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ABSTRACT

The primary focus of most recent works on open-vocabulary neural fields is ex-
tracting precise semantic features from the VLMs and then consolidating them
efficiently into a multi-view consistent 3D neural fields representation. However,
most existing works over-trusted SAM to regularize image-level CLIP without any
further refinement. Moreover, several existing works improved efficiency by di-
mensionality reduction of semantic features from 2D VLMs before fusing with
3DGS semantic fields, which inevitably leads to multi-view inconsistency. In
this work, we propose econSG for open-vocabulary semantic segmentation with
3DGS. Our econSG consists of: 1) A Confidence-region Guided Regularization
(CRR) that mutually refines SAM and CLIP to get the best of both worlds for
precise semantic features with complete and precise boundaries. 2) A low dimen-
sional contextual space to enforce 3D multi-view consistency while improving
computational efficiency by fusing backprojected multi-view 2D features and fol-
low by dimensional reduction directly on the fused 3D features instead of operat-
ing on each 2D view separately. Our econSG shows state-of-the-art performance
on four benchmark datasets compared to the existing methods. Furthermore, we
are also the most efficient training among all the methods. Our source code is
available at: https://lulusindazc.github.io/econSGproject/.

1 INTRODUCTION

The advances in neural 3D scene representation techniques have revolutionized many research and
applications in computer vision and graphics. Among these neural 3D scene representation tech-
niques, Neural Radiance Field (NeRF) (Mildenhall et al., 2021) stands out for its ability to learn 3D
neural fields directly from 2D images with excellent performance in important real-world applica-
tions such as novel view synthesis. Recently, the explicit 3D Gaussian Splatting (3DGS) (Kerbl et al.,
2023) has been proposed as an alternative to the implicit NeRF. This technique has demonstrated
remarkable reconstruction quality while maintaining high training and rendering efficiency. Con-
current to neural 3D scene representation techniques, large visual-language models (VLMs) such as
the CLIP model (Radford et al., 2021) have shown extremely strong capability in zero-shot transfer
to the open-world setting for various downstream tasks such as image semantic segmentation, etc.

Neural 3D scene representation and multi-modality foundation models are rapidly advancing in par-
allel. This progress has led to research on open-vocabulary 3D scene understanding, where the
neural rendering capabilities of neural fields are leveraged to align VLMs with 3D scenes. To this
end, almost all existing works (Kerr et al., 2023; Liu et al., 2024; Qin et al., 2023; Liao et al., 2024;
Shi et al., 2023; Zhou et al., 2024; Ye et al., 2023; Guo et al., 2024) unanimously adhered to the
fundamental pipeline of first extracting semantic features from the given multi-view images using
open-world 2D visual-language models (VLMs), followed by using these semantic features to train
semantic fields appended to NeRF or 3DGS. However, since 2D semantic features extracted inde-
pendently from multi-view images can be incomplete and inconsistent, the primary focus of most
existing works is on extracting precise semantic features from VLMs and then efficiently consoli-
dating them into a multi-view consistent 3D neural field representation.
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Early approach LeRF (Kerr et al., 2023) leverages CLIP to get semantic features from each of the
input multi-view images. However, this often results in semantic features with ambiguous bound-
aries since CLIP is trained on image-level captions despite the attempt in LeRF to improve granu-
larity with multi-scale CLIP features. Several subsequent works utilize Segment Anything Model
(SAM) (Kirillov et al., 2023) or DINOv2 (Oquab et al., 2023) to improve the precision of the seman-
tic features from CLIP. 3DOVS (Liu et al., 2024) and LEGaussians (Shi et al., 2023) use semantic
features with better boundaries from DINO to complement CLIP. Feature-3DGS (Zhou et al., 2024)
extracts semantic features from either SAM or LSeg (Li et al., 2022). Gaussian Grouping (Ye et al.,
2023) leverages only SAM masks, leading to class-agnostic segmentation. Semantic Gaussian (Guo
et al., 2024) and OV-NeRF (Liao et al., 2024) unify 2D CLIP features with class-agnostic instance
masks generated from SAM. All the above-mentioned works over-trusted DINOv2 or SAM without
making any refinement, which we show empirically (cf. Fig. 3 Column (b) shows missing regions
in the mask proposals from SAM) to be imperfect.

Several approaches such as OV-NeRF (Liao et al., 2024), LeRF (Kerr et al., 2023), 3DOVS (Liu
et al., 2024) and Feature-3DGS (Zhou et al., 2024) naively adopt the same dimension for the 3D
neural semantic fields as the high-dimensional semantic features from 2D VLMs, which inevitably
incurs high computational complexity for training and querying. Methods such as LangSplat (Qin
et al., 2023) and LeGaussians (Shi et al., 2023) propose the use of autoencoder or quantization
to reduce the dimension of the multi-view 2D semantic features, and therefore result in similar
reduction of dimension in the 3D neural semantic fields for efficient computation. However, the
reduction of feature dimension is carried out in the 2D space before lifting into the 3D space, and
this can lead to multi-view inconsistency that hurts performance. Although Gaussian Grouping (Ye
et al., 2023) is efficient by learning 3DGS only for class-agnostic mask rendering, it consequently
lacks semantic language information for each Gaussian.

