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Appendix

A Algorithmic Descriptions of Neural Clamping

Algorithm 1 Neural Clamping
1: Input: Fixed K-way image classifier f◊(·), calibration dataset {xi, yi}n

i=1, learning rate ‘, focal loss
hyperparameter “, and weight-decay regularization hyperparameter ⁄

2: Output: The optimal input perturbation ” and temperature T

3: Initialize
” Ω initialization (random or data-driven)
T Ω 1
Loss Ω L“

F L and ⁄ according to equation 9
4: while not converged do
5: Sample data batch batches(xi, yi) ≥ {xi, yi}n

i=1
6: for batches(xi, yi) do
7: Update ” Ω ” ≠ ‘Ò”Loss(f◊(xi + ”)/T, yi)
8: Update T Ω T ≠ ‘ÒT Loss(f◊(xi + ”)/T, yi)
9: end for

10: end while
11: return ”, T

In our implementation, we set the hyperparameters ⁄ and “ in equation (9) by the best parameter minimizing
the ECE on the calibration dataset. The selection of ⁄/“ sweeps from 0.001 to 10 and 0.01 to 5. with an
increment of 0.001/0.01, respectively.

The input calibration parameter ” and the output calibration parameter T are optimized using the stochastic
gradient descent (SGD) optimizer with learning rate 0.001, batch size 512, and 100 epochs. For initialization,
” use randomly initialized (Gaussian distribution with mean=0 and variance=0.01) and T is set to 1.

B Proof for Lemma 3.1

Lemma 3.1 (optimality of joint input-output calibration) For any input perturbation ”, let f◊(·) =
[f (1)

◊ , . . . , f
(K)
◊ ] be a fixed K-way neural network classifier and let z be the output logits of a perturbed data

input x + ”. Then the proposed form of joint input-output calibration in Neural Clamping is the unique
solution q

ú(z)(k) = exp[f(k)
◊

(x+”)/T ]qK

j=1
exp[f(j)

◊
(x+”)/T ]

, ’k œ {1, . . . , K}, to the constrained entropy maximization problem
in equation 7.

Proof. Without loss of generality, the following proof assumes a vectorized input dimension. Our proof
extends the theoretical analysis on temperature scaling in the supplementary materials S.2 of Guo et al. (2017)
to consider an input perturbation ”. We use the method of Lagrange multipliers to solve the constrained
entropy maximization problem in equation 7. Let ⁄0 œ R and ⁄1, ⁄2, ..., ⁄n œ R be the Lagrangian multipliers
for the constraint

qn
i=1 z€

i e(yi) =
qn

i=1 z€
i q(zi) and

qn
i=1 1€

q(zi) = 1, ’i, respectively. We will show the
optimal solution automatically satisfies the first constraint (nonnegativity) q(zi)(k) Ø 0 for all i and k later.
Then we define

L = ≠
nÿ

i=1
q(zi)€ log(q(zi)) + ⁄0

nÿ

i=1

Ë
z€

i q(zi) ≠ zi · e(yi)
È

+
nÿ

i=1
⁄i

#
1€

q(zi) ≠ 1
$

(10)

Taking the partial derivative of L with respect to q(zi) gives
ˆ

ˆq(zi)
L = ≠log(q(zi)) ≠ 1 + ⁄0zi + ⁄i1 (11)
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Let the partial derivative of L equal 0, then we can get

q(zi) =

S

WWU

exp[⁄0z
(1)
i + ⁄i ≠ 1]

...
exp[⁄0z

(K)
i + ⁄i ≠ 1]

T

XXV (12)

Note that this expression suggests q(zi)(k) Ø 0 and thus the first constraint is satisfied. Due to the constraintqn
i=1 1€

q(zi) = 1 for all i, the solution q(zi) must be

q(zi)(k) = exp[⁄0z
(k)
i ]

qK
j=1 exp[⁄0z

(j)
i ]

(13)

By setting T = 1
⁄0

, we can get the unique solution

q
ú(z)(k) = exp[f (k)

◊ (x + ”)/T ]
qK

j=1 exp[f (j)
◊ (x + ”)/T ]

