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A PROOF OF LEMMA1

Proof. The two-player game in (3) can be written as:
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According to strong Lagrangian duality, we can switch the order of the two players and it is equiva-
lent to:
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Solving the minimizing problem first assuming that we know Q(Y |X), we get the result that
P̂ (Y |X) = Q(Y |X). Plugging it into the maximizing problem, the whole problem reduces to
(4).

B PROOF OF THEOREM 1

Proof. The generalized constrained optimization problem in (4) can be written as:
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Note that the final constraint is superfluous since the domain of the objective function is the positive
real numbers. The Lagrangian associated with this problem is:
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where ✓ and �(x) are the Lagrangian multipliers. Taking the derivative with respect to P̂ (y|x),
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Therefore, if we instead set y as a one-hot encoding of the prediction, we conclude:
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The derivation of gradient then resembles the derivation in Theorem 1 in (Liu & Ziebart, 2014).
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Source:

Target:

ASG ASG+CBST ASG+CRST ASG+DRST

Figure 8: TSNE visualization of the learned classifier using different methods. Using DRST, the
classes are well-separated.

C DETAILED DERIVATION OF GRADIENTS

Gradient of the expected target loss over source densities ds, where we use R for the density ratio
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and gradient of loss over target densities dt:
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D ADDITIONAL DRST EXPERIMENTAL RESULTS

We demonstrate the TSNE plot of the learned decision boundaries for CBST, CRST and DRST in
figure 8. Figure 9 shows the misclassification entropy comparison between source model and DRL
model. Misclassification entropy is calculated as Si = 1

n

Pn
i=1

Pm
j=1 pij log pij , where n is the

number of samples and m is the number of categories in the dataset, and pij indicates the prediction
probability of the ith sample on the jth category. The larger misclassification entropy is, the more
uncertain the model prediction result is on the wrong predictions. This means the model would
fail more gently. Figure 10 demonstrates additional model attention visualization. Figure 11 shows
additional target examples with high and low density ratios. Our model is able to find noisy and
less-represented image from the target data by estimating the density ratios. DRL would be more
uncertain on those data.
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(a) (b) (c)
Figure 9: Comparison of DRL and DRST of misclassification entropy on different datasets.

Figure 10: Model attention visualized using Grad-Cam (Selvaraju et al., 2017). Our method can
also capture the domain knowledge well. For example, the first row input image contains a giraffe
and a car. However, giraffe is not a existing label for VisDA2017. While CBST and CRST captures
the wrong information, DRST is able to correctly capture the domain information.

E SIMULATION ON PLUG-IN ESTIMATOR

DRL for domain shift requires Ps(x)/Pt(x) to adjust the representation-level conservativeness. Like
many other machine learning methods using importance weights, like in transfer learning (Pan &
Yang, 2009), or off-policy evaluation (Dudı́k et al., 2011), we can use a plug-in estimator for the
density ratio Ps(x)/Pt(x). However, density ratio estimation (Sugiyama et al., 2012), especially in
the high-dimensional data, is rather different. Here, we ask the question: whether a more accurate
density ratio estimation leads to greater predictive performance in the downstream tasks?
We show a two-dimensional binary classification example in figure 12 to demonstrate relation be-
tween the performance of the density (ratio) estimation and the performance of the ultimate target
learning tasks. We use the RBA method (Liu & Ziebart, 2014) as an example. We conduct kernel
density estimation (KDE) and evaluate the average log-likelihood of the source and target domain.
We take the ratio of the density from KDE and plug in the RBA method. We can see that the case
with higher log-likelihood actually fail to give informative predictions. One of the reason is the
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Figure 11: Additional examples for density ratio estimation for different categories. We can observe
that data less well-represented in the source data has much lower density ratio. This shows that our
learned density ratio is a good measure of the level of representation of data in source and target
domains.

density (ratio) estimation task, as an independent learning task, does not share information with the
downstream prediction tasks that use the ratios.

(a) (b) (c) (d)
Figure 12: (a) Source and target data points are drawn from two Gaussian distributions. Solid line:
source and dashed line: target. The underlying true decision boundary for the binary classes is the
same between the two domains. (b)-(c) Prediction with density ratios from low and high density
estimation likelihoods. With more accurate density estimation, the RBA predictor gives overly
conservative predictions on the target domain. The colormap is the confidence P (“1”|x). (d) With
larger likelihood in density ratio estimation, the target log loss becomes worse.

Figure 13: Additional Office31 results on DRL compared with source-only, which is a complement
for Figure 6.
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Figure 14: Additional Office31 results on reliability plots, which is a complement for Figure 7. DRL
is compared with source-only and temperature scaling.

F ADDITIONAL RESULTS FOR DRL ON OFFICE-31

We include additional result for distributionally robust learning on office-31 in Figure 13 and Figure
14.

G CODE REPOSITORY

Code can be found at: https://anonymous.4open.science/r/
2ed8a9ce-f404-4489-9ef7-a3a83e02a44c/
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