In this paper, we propose Efficient and Multi-view Consistent 3D Semantic Gaussians (econSG), a
simple yet effective zero-shot model for 3D semantic understanding. Our proposed econSG con-
sists of: 1) Confidence-region Guided Regularization (CRR) to alleviate the incompleteness
and ambiguous boundaries of the semantic features obtained from VLMs. In contrast to other ap-
proaches which over-trusted SAM or DINO, our CRR is designed to get the best from both worlds
of OpenSeg (Ghiasi et al., 2022) and SAM with strong 3D multi-view consistency. Specifically, our
CRR first backprojects high confidence OpenSeg semantic features from multiple views using the
depth maps obtained from Colmap (Schönberger et al., 2016). We then fit a bounding box on the
fused features reprojected onto each view to prompt SAM for better region masks. These masks
help refine the OpenSeg semantic features towards well-defined boundaries. 2) Low-Dimensional
3D Contextual Space to enforce 3D multi-view consistency and enhance computational efficiency.
We build a 3D contextual space from 3D features obtained by fusing the backprojected multi-view
2D features instead of operating on each 2D view separately. We then pre-train an autoencoder to get
the low-dimensional latent semantic space for initializing the 3DGS semantic fields. The encoder
of the pre-trained autoencoder is also used to project CRR-refined semantic features into the same
latent space to supervise the 3DGS semantic fields. Our model improves efficiency by enabling
strong initialization for 3DGS semantic fields while performing optimization and rendering entirely
within the low-dimensional latent space.

We summarize our main contributions as follows: 1) We propose a Confidence-region Guided
Regularization (CRR) to get 2D semantic features with complete and precise boundaries by mutual
guidance from OpenSeg and SAM with strong awareness of multi-view consistency. 2) We design an
autoencoder with one-time pre-training to get the low-dimensional 3D contextual space for initial-
ization of the 3D neural semantic fields, and enforce multi-view consistency by backprojecting 2D
features from CRR into the same dimension as the low-dimensional 3D contextual space for efficient
training. 3) Our econSG show state-of-the-art performance on four benchmark datasets compared
to existing methods. Furthermore, we are also the most efficient training among all methods.

2 RELATED WORK

2D Open-vocabulary Segmentation. 2D open-vocabulary segmentation has seen considerable
growth due to the availability of vast text-image datasets and computational resources. Advance-
ments in large VLMs (Alayrac et al., 2022; Jia et al., 2021; Radford et al., 2021) have significantly
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enhanced zero-shot 2D scene understanding, even for long-tail objects in images. A common ap-
proach for zero-shot predictions is to use vision-and-language cross-modal encoders, which are
trained to map images and text labels into a unified semantic space. However, these models often
produce embeddings at the image level, which are not suitable for tasks requiring pixel-level in-
formation. Recent efforts (Ghiasi et al., 2022; Kuo et al., 2022; Li et al., 2022; Zhou et al., 2022;
Rao et al., 2022) aim to bridge this gap by correlating dense image features with language model
embeddings, enabling users to detect, classify or segment objects in images with arbitrary text la-
bels. Predominant open-vocabulary segmentation methods (e.g. LSeg (Li et al., 2022)) often rely
on distilling knowledge from large-scale pre-trained models such as image-text contrastive learn-
ing models (e.g. CLIP (Radford et al., 2021)) and diffusion models(Rombach et al., 2022). These
approaches leverage the rich semantic information captured during pre-training to perform segmen-
tation tasks. However, the distillation process necessitates fine-tuning on specific datasets with a
limited vocabulary which undermines the open-vocabulary capability and results in reduced perfor-
mance in recognizing rare classes. OpenSeg (Ghiasi et al., 2022) utilizes weak supervision through
image captions without fine-tuning on a specific class set, but its vocabulary is limited compared
to CLIP due to a smaller training dataset. In contrast, our method bypasses fine-tuning CLIP and
effectively handles open world classes.

3D Open-vocabulary Segmentation. The success of 2D open-vocabulary segmentation has in-
spired many recent works (Peng et al., 2023; Ding et al., 2023; Nguyen et al., 2024; Takmaz et al.,
2023) on 3D open-vocabulary segmentation for point clouds. Many of these methods follow a com-
mon design principle: aligning pre-trained 2D open-vocabulary segmentation frameworks such as
LSeg (Li et al., 2022) with point cloud feature embeddings. These works primarily rely on point
clouds that are relatively more difficult to obtain than multi-view images. To enable multi-view
images as input, there has been a significant increase in NeRF-based (Mildenhall et al., 2021) 3D
segmentation. Given that the 2D semantic features derived independently from multi-view images
are prone to inconsistency, the primary objective is to learn a shared 3D neural representation that
enforces consistency by fitting multi-view data into a unified representation with a loss function that
penalizes inconsistencies among views. Semantic-NeRF (Zhi et al., 2021) constructs a semantic
field which enables the synthesis of segmentation masks from novel views. However, this method
requires a large number of annotated labels, which is non-trivial and costed. Some methods (Tsch-
ernezki et al., 2022; Fan et al., 2022) utilize the self-supervised feature extractor (e.g. DINO (Caron
et al., 2021)) to extract 2D features and distill features into the semantic field. More recently, several
NeRF-based works (Kerr et al., 2023; Liu et al., 2024; Kobayashi et al., 2022) have explored textual
descriptions combined with CLIP models to achieve open-vocabulary 3D semantic understanding.
LERF (Kerr et al., 2023) grounds the language field within NeRF by optimizing multi-scale em-
beddings from CLIP into 3D scenes. 3DOVS (Liu et al., 2024) distills open-vocabulary multimodal
knowledge from CLIP and object boundary information from DINO into the NeRF. Wang et al.
(2024) focuses on proposing a 3D open-vocabulary segmentation framework that can generalize to
unseen scenes. Despite promising results, NeRF-based approaches suffer from slow training and
rending. We circumvent these issues by using the more efficient 3D Gaussian Splatting.