, ’k œ {1, . . . , K}. (14)

C Proof for Theorem 3.2

Theorem 3.2 (provable entropy increment and data-driven initialization) Let [–, —] be the feasible range
of data inputs and g =

qn
i=1 gi = [g(1)

, . . . , g
(K)] be the sum of local input gradients. Define ÷ œ Rm

element-wise such that ÷j = ¸j ≠ –j if g
(j)

< 0, ÷j = —j ≠ µj if g
(j)

> 0, and ÷j = 0 otherwise, for
every j œ {1, . . . , m}. Approaching by first-order approximation and given the same temperature value T ,
Neural Clamping increases the entropy of temperature scaling by ”€g. Furthermore, the optimal value Â” for
maximizing ”€g is Â” = sign(g) § ÷.

Proof. For ease of understanding, let Ĥ(x) = H(‡(f◊(x)/T )) denote the entropy of the classifier f◊ (with
softmax as the final output layer) after calibration. We have Taylor series expansion of Ĥ at a point x0 as:

Ĥ(x) = Ĥ(x0) + (x ≠ x0)€ÒĤ(x0)

+ 1
2(x ≠ x0)€Ò2

Ĥ(x0)(x ≠ x0) + · · ·
(15)

Adding input perturbation ” to input data point x and applying the first-order approximation on Ĥ(x), we
can get

Ĥ(x + ”) = Ĥ(x) + [(x + ”) ≠ x]€ÒĤ(x) + · · ·
¥ Ĥ(x) + ”€ÒĤ(x)

(16)

Then we can use above approximation to compute the average output entropy for all data {xi}n
i=1:

1
n

nÿ

i=1
Ĥ(xi + ”) = 1

n

nÿ

i=1
Ĥ(xi) + 1

n

nÿ

i=1
”€ÒĤ(xi) (17)

Let gi = ÒĤ(xi) = ÒH(‡(f◊(xi)/T )) is the input gradient with respect to xi, and g is the average input
gradient 1

n

qn
i=1gi. The first term is the original entropy value, namely the entropy of temperature scaling.

The second term is the additional entropy term caused by introducing the input perturbation. The latter
can be rewritten as:

—Ĥ(xi + ”) = 1
n

nÿ

i=1
”€ÒĤ(xi) = ”€

n

nÿ

i=1
gi = ”€g (18)
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Therefore, Neural Clamping increases the entropy of temperature scaling by ”€g.

Maximizing the scalar product ”€g under the constraint xi + ” œ [–, —] for all i is equivalent to maximizing
an inner product over an LŒ ball, where [–, —] µ Rm ◊ Rm means the bounded range of all feasible data
inputs, e.g., every image pixel value is within [0, 255].
Due to the constraint, we further define ¸ œ Rm and µ œ Rm as the lower bound and the upper bound over all
calibration data {xi}n

i=1 on each input dimension. That is, their j-th entry is defined as ¸j = miniœ{1,...,n} x
(j)
i

and µj = maxiœ{1,...,n} x
(j)
i , respectively. Then we can find available range value ÷ œ Rm for ” to maximize

the scalar product ”€g according to the direction of input gradient, ÷ can be defined as:

÷j =

Y
_]

_[

¸j ≠ –j if g
(j)

< 0
—j ≠ µj if g

(j)
> 0

0 otherwise
(19)

Finally, we can get the optimal Â” for maximizing the scalar product ”€g, i.e.,

Â” = sign(g) § ÷ (20)

D Result with Varying Bin Numbers

Calibration error measurements are known to be influenced by the number of bins. In order to account for
the influence of bin numbers on calibration error measurements, we present additional results using di�erent
bin configurations. Specifically, we evaluate the results of the BloodMNIST experiment with bin numbers
10 and 20, which are displayed in Table 5 and Table 6, respectively. Furthermore, we provide the results of
the CIFAR-100 experiment with bin numbers 10 and 20 in Table 7 and Table 8, respectively. Lastly, the
results of the ImageNet-1K experiment with bin numbers 10 and 20 can be found in Table 9 and Table 10,
respectively. By examining the results across di�erent bin configurations, we gain a more comprehensive
understanding of the performance of our approach in di�erent scenarios.

