 0.5974
DNABERT-2 0.8358 ± 1.5595e-03 0.8715 0.5757
GENA-LM 0.8361 ± 1.5585e-03 0.8622 0.5706
HyenaDNA 0.8384 ± 1.5495e-03 0.8468 0.5333
Mistral-DNA 0.8316 ± 1.5754e-03 0.7100 0.3239
Nucleotide Transformer 0.8354 ± 1.5613e-03 0.8667 0.5707

Ab initio Probing-head-like 0.8492 ± 1.5067e-03 0.7411 0.3343
ChromBPNet-like 0.8645 ± 1.4408e-03 0.8475 0.4982
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Table S14: Chromatin Accessibility Prediction Results (GM12878)
Setting Model Spearman r Peaks Pearson r Peaks Spearman r All Pearson r All AUROC AUPRC

Probed

Caduceus 0.2510 0.3028 0.1751 0.2157 0.6053 0.4521
DNABERT-2 0.3946 0.4625 0.4899 0.5308 0.7570 0.6399
GENA-LM 0.4899 0.5369 0.5014 0.5572 0.7836 0.6794
HyenaDNA 0.3619 0.4125 0.3964 0.4693 0.7082 0.5707
Mistral-DNA 0.2932 0.2669 0.2266 0.3418 0.5858 0.3692
Nucleotide Transformer 0.4098 0.4556 0.4780 0.5191 0.7565 0.6271

Fine-Tuned

Caduceus 0.5029 0.5596 0.7405 0.7304 0.9350 0.8724
DNABERT-2 0.4892 0.5436 0.7304 0.7286 0.9157 0.8425
GENA-LM 0.4669 0.5347 0.7196 0.7206 0.9084 0.8333
HyenaDNA 0.4356 0.4962 0.6058 0.6069 0.8532 0.7452
Mistral-DNA 0.3718 0.4368 0.5175 0.5557 0.7888 0.6694
Nucleotide Transformer 0.5148 0.5862 0.7659 0.7650 0.9381 0.8868

Ab initio ChromBPNet 0.5401 0.6074 0.7349 0.7282 0.9399 0.8851

Table S15: Chromatin Accessibility Prediction Results (H1ESC)
Setting Model Spearman r Peaks Pearson r Peaks Spearman r All Pearson r All AUROC AUPRC

Probed

Caduceus 0.3706 0.4624 0.2484 0.3267 0.6076 0.4291
DNABERT-2 0.5835 0.6477 0.5714 0.6035 0.7629 0.6412
GENA-LM 0.6779 0.7074 0.6311 0.6682 0.8093 0.7036
HyenaDNA 0.5381 0.6070 0.5154 0.5630 0.7282 0.5932
Mistral-DNA 0.4997 0.5002 0.4370 0.4700 0.6445 0.4424
Nucleotide Transformer 0.5945 0.6544 0.5418 0.5611 0.7654 0.6504

Fine-Tuned

Caduceus 0.7437 0.7869 0.7983 0.7992 0.9541 0.9081
DNABERT-2 0.7173 0.7732 0.7810 0.7962 0.9405 0.8908
GENA-LM 0.6962 0.7550 0.7768 0.7962 0.9416 0.8956
HyenaDNA 0.6726 0.7271 0.7400 0.7486 0.9272 0.8610
Mistral-DNA 0.5734 0.6478 0.6362 0.6835 0.8385 0.7353
Nucleotide Transformer 0.7366 0.7969 0.8011 0.8150 0.9584 0.9247

Ab initio ChromBPNet 0.7549 0.7971 0.7716 0.7534 0.9524 0.9062

Table S16: Chromatin Accessibility Prediction Results (HEPG2)
Setting Model Spearman r Peaks Pearson r Peaks Spearman r All Pearson r All AUROC AUPRC

Probed

Caduceus 0.3123 0.3857 0.2623 0.3407 0.6108 0.5432
DNABERT-2 0.3566 0.4241 0.3342 0.3954 0.6499 0.5736
GENA-LM 0.4008 0.4833 0.5052 0.5558 0.7709 0.7000
HyenaDNA 0.3453 0.3962 0.3465 0.4072 0.6414 0.5506
Mistral-DNA 0.3487 0.4096 0.3529 0.4141 0.6528 0.5586
Nucleotide Transformer 0.3365 0.3989 0.3175 0.3862 0.6483 0.5777