3D Gaussian Splatting. 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has recently gained pop-
ularity as a technique for real-time radiance field rendering and 3D scene reconstruction. Inspired
by the success of 3DGS in novel view synthesis, various works (Luiten et al., 2023; Yi et al., 2023;
Ye et al., 2023) have adapted it for various tasks to leverage its efficient rendering process. How-
ever, Gaussian Splatting methods enabling object-level or semantic understanding of the 3D scene
are still under-explored yet meaningful. Gaussian Grouping (Ye et al., 2023) extends 3DGS beyond
mere scene appearance and geometry modeling with instance level modeling based on class-agnostic
SAM masks. Feature3DGS (Zhou et al., 2024) learns high-dimensional semantic fields in 3D Gaus-
sians using multi-view CLIP features, leading to high computational cost. LangSplat (Qin et al.,
2023) and LEGaussians (Shi et al., 2023) encode multi-view features from 2D pre-trained VLMs
into 3DGS via different feature dimension reduction techniques. However, these approaches suffer
from rendering inefficiencies and 3D semantic inconsistencies across training views. FastLGS (Ji
et al., 2025) mitigates multiview inconsistencies by using appearance-based correspondences and
mask similarities across views, where they force matched masks across the views to take the same
semantic field. In contrast, we do not directly apply inconsistent and imprecise semantics from 2D
VLMs across views to optimize 3DGS. Instead, we construct a multi-view consistent 3D embedding
space based on geometry for modeling the 3DGS semantic fields.

3



Published as a conference paper at ICLR 2025

Query 
Embeddings

Input Images

𝓕"𝟐𝑫

Multi-view Feature Fusion

𝝋𝟐𝑫

VLM
Image Encoder

𝝋𝒒𝒖𝒆𝒓𝒚

VLM Encoder

3D Contextual Space

𝓜

𝝍
Average 
Pooling

Autoencoder

𝒈 𝒉

𝓜𝒛

Low-Dimensional Latent 
Semantic Space

𝓕𝟑𝑫

Object Queries

FusionBack-Projections to 3D

𝒯

𝓛𝒔𝒆𝒎𝒂𝒏𝒕𝒊𝒄

𝒯%
Query Latent Embeddings

𝓕"𝒛𝟐𝑫
Per-Pixel Latent Embeddings

SAM

𝒈

Learnable 3DGS
Semantic Fields 𝒇

CRR

Confidence-
guided Region 
Regularization

Rendering

𝓕𝟐𝑫

Initialization

CRR

𝓕
Semantic Loss

Cosine Similarity

𝑺𝒎 𝓛𝒄𝒆
⨀

Cross Entropy Loss 
Segmentation Logit

𝒀"
Regularized 

Pseudo Labels

…

( ‘Table’ )

( ‘Chair’ )

( ‘Wall’ )

Figure 1: Our econSG framework. 1) Top: Building 3D contextual latent space. We use the image
encode from a VLM and our CRR to get 2D features F̂2D, which are then back-projected and fused
in 3D to get the high dimensional 3D contextual codeM. An autoencoder [g, h] is learned to map
M into the low dimensional spaceMz . 2) Bottom: 3DGS for semantic fields. We optimize for the
3DGS semantic fields f with Lsemantic and Lce supervised by the image F̂2D and query Tz latent
embeddings obtained by the encoder g, respectively.Mz is used to initialize f .

3 PRELIMINARIES: 3D GAUSSIAN SPLATTING

3DGS (Kerbl et al., 2023) explicitly represents the 3D scene as a set of anisotropic 3D Gaussians,
which share similarity with point clouds. Each Gaussian is characterized by a center point vector
µ ∈ R3 and a covariance matrix Σ ∈ R3×3, which influences a 3D point x in the scene following the
3D Gaussian distribution: G(x) = 1

(2π)
3
2 |Σ|

1
2
e−

1
2 (x−µ)⊤Σ−1(x−µ). To ensure positive semi-definite

Σ and differential optimization, Σ = RSS⊤R⊤ is decomposed into two learnable components: a
scaling matrix S ∈ R3 and a rotation quaternion matrix R ∈ R4. Additionally, each Gaussian is
parameterized by an opacity value o ∈ R and an appearance feature vector defined by n spherical
harmonic (SH) coefficients C = {ci ∈ R3 | i = 1, 2, . . . , d2}, where d2 is the number of coefficients
of SH with degree d. For rendering, 3D Gaussians are projected onto the image plane of the given
view by the α− blending function as follows: c =

∑n
i=1 ciαi

∏i−1
j=1(1− αj). c is the final color in

the rendered image computed by blending n ordered Gaussians that overlap onto the pixel. ci ∈ R3

represent color computed from SH coefficients in the ith Gaussian. αi is obtained by multiplying
the projected 2D covariance matrix Σ′ ∈ R2×2 with the learned opacity. Σ′ = JWΣW⊤J⊤ in the
camera coordinates is computed using view transform matrix W and the Jacobian matrix J of the
affine approximation of the projective transformation.