Table 5: Comparison with various calibration methods on BloodMNIST with ResNet-50 (calibration metric
bins=10). The reported results are mean and standard deviation over 5 runs. The best/second-best method
is highlighted by blue/green color. On ECE/AECE, the relative improvement of Neural Clamping to the
best baseline is 21% and 28%, respectively.

ResNet-50
Method Accuracy (%) Entropy ø ECE (%) ¿ AECE (%) ¿ SCE (◊10≠2) ¿
Uncalibrated 85.79 0.2256 5.77 5.76 1.6217
Temp. Scaling 85.79 ±0 0.3726 ±0 1.32 ±0 1.43 ±0 1.0148 ±0
TS by Grid Search 85.79 ±0 0.3726 ±0 1.86 ±0 1.59 ±0 1.0134 ±0
Vector Scaling 85.79 ±0.05 0.3653 ±0.0023 1.80 ±0.09 1.87 ±0.17 0.8355 ±0.0688
Matrix Scaling 85.79 ±0.38 0.2984 ±0.0161 4.93 ±0.67 4.85 ±0.72 1.3964 ±0.1345
MS-ODIR 85.79 ±0.04 0.3726 ±0.0001 1.59 ±0.03 1.65 ±0.05 0.7277 ±0.0021
Dir-ODIR 85.79 ±0.02 0.3748 ±0.0002 1.94 ±0.07 1.39 ±0.04 0.7435 ±0.0141
NC (CE) 85.79 ±0.02 0.3820 ±0.0005 1.20 ±0.04 1.32 ±0.04 1.0131 ±0.0063
NC (FL) 85.82 ±0.03 0.4204 ±0.0004 1.04 ±0.04 0.99 ±0.04 0.9744 ±0.0031

E Reliability Diagrams

To visually compare the ECE results (15 bins) to each method with the groundtruth, we present reliabil-
ity diagrams. These diagrams o�er a comprehensive view of the calibration performance. The reliability
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Table 6: Comparison with various calibration methods on BloodMNIST with ResNet-50 (calibration metric
bins=20). The reported results are mean and standard deviation over 5 runs. The best/second-best method
is highlighted by blue/green color. On ECE/AECE, the relative improvement of Neural Clamping to the
best baseline is 26% and 22%, respectively.

ResNet-50
Method Accuracy (%) Entropy ø ECE (%) ¿ AECE (%) ¿ SCE (◊10≠2) ¿
Uncalibrated 85.79 0.2256 5.77 5.76 1.7247
Temp. Scaling 85.79 ±0 0.3726 ±0 1.62 ±0 1.49 ±0 1.1978 ±0
TS by Grid Search 85.79 ±0 0.3726 ±0 2.00 ±0 1.66 ±0 1.1644 ±0
Vector Scaling 85.79 ±0.05 0.3653 ±0.0023 2.11 ±0.15 2.09 ±0.10 1.0276 ±0.0798
Matrix Scaling 85.79 ±0.38 0.2984 ±0.0161 5.00 ±0.63 4.94 ±0.66 1.5581 ±0.1318
MS-ODIR 85.79 ±0.04 0.3726 ±0.0001 2.08 ±0.06 2.32 ±0.06 0.9422 ±0.0107
Dir-ODIR 85.79 ±0.02 0.3748 ±0.0002 2.05 ±0.07 1.50 ±0.02 0.9563 ±0.0206
NC (CE) 85.79 ±0.02 0.3820 ±0.0005 1.83 ±0.13 1.43 ±0.05 1.2076 ±0.0116
NC (FL) 85.82 ±0.03 0.4204 ±0.0004 1.19 ±0.08 1.17 ±0.06 1.1905 ±0.0031

diagrams of BloodMNIST, CIFAR-100, and ImageNet are presented in Figure 4, Figure 5, and Figure 6,
respectively. Pink color is the perfectly calibrated, and purple color is the actual probability of the output.
By examining these diagrams, we gain graphical insights into the e�ectiveness of each method’s calibration
performance.