Fine-Tuned

Caduceus 0.4536 0.5234 0.6671 0.6323 0.8964 0.8219
DNABERT-2 0.4719 0.5365 0.6858 0.6559 0.8934 0.8247
GENA-LM 0.4392 0.5145 0.6626 0.6408 0.8777 0.8097
HyenaDNA 0.4057 0.4782 0.6197 0.5949 0.8537 0.7732
Mistral-DNA 0.3597 0.4241 0.4754 0.4833 0.7306 0.6331
Nucleotide Transformer 0.5134 0.5773 0.7184 0.6876 0.9216 0.8690

Ab initio ChromBPNet 0.5344 0.6021 0.6898 0.6711 0.9097 0.8618

Table S17: Chromatin Accessibility Prediction Results (IMR90)
Setting Model Spearman r Peaks Pearson r Peaks Spearman r All Pearson r All AUROC AUPRC

Probed

Caduceus 0.1486 0.1719 0.2123 0.2163 0.6096 0.2702
DNABERT-2 0.2745 0.2884 0.4454 0.4448 0.7285 0.4125
GENA-LM 0.3288 0.3638 0.5213 0.5539 0.7989 0.5410
HyenaDNA 0.2371 0.2869 0.3856 0.4408 0.7016 0.3889
Mistral-DNA 0.2439 0.2828 0.3866 0.3956 0.7116 0.4025
Nucleotide Transformer 0.2693 0.3184 0.4379 0.4427 0.7387 0.4795

Fine-Tuned

Caduceus 0.4793 0.5258 0.7988 0.7475 0.9760 0.8997
DNABERT-2 0.4699 0.5126 0.7960 0.7505 0.9629 0.8580
GENA-LM 0.4211 0.4778 0.7898 0.7512 0.9612 0.8569
HyenaDNA 0.4255 0.4703 0.7231 0.6737 0.9412 0.7851
Mistral-DNA 0.3023 0.3425 0.5912 0.5830 0.8547 0.6093
Nucleotide Transformer 0.4890 0.5416 0.8195 0.7806 0.9745 0.9018

Ab initio ChromBPNet 0.5495 0.5963 0.7749 0.7314 0.9745 0.8886
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Table S18: Chromatin Accessibility Prediction Results (K562)
Setting Model Spearman r Peaks Pearson r Peaks Spearman r All Pearson r All AUROC AUPRC

Probed

Caduceus 0.4006 0.5499 0.3009 0.4444 0.6164 0.5819
DNABERT-2 0.4827 0.6215 0.4811 0.5722 0.7208 0.6701
GENA-LM 0.4610 0.6152 0.4988 0.5811 0.7607 0.7066
HyenaDNA 0.4381 0.5616 0.3763 0.4624 0.6621 0.5869
Mistral-DNA 0.4307 0.5634 0.3973 0.5019 0.6782 0.6031
Nucleotide Transformer 0.4990 0.6339 0.5116 0.6037 0.7640 0.7203

Fine-Tuned

Caduceus 0.5698 0.6668 0.7599 0.7475 0.9334 0.8852
DNABERT-2 0.5286 0.6484 0.7357 0.7329 0.9172 0.8674
GENA-LM 0.5323 0.6392 0.7349 0.7389 0.9096 0.8603
HyenaDNA 0.4456 0.5878 0.5112 0.5693 0.7499 0.6729
Mistral-DNA 0.4305 0.5678 0.5615 0.6005 0.7956 0.7117
Nucleotide Transformer 0.5829 0.6863 0.7764 0.7714 0.9412 0.9016

Ab initio ChromBPNet 0.5741 0.6687 0.7200 0.7246 0.9167 0.8762
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Figure S6: African LCLs caQTLs Supervised Model Scores

Figure S7: African LCLs caQTLs Zero Shot Model Scores

Figure S8: Yoruban LCLs dsQTLs Supervised Model Scores
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Figure S9: Yoruban LCLs dsQTLs Zero Shot Model Scores

Table S19: African caQTL Supervised Variant Scoring Extended Results
Setting Model Pearson r Spearman r AUROC AUPRC Wilcoxon p-value

Probed

Caduceus -0.0044 0.0040 0.5124 0.0848 0.0003
DNABERT-2 0.0064 0.0111 0.5024 0.0810 0.2536
GENA-LM -0.0067 0.0082 0.5149 0.0836 2.2893e-5
HyenaDNA 0.0121 0.0139 0.5658 0.0937 4.0326e-73
Mistral-DNA 0.0185 0.0142 0.5018 0.0821 0.2706
Nucleotide Transformer 0.0058 0.0052 0.5248 0.0870 5.4018e-12