4 OUR METHOD

Objective. Given the posed images I and the corresponding open-vocabulary queries T from the
frozen text encoder of a VLM, the goal is to synthesize semantic masks from novel views rendered
by 3DGS parameterized by {x, µ,R, S, c, f}, where f is an additional optimizable semantic field
we add to 3DGS.

Overview. Fig 1 shows an overview of our econSG which consists of: 1) A pre-training stage
where we first design the Confidence-guided Region Regularization (CRR) that mutually refines
OpenSeg and SAM to get the 2D semantic features. In contrast to (Ye et al., 2023; Liao et al., 2024;
Guo et al., 2024; Liu et al., 2024; Shi et al., 2023), our CRR avoids over-trusting DINO or SAM
which we empirically show to be imperfect (cf. Fig. 3 Column (b)). We then train an autoencoder
for the low-dimensional 3D contextual space to improve the training and query efficiency of the
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3DGS semantic fields in the next stage. Unlike (Qin et al., 2023; Shi et al., 2023) which compress
semantic features in the 2D space before 3D fusion, we enhance 3D consistency by first fusing
the backprojected 2D semantic features to get the 3D contextual space followed by training an
autoencoder to get the low-dimensional 3D contextual space. 2) A training stage where we initialize
the 3DGS semantic fields with the low-dimensional 3D contextual space, and supervise the training
of the rendered low-dimensional 3DGS semantic fields efficiently with the CRR semantic features
mapped into the same dimension by the frozen encoder in the pre-trained autoencoder. We also
utilize the frozen encoder and CRR to align class semantics with the 3DGS semantic fields.

4.1 IMAGE AND TEXT EMBEDDINGS

We obtain per-pixel semantic feature F2D from the RGB images I with the image encoder of a 2D
VLM φ2D : I 7→ F2D. Similarly, we use the 2D VLM encoder to get the representative open-
vocabulary embeddings T from multi-view object queries T via φquery : T 7→ T . During training,
queries T represent object proposals derived from multi-view inputs, whereas during inference, they
correspond to text prompts either provided at inference or specified by the user.

4.2 CONFIDENCE-GUIDED REGION REGULARIZATION (CRR)

As shown in Fig. 3, the semantic feature map from OpenSeg (Column (a)) and the regional mask
proposals from SAM (Column (b)) can be imperfect due to complex background and occlusion, and
thus leading to inconsistent and inaccurate semantics across multiple views. We design our CRR for
mutual refinement of the per-pixel semantic feature from the 2D VLM and regional mask proposals
from SAM as follows:

a: Select pixel embeddings F2D across all views with confidence higher than threshold τ1:
▷ R ← SelectConfident(F2D > τ1);

b: Back-project semantic features of each pixel in R into 3D using depthmaps D from Colmap.
Average-pool back-projectedR to get multi-view consistent semantic features:
▷ F̄3D ← AvgPool(BackProject(R,D));

c: Obtain semantic label for each 3D point according to its similarity with the query embeddings.
On the reprojected points, do majority voting on the semantic labels and average-pooling on the
semantic features to get a set of 2D semantic masks and their corresponding features and labels:
▷ {P, F̄2D, Ȳ } ← Vote-AvgPool(Project((SemanticLabel(T , F̄3D)));

d: Fit bounding boxes to the re-projected P , and use as input prompts to SAM to get better regional
mask proposals:
▷ S ← PromptSAM(FitBBox(Project(P)));

e: Retain P with confidence higher than threshold τ2. Assign the semantic label and feature of the
high confidence P to the improved SAM regional mask proposal S with the highest IoU score:
▷ {S, F̄2D, Ȳ } ← MaxIoUScore(SelectConfident(P > τ2),S);

Note that the semantic featuresF2D, F̄3D and F̄2D share the same dimension since F̄3D is obtained
from average pooling of F2D from multi-view back-projections, and F̄2D is from the average-
pooling of the reprojected F̄3D in each mask P . Steps (a)-(c) enforces multi-view consistency in
the semantic features from OpenSeg. Step (d) uses the multi-view consistent semantic mask to
improve regional mask proposals from SAM. Finally, Step (e) uses the improved regional mask
proposals from SAM to further refine the multi-view consistent semantic mask.

4.3 LOW-DIMENSIONAL 3D CONTEXTUAL SPACE

Multi-view Feature Fusion. For each 3D point obtained from Structure-from-Motion (SfM) using
Colmap for the initialization of 3DGS, we compute per 3D point feature f3Dp = ψ(f̄2Di , . . . , f̄2DNp

)

from average pooling ψ the multi-view features of the Np visible corresponding pixels. We build an
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initial 3D contextual space by consolidating all point features corresponding to the point cloud from
SfM:M = {f3D1 , . . . , f3Dp }.
Autoencoder. A naive direct rendering of the feature fields is very time-consuming due to the high
dimensionality of the semantic features F2D since the latent dimensions in 2D foundation models
tend to be very large. This problem is further aggravated in complex 3D scenes with a lot of dense
points. We thus pre-train an autoencoder to map the high dimensional 3D contextual spaceM into
a low-dimensional latent space space Mz = {z3D1 , . . . , z3Dp } to improve efficiency. Specifically,
the encoder z3Dp = g(f3Dp ) maps feature f3Dp with high dimension to a lower dimension latent
vector z3Dp . The reconstruction is given by ofp = h(g(f3Dp )), where h(·) is the decoder and ofp is
the reconstructed 3D semantic feature. The training objective of the autoencoder on the 3D point
featuresM is as follows:

Lae = Ll2(f
3D
p , ofp) + Lce(ŷ, cos < ofp , T >) + Lce(ŷ, cos < zfp , g(T ) >), (1)

where Ll2 and Lce denote the L2 loss and cross entropy loss, respectively. Using cosine similarity,
cos < ofp , T > outputs the semantic label of the reconstructed semantic feature based on query em-
beddings and cos < zfp , g(T ) > outputs the semantic label of the encoded low dimension semantic
feature. ŷ is the pseudo semantic mask generated from the 2D segmentation model.