No Calibration Temperature Scaling
Temperature Scaling

(Grid search) Vector Scaling Matrix Scaling

MS-ODIR Dir-ODIR Neural Clamping (CE) Neural Clamping (FL)

Figure 4: Reliability diagram of ResNet-50 on BloodMNIST with 15 bins ECE metric

F Computationally E�cient Neural Clamping

We utilize our Theorem 1 to develop a Computationally E�cient Neural Clamping approach, referred to as
NC (E�.). NC (E�.) adopts the data-driven initialization Â” for the input perturbation (input gradient w.r.t.
entropy as discussed in Sec. 3.4), followed by temperature scaling (TS) with grid search (TS-Grid). This
lightweight version spares the need for training input perturbation, requires only one additional backpropa-
gation, and does not add additional hyperparameter tuning.

To demonstrate the e�ectiveness of NC (E�.), we present two examples: ResNet-50 on BloodMNIST and
ResNet-110 on CIFAR-100, in Table 11. We observed similar results across other examples as well. In our
paper, the resolution for temperature scaling (grid search) was set to 0.001, and we included a comparison
group with a resolution of 0.01 for analysis purposes. The table clearly shows that regardless of the res-
olution used, NC (E�.) consistently outperforms temperature scaling (grid search) in terms of ECE, with
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No Calibration Temperature Scaling
Temperature Scaling

(Grid search) Vector Scaling Matrix Scaling

MS-ODIR Dir-ODIR Neural Clamping (CE) Neural Clamping (FL)

(a) ResNet-110

No Calibration Temperature Scaling
Temperature Scaling

(Grid search) Vector Scaling Matrix Scaling

MS-ODIR Dir-ODIR Neural Clamping (CE) Neural Clamping (FL)

(b) Wide ResNet-40-10

Figure 5: Reliability diagram of (a) ResNet-110 and (b) Wide ResNet-40-10 on CIFAR-100 with 15 bins
ECE metric

improvements of up to 33.7 %. Notably, even with lower resolution, NC (E�.) can still achieve better results
than high-resolution temperature scaling in terms of both speed and ECE.

G Calibration Experiment on Model Trained with Di�erent Initialization Seeds

We trained ResNet-110 on CIFAR-100 with 5 random initialization seeds to account for potential variability
in the training process. For each of the 5 trained models, we performed the post-training calibration using a
5-fold cross-validation approach. This means that for each of the 5 trained models, we obtained 5 calibration
datasets, resulting in a total of 25 calibration runs (5 models ◊ 5 folds).

While the 25 calibration runs do not strictly adhere to the assumption of independent and identically
distributed (IID) samples, the 5-fold cross-validation approach mitigates dependence and 5 random initial-
izations introduce variation, enabling a robust comparison. The results are shown in Table 12. Then, we
conducted a Welch’s t-test to compare our proposed method (Neural Clamping) and the second-best baseline
method (TS by Grid Search). The results show:

• p-value = 0.00000000000004

• t-statistic = 10.67
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No Calibration Temperature Scaling
Temperature Scaling

(Grid search) Vector Scaling Matrix Scaling

MS-ODIR Dir-ODIR Neural Clamping (CE) Neural Clamping (FL)

(a) ResNet-101

No Calibration Temperature Scaling
Temperature Scaling

(Grid search) Vector Scaling Matrix Scaling

MS-ODIR Dir-ODIR Neural Clamping (CE) Neural Clamping (FL)

(b) ViT-S/16

No Calibration Temperature Scaling
Temperature Scaling

(Grid search) Vector Scaling Matrix Scaling

MS-ODIR Dir-ODIR Neural Clamping (CE) Neural Clamping (FL)

(c) MLP-Mixer B/16

Figure 6: Reliability diagram of (a) ResNet-101, (b) ViT-S/16, and (c) MLP-Mixer B/16 on ImageNet with
15 bins ECE metric

The extremely small p-value (well below the 0.05 significance level) indicates