Fine-Tuned

Caduceus 0.2591 0.2818 0.6498 0.1791 0.000
DNABERT-2 0.1840 0.2185 0.6155 0.1380 1.1660e-220
GENA-LM 0.2011 0.2161 0.6038 0.1285 1.2926e-178
HyenaDNA 0.2653 0.2871 0.6108 0.1233 4.358e-203
Mistral-DNA 0.0849 0.0858 0.5101 0.0841 0.0027
Nucleotide Transformer 0.2299 0.2435 0.6231 0.1542 2.8400e-250

Ab initio ChromBPNet 0.6712 0.6995 0.7716 0.3972 0.000

Table S20: Yoruban dsQTL Supervised Variant Scoring Extended Results
Setting Model Pearson r Spearman r AUROC AUPRC Wilcoxon p-value

Probed

Caduceus 0.0167 0.0236 0.4901 0.0200 0.7893
DNABERT-2 0.0240 -0.0049 0.4756 0.0194 0.9760
GENA-LM 0.0589 0.0292 0.4655 0.0191 0.9975
HyenaDNA -0.0417 -0.0771 0.4672 0.0187 0.9961
Mistral-DNA -0.0031 0.0457 0.4324 0.0201 1.000
Nucleotide Transformer 0.1289 0.1407 0.5163 0.0222 0.0934

Fine-Tuned

Caduceus 0.5127 0.5619 0.6664 0.0764 8.176e-42
DNABERT-2 0.4727 0.5007 0.6307 0.0416 1.390e-26
GENA-LM 0.4141 0.4541 0.6280 0.0396 1.524e-25
HyenaDNA 0.5031 0.5011 0.5729 0.0289 1.6439e-09
Mistral-DNA 0.0530 0.0618 0.5041 0.0204 0.3697
Nucleotide Transformer 0.5073 0.5223 0.6697 0.0796 1.949e-43

Ab initio ChromBPNet 0.7385 0.7507 0.8916 0.3587 7.610e-222
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B. Ballester, F. Parcy, A. Sandelin, B. Lenhard, W. W. Wasserman, and A. Mathelier. JASPAR
2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids
Research, 48(D1):D87–D92, jan 2020.

[8] C. E. Grant, T. L. Bailey, and W. S. Noble. FIMO: scanning for occurrences of a given motif.
Bioinformatics, 27(7):1017–1018, apr 2011.

[9] S. Heinz, C. Benner, N. Spann, E. Bertolino, Y. C. Lin, P. Laslo, J. X. Cheng, C. Murre,
H. Singh, and C. K. Glass. Simple combinations of lineage-determining transcription factors
prime cis-regulatory elements required for macrophage and b cell identities. Molecular Cell,
38(4):576–589, may 2010.

[10] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. LoRA:
Low-rank adaptation of large language models. arXiv, 2021.

[11] K. Jaganathan, S. Kyriazopoulou Panagiotopoulou, J. F. McRae, S. F. Darbandi, D. Knowles,
Y. I. Li, J. A. Kosmicki, J. Arbelaez, W. Cui, G. B. Schwartz, E. D. Chow, E. Kanterakis, H. Gao,
A. Kia, S. Batzoglou, S. J. Sanders, and K. K.-H. Farh. Predicting splicing from primary
sequence with deep learning. Cell, 176(3):535–548.e24, jan 2019.

[12] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool,
R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard,
A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman,
E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver,
O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis. Highly accurate protein
structure prediction with AlphaFold. Nature, 596(7873):583–589, aug 2021.

[13] J. K. Leman, B. D. Weitzner, S. M. Lewis, J. Adolf-Bryfogle, N. Alam, R. F. Alford, M. Apra-
hamian, D. Baker, K. A. Barlow, P. Barth, B. Basanta, B. J. Bender, K. Blacklock, J. Bonet,
S. E. Boyken, P. Bradley, C. Bystroff, P. Conway, S. Cooper, B. E. Correia, B. Coventry, R. Das,