4.4 3DGS SEMANTIC FIELDS

After obtaining the pre-trained autoencoder [g(·), h(·)], we use the encoder g(·) to map: 1) The
initial 3D contextual features to the low-dimensional 3D contextual space g : M 7→ Mz; 2) Per-
pixel semantic features to per-pixel low-dimensional semantic features g : F̄2D 7→ F̄2D

z ; 3) Query
semantic features to low-dimensional query semantic features g : T 7→ Tz .

We use the low-dimension 3D contextual space Mz to initialize the semantic field f in each 3D
Gaussians, and render the 3DGS semantic fields into each view via alpha-blending:

F =
∑
i∈n

fiαi

i−1∏
j=1

(1− αj). (2)

We supervise the rendered semantic fieldsF by their semantic logit Sm with the semantic mask label
Ȳ from CRR using a cross-entropy loss: Lce = CE(Sm, Ȳ ), where the semantic logit is obtained
from the cosine similarity between the low-dimensional semantic and query features: Sm = cos <
F , Tz >. Furthermore, we optionally regularize F to improve feature smoothness with the low-
dimensional semantic features F̄2D

z using a L2 semantic loss: Lsemantic = L2(F , F̄2D
z ).

The final supervision loss for optimizing the given scene is formulated as follows:

L = Lcolor + λ2dLce + λsemLsemantic, (3)

where Lcolor is the 3D Gaussian image rendering loss, and λ2d and λsem denote hyperparameters to
balance the loss terms. In inference, we use Eq. 2 to render the learned 3DGS semantic fields from
3D to 2D. We deploy the encoder g(·) from the pre-trained autoencoder to get query features Tz of
open-world queries. By computing activation scores between the rendered 3DGS semantic fields F
and query features, we can obtain open-world segmentation predictions.

5 EXPERIMENTS

We perform a series of experiments to demonstrate the effectiveness of our proposed method across
various 3D scene understanding tasks. We evaluate our method on the 2D semantic segmentation
benchmarks: ScanNet (Dai et al., 2017) and Replica (Straub et al., 2019), and 3D open-vocabulary
segmentation benchmarks: LERF (Kerr et al., 2023) and 3DOVS (Liu et al., 2024) to compare with
previous work, and provide results from ablation studies. We further showcase qualitative results on
the Mip-Nerf360 (Barron et al., 2022) for exciting open-vocabulary applications such as 3D object
localization, 3D object removal, 3D object inpainting, and language-guided editing.
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Table 1: Comparisons of open-vocabulary segmentation on 3DOVS dataset. Best results in bold.
Dataset 3DOVS

Method bed sofa lawn room bench overall
mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc

2D LSeg 56.0 87.6 4.5 16.5 17.5 77.5 19.2 46.1 6.0 42.7 20.6 54.1

3D

LERF 73.5 86.9 27.0 43.8 73.7 93.5 46.6 79.8 53.2 79.7 54.8 76.7
3DOVS 89.5 96.7 74.0 91.6 88.2 97.3 92.8 98.9 89.3 96.3 86.8 96.2
Feature3DGS 56.6 87.5 6.7 12.4 37.3 82.6 20.5 36.7 6.2 43.0 25.5 52.4
LEGaussians 45.7 - 48.2 - 49.7 - 44.7 - 47.4 - 47.1 -
LangSplat 73.5 89.7 82.3 98.7 89.9 95.6 95.0 99.4 70.6 92.6 82.3 95.2
econSG (Ours) 94.9 97.4 91.6 98.7 96.3 98.5 95.8 99.4 93.0 97.6 94.3 98.3

Table 2: Comparisons of localization accuracy on LERF dataset. Best results in bold.
Dataset LERF
Method ramen figurines teatime waldo kitchen overall

2D LSeg 14.1 8.9 33.9 27.3 21.1

3D

LERF 62.0 75.0 84.8 72.7 73.6
LangSplat 73.2 80.4 88.1 95.5 84.3
SemanticGaussian 76.8 83.1 89.8 90.9 85.2
LEGaussians 78.6 73.7 85.6 90.1 82.0
econSG (Ours) 83.2 89.3 93.4 96.2 90.5

5.1 DATASETS AND EXPERIMENTAL SETTING

Datasets. To measure the semantic segmentation performance in open-world scenes, we eval-
uate the effectiveness of our approach using two established multi-view indoor scene datasets:
Replica (Straub et al., 2019) and Scannet (Dai et al., 2017), and two 3D open-vocabulary segmenta-
tion datasets: LERF (Kerr et al., 2023) and 3DOVS (Liu et al., 2024). For both ScanNet and Replica,
we construct training and test sets by evenly sampling sequences in each scene. Images are rendered
at the resolution of 640 × 480. We adopt 20 different semantic class categories for Scannet by
following Openscene (Peng et al., 2023), while Replica is annotated with 51 classes for evaluation
as in (Engelmann et al., 2024). For LERF and 3DOVS, we follow the settings in LangSplat (Qin
et al., 2023) where LERF is extended with ground truth masks annotated for language queries and
3DOVS consists of 20 ∼ 30 images for each scene with the resolution of 4032 × 3024. To as-
sess 3D reconstruction quality, we applied our method to Mip-Nerf360 (Barron et al., 2022) and
LERF-Localization (Kerr et al., 2023) by following Gaussian Grouping (Ye et al., 2023).

Implementation details. For 2D VLMs, we utilize pixel-level encoders, OpenSeg (Ghiasi et al.,
2022) and LSeg(Li et al., 2022) to extract the per-pixel semantic features of each image in indoor
scene datasets, and adopt Openclip (Ilharco et al., 2021) to extract image-level features for language-
guided editing on Mip-Nerf360, LERF and 3DOVS datasets. We then use SAM for mutual refine-
ment with the 2D VLMs in our CRR to get the semantic features where we set τ1 = 0.45, τ2 = 0.6.
We use the Adam optimizer with the learning rate 0.0025 for latent semantic fields. For parameters
to train the image scene, we follow the default setting in the original 3DGS (Kerbl et al., 2023). For
additional parameters introduced to train the semantic scene, we set λsem = 1, λ2d = 1. For all
datasets, we train each scene for 30K iterations on one NVIDIA RTX-4090 GPU.

5.2 MULTIVIEW RECONSTRUCTION AND SEGMENTATION

Open-vocabulary Segmentation Comparison. Tab. 1 and Tab. 2 show quantitative results of open-
vocabulary segmentation on 3DOVS dataset and localization accuracy on LERF dataset. Tab. 3
shows segmentation comparison across various scenes on both Scannet and Replica. We compare
with 2D-based open-vocabulary segmentation model LSeg (Li et al., 2022) along with 3D NeRF
and 3DGS-based methods. LERF (Kerr et al., 2023) and 3DOVS (Liu et al., 2024) leverage the
multi-scale CLIP features from the image patches as supervisions for learning NeRF-based seman-
tic field, and thus struggle with both object boundary ambiguities for segmentation and rendering
efficiency. Their performance on novel views can be greatly degraded because of they generate
inconsistent and imprecise ground truth semantics from multi-scale features across multiple views.
Feature3DGS (Zhou et al., 2024) directly applies inconsistent and noisy semantics from training
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Table 3: Comparison with other methods on segmentation of novel views from Scannet and Replica.
Best results highlighted in bold.

Dataset FPS
Replica Scannet

sparse-view multi-view sparse-view multi-view
mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc

LERF 0.2 4.312 17.080 8.285 22.125 14.059 38.734 15.349 40.294
3DOVS 0.3 4.553 19.356 9.081 23.938 14.227 40.584 17.802 42.532
Feature3DGS 2.5 9.584 38.245 10.634 36.520 17.552 48.686 18.069 54.101
econSG (Ours) 156 25.513 70.716 33.869 78.564 39.018 74.805 48.205 86.178

Gaussian Grouping
 Feature Visualization

Ours
 Masks Prediction

Rendered Image OpenSeg
 Feature Visualization Masks Prediction

SAM
 Masks Prediction
(class agnostic)

 Masks Prediction
(class agnostic)

Figure 2: Qualitative comparison of our econSG with Gaussian Grouping (Ye et al., 2023) on
Replica.

views to optimize high-dimensional semantic field in 3D Gaussians, resulting in high computation
costs and inferior segmentation results. LangSplat (Qin et al., 2023) and LEGaussians (Shi et al.,
2023) compress 2D features across all views to improve rendering efficiency on semantic fields,
but their performance are still hindered by the inherent 3D semantic noises and inconsistency. Se-
manticGaussian distills noisy 2D features into an additional 3D model for learning 3D semantics
while ignoring semantic consistency from the multi-view 2D images. Our model consistently shows
the best performance since we introduce the 3D contextual latent space to provide sufficient 3D
semantic consistency into the ground truths and design a CRR step to generate clean and complete
semantic masks. These components help ensure optimization efficiency and robustness even with
few input images.

In Tab. 3, we also present the inference speed under the multi-view setting in terms of the frames per
second (FPS) metric. NeRF-based methods are generally constrained on rendering efficiency and
slow. 3DGS-based models are inefficient from high-dimensional language features in 3D Gaussians.
We also perform robustness comparison by evenly sampling sparse training views for optimiza-
tion(30 images per-scene in our experiments). It shows our model consistently outperforms other
methods, proving the proposed components help ensure optimization efficiency and robustness even
with few input images. In Fig. 2, we visualize the learned semantic fields by showing the rendered
latent embeddings in the testing views. We observe that our predictions are of better consistency
across views with more complete and well-defined boundaries semantics masks.

Ablation on CRR. We compare our CRR with OpengSeg and SAM, and conduct ablation studies
on CRR. OpenSeg in Fig. 3(a) shows issues such as ambiguous boundaries and inaccurate dense
predictions. This is due to the use of noisy segmentation maps from pre-trained visual encoders for
supervision. Fig. 3(b) shows that a naive over-trusting of SAM masks to refine boundaries does not
work well in complex scenes. Fig. 3(c) vs. (d) and Fig. 3(e) vs. (f) show the without and with our
CRR on the training and testing sets, respectively. We can see that our CRR effectively produces
semantic fields with clear boundaries.