20



R. M. De Jong, F. DiMaio, L. Dsilva, R. Dunbrack, A. S. Ford, B. Frenz, D. Y. Fu, C. Geniesse,
L. Goldschmidt, R. Gowthaman, J. J. Gray, D. Gront, S. Guffy, S. Horowitz, P.-S. Huang, T. Hu-
ber, T. M. Jacobs, J. R. Jeliazkov, D. K. Johnson, K. Kappel, J. Karanicolas, H. Khakzad, K. R.
Khar, S. D. Khare, F. Khatib, A. Khramushin, I. C. King, R. Kleffner, B. Koepnick, T. Kortemme,
G. Kuenze, B. Kuhlman, D. Kuroda, J. W. Labonte, J. K. Lai, G. Lapidoth, A. Leaver-Fay,
S. Lindert, T. Linsky, N. London, J. H. Lubin, S. Lyskov, J. Maguire, L. Malmström, E. Marcos,
O. Marcu, N. A. Marze, J. Meiler, R. Moretti, V. K. Mulligan, S. Nerli, C. Norn, S. Ó’Conchúir,
N. Ollikainen, S. Ovchinnikov, M. S. Pacella, X. Pan, H. Park, R. E. Pavlovicz, M. Pethe, B. G.
Pierce, K. B. Pilla, B. Raveh, P. D. Renfrew, S. S. R. Burman, A. Rubenstein, M. F. Sauer,
A. Scheck, W. Schief, O. Schueler-Furman, Y. Sedan, A. M. Sevy, N. G. Sgourakis, L. Shi, J. B.
Siegel, D.-A. Silva, S. Smith, Y. Song, A. Stein, M. Szegedy, F. D. Teets, S. B. Thyme, R. Y.-R.
Wang, A. Watkins, L. Zimmerman, and R. Bonneau. Macromolecular modeling and design in
rosetta: recent methods and frameworks. Nature Methods, 17(7):665–680, jul 2020.

[14] Q. Li, J. B. Brown, H. Huang, and P. J. Bickel. Measuring reproducibility of high-throughput
experiments. The annals of applied statistics, 5(3):1752–1779, sep 2011.

[15] Z. Lin, H. Akin, R. Rao, B. Hie, Z. Zhu, W. Lu, N. Smetanin, R. Verkuil, O. Kabeli, Y. Shmueli,
A. Dos Santos Costa, M. Fazel-Zarandi, T. Sercu, S. Candido, and A. Rives. Evolutionary-scale
prediction of atomic-level protein structure with a language model. Science, 379(6637):1123–
1130, mar 2023.

[16] F. I. Marin, F. Teufel, M. Horrender, D. Madsen, D. Pultz, O. Winther, and W. Boomsma.
BEND: Benchmarking DNA language models on biologically meaningful tasks. arXiv, 2023.

[17] E. Nguyen, M. Poli, M. Faizi, A. Thomas, C. Birch-Sykes, M. Wornow, A. Patel, C. Rabideau,
S. Massaroli, Y. Bengio, S. Ermon, S. A. Baccus, and C. Ré. HyenaDNA: Long-range genomic
sequence modeling at single nucleotide resolution. arXiv, nov 2023.

[18] A. Pampari, A. Shcherbina, S. Nair, A. Wang, A. Patel, K. Mualim, S. Kundu, and A. Kundaje.
Bias factorized, base-resolution deep learning models of chromatin accessibility reveal cis-
regulatory sequence syntax, transcription factor footprints and regulatory variants. Biorxiv
(https://zenodo.org/record/7567628), 2024.

[19] A. R. Quinlan and I. M. Hall. BEDTools: a flexible suite of utilities for comparing genomic
features. Bioinformatics (Oxford, England), 26(6):841–2, mar 2010.

[20] Z. Tang and P. K. Koo. Evaluating the representational power of pre-trained DNA language
models for regulatory genomics. BioRxiv, mar 2024.

[21] The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids
Research, 45(D1):D158–D169, jan 2017.

[22] Z. Zhou, Y. Ji, W. Li, P. Dutta, R. Davuluri, and H. Liu. DNABERT-2: Efficient foundation
model and benchmark for multi-species genome. arXiv, 2023.

21


	Code and Data
	Extended Background
	The Genome and Non-Coding Regulation
	Deep learning models of DNA elements

	Datasets
	ENCODE candidate cis-regulatory elements
	HOCOMOCO transcription factor binding motifs
	ATAC-seq and DNase-seq Peaks
	Variants that influence chromatin accessibility (caQTLs and dsQTLs)

	Models
	Zero-Shot Model Evaluations
	Probed and Fine-Tuned Models
	Ab initio Models

	Tasks and Results
	Distinguishing regulatory DNA from background sequences
	Assessing sensitivity to known regulatory sequence motifs
	Learning cell-type-specific regulatory sequence features
	Predicting quantitative measures of regulatory activity from sequence
	Predicting counterfactual effects of regulatory genetic variants