Analysis on 3D Contextual Latent Space. We show qualitative results of 3D segmentation pre-
dictions and contextual feature space in Fig. 4. The 3D segmentations derived from the original
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 Initial results of training views from vision and language foundation models

 (a) Segmentation maps 
predicted from OpenSeg

 (b) Region proposals 
predicted from SAM

 (c) Training segmentation 
maps refined with CRR
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Rendered results of training views

 (d) Training view predictions
by semantic field w/o CRR

 (e) Training view predictions
by semantic field with CRR

Rendered results of testing views

 (f) Testing view predictions
by semantic field w/o CRR

 (g) Testing view predictions
by semantic field with CRR

Figure 3: Ablation on confidence-guided region regularization (CRR) with qualitative results of our
econSG on Replica. Panels (a)-(e) are from training views, and panels (f)-(g) are from testing views.
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Figure 4: Qualitative 3D Segmentation results and comparison of our method. The second and
fourth rows illustrate the feature visualization in 3D space.

OpenSeg exhibit significant coarseness and errors due to multi-view inconsistency among the pre-
dicted 2D semantic features. Gaussian Grouping shows better object-level boundaries by leveraging
SAM object mask IDs as direct supervision. However, SAM can fail in complex scenes leading to
incorrect masks in some views. Morever, since SAM segmentations are class-agnostic, the learned
3D semantic embeddings from Gaussian Grouping are only instance-level and cannot be queried by
text embeddings. SAMPro3D (Xu et al., 2023) proposes to filter low-quality prompts and consoli-
date prompts inside the object. However, SAMPro3D is not applicable to open-vocabulary 3D scene
understanding tasks without feature embeddings. In contrast, our model significantly improves the
quality of 3D contextual space and segmentation predictions as illustrated in the last column.

Training Efficiency Analysis. In Tab. 4 , we show training and inference time on the “sofa scene”
of 3DOVS dataset at different feature dimensions. Compared with LangSplat, our model achieves a
significant speed increase in inference (LangSplat:401.9s vs. Ours:4.9s). This is because LangSplat
performs evaluation on the original high-dimensional space while our model directly makes predic-
tions in the low-dimensional latent contextual space. Our model can achieve promising efficiency
and accuracy due to the low-dimensional 3D latent contextual space that avoids the need for training
high-dimensional 3DGS semantic fields. The last column of Tab 4 shows that the high-dimensional
features (e.g. 512 for CLIP features) pose huge memory and computation demands especially on
training when the autoencoder is removed.

5.3 APPLICATIONS

3D Scene Editing. Fig. 5 (Right) shows examples of language-guided editing on a object scene from
the Bear data (Ye et al., 2023) and a room scene from Mip-NeRF360 (Barron et al., 2022). We utilize
the text encoder to embed the object category names to identify the corresponding 3DGS points and
adjust their attributes such as coordinates and colors. We first detect regions that are invisible in all
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Table 4: Training efficiency analysis on the sofa scene of the 3DOVS dataset.
Methods LERF 3DOVS Langsplat Feature3DGS Ours Ours

(remove autoencoder)
Feature dimension 512 512 3 128 6 16 32 512
mIoU (%) 27.0 74.0 82.3 6.7 91.6 91.8 91.8 OOM
Training time (min) 19.4 78 66 87 29 32 43 OOM
Inference (s) 121.4 6.6 401.9 6.0 4.9 5.2 5.3 OOM

Mask prediction
(Ours)

Gaussian 
Grouping

Feature 
Visualization (Ours)

Relevancy Map
(Ours)Rendered Images Rendered View ‘remove the

[object]’
‘ inpaint black 

blurry regions’

EditingObject localization and segmentation

Prompt: 
egg

Prompt: 
green apple

Prompt: 
stuffed bear

Figure 5: Qualitative examples of language-guided segmentation and editing. Segmentation results
of the rendering views are compared with Gaussian Grouping on LERF-localization dataset.
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Figure 6: A 3D scene can be queried using text prompt embedding or images to locate matching 3D
points. Colors of image query outlines indicate corresponding matches in the 3D point cloud.

views after deletion and then inpaint these specific areas instead of the entire 2D object regions. We
then use the 2D inpainted image in each rendering view to guide the learning of new 3D Gaussians.

Open-Vocabulary 3D Object detection. Fig. 5 (Left) shows examples of object localization and
segmentation with text queries. In Fig. 6, we query a 3D scene database to retrieve examples based
on their similarity to a given input image. We first encode the query text or image using CLIP image
encoder and then threshold the cosine similarities between the CLIP features and the 3DGS semantic
fields to produce a 3D object detection and mask.

6 CONCLUSION

In this paper, we propose econSG for open-vocabulary semantic segmentation of 3D scenes. Specif-
ically, we propose CRR to get 2D semantic features with complete and precise boundaries by mutual
guidance from OpenSeg and SAM with strong awareness of multi-view consistency. We design an
autoencoder with one-time pretraining to get the low-dimensional 3D contextual space for initial-
ization of the 3D neural semantic fields, and enforce multi-view consistency by backprojecting 2D
features from CRR into the same dimension as the low-dimensional 3D contextual space for efficient
training. Our econSG shows state-of-the-art performance on four benchmark datasets compared to
the existing methods. Furthermore, we are also the most efficient training among all the methods.
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A APPENDIX

A.1 IMPLEMENTATION

Our auto-encoder is implemented by MLPs, which compresses the high-dimensional CLIP features
into low-dimensional latent features, i.e. 738 for OpenSeg and 512 for CLIP features. The encoder
consist of layers with size as follows: [256, 128, 64, 32, 6]. The decoder is composed with layers by
the following dimensions: [16, 32, 64, 128, 256, 256, 768].

A.2 ABLATION STUDY ON CRR.

We perform the ablation study of CRR on Scannet and Replica in Tab. 5. In row ‘w.CRR(w.o Step
a.)’, we evaluate Step a of CRR which performs high-confidence region selection for computing 3D
semantic features. In row ‘w.CRR (w.o Step d.)’, we analyze Step d of CRR which further use SAM
to refine the projected 2D segmentation maps. For example, in Room0 and scene0494 scenes, our
CRR improves performance greatly in terms of both mIoU, demonstrating that CRR helps refine
segmentation boundaries.

Table 5: Ablation study for CRR on Scannet and Replica.
Setting Room0 Replica scene0494 Scannet

mIoU mACC mIoU mACC mIoU mACC mIoU mACC
w.o CRR 13.245 41.307 10.604 29.816 18.674 36.869 17.933 42.133

w. CRR (w.o step a.) 22.336 61.563 23.276 69.364 52.861 84.450 36.549 75.235
w. CRR (w.o step d.) 27.091 68.647 27.146 72.843 57.924 86.583 42.098 83.476

w CRR 31.715 72.492 33.869 78.564 63.043 90.574 48.205 86.178

A.3 MORE VISUALIZATION RESULTS

We demonstrate more examples on Scannet dataset for open-vocabulary 3D semantic segmentation
in Fig. 7. In Fig. 8, Fig. 9 and Fig. 10, we present additional examples of retrieved objects from the
3DOVS and LERF datasets. Our model consistently provides clearer semantic patterns and exhibits
reduced noise compared to LEGaussians and LangSplat. These results demonstrate the effectiveness
of our model.

A.4 3D MULTIVIEW CONSISTENCY OF OUR CRR

Fig. 11 shows an illustration of a 3D point with semantic label that is consistent (Top) and in-
consistent (Bottom) across all multiple views. The steps in our CRR modify the results from
OpenSeg/LSeg and SAM to ensure that the 2D features are 3D consistent across all multiple views
(Top case). In contrast, other baseline methods overtrusted SAM and/or OpenSeg/LSeg often result
in 3D multiview inconsistencies (Bottom case). Consequently, the supervision of 3DGS semantic
fields from the features of our CRR tend to lead to good performances.

A.5 VISUALIZATION RESULTS

In Fig.12, we present the open-vocabulary segmentation results on the 3DOVS(Liu et al., 2024)
and LERF (Kerr et al., 2023) datasets using object attributes such as color, texture, and function as
queries. For example, when queried with the attribute “plush” in the LERF-teatime scene, our model
successfully localizes both the plush sheep and plush bear with accurate segmentation boundaries.
When queried with “white” on the same scene, our model correctly localizes the white plush sheep.
This demonstrates the robustness of our model in handling diverse open-vocabulary text queries.

In Fig. 13, we show the visualization results on MVImgNet (Yu et al., 2023) datasets for open-
vocabulary segmentation using part-level text queries. We chose MVImgNet to show this task be-
cause it contains single object scenes. Open-vocabulary segmentation using part-level text queries
is too challenging on the LeRF and 3DOVS datasets which contain multiple objects in the scenes.
In our experiments and as shown in the figures, we use object part names as text queries to segment
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Figure 7: Qualitative 3D segmentation results of our econSG on the Scannet dataset.
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Figure 8: Qualitative comparison of our econSG with baselines on the 3DOVS dataset. We show
the visualization of the retrieved objects in the scene. The quantitative results are in Table 1 in the
main paper.

the object parts for evaluation. LangSplat generates three scales with SAM and performs evalua-
tions using 3DGS models at small, medium, and large scales during inference to select the optimal
scale for a query. The results show that LangSplat struggles with open-vocabulary part segmenta-
tion. For example, when queried with “guitar headstock” (third row), LangSplat identifies the entire
guitar instead of the headstock. In contrast, our econSG generates precise segmentation maps for
each part-level query. Although our econSG is capable of showing precise part segmentation for
this example, we do not claim the full capability of part segmentation. This challenging task is
out-of-scope and we will leave it for future work.
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Figure 9: Qualitative comparison of our econSG with baselines on the 3DOVS dataset. We show
the visualization of the retrieved objects in the scene. The quantitative results are in Table 1 in the
main paper.
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Figure 10: Qualitative comparison of our econSG with baselines on the LERF dataset. We show the
visualization of the retrieved objects in the scene. The quantitative results are in Table 2 in the main
paper.
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Figure 11: Multiview consistency illustration. Top: The semantic label of a 3D point matches the
semantic labels in the 2D images across multiple views. Bottom: The semantic label of the 3D point
do not match all the 2D semantic labels in the 2D images across multiple views.
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Figure 12: Qualitative results (relevancy maps and segmentations) of our econSG for evaluating the
open-vocabulary attribute query.
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Figure 13: Qualitative comparisons between our econSG and LangSplat on MVImgNet dataset for
evaluating the open-vocabulary 3D part segmentation.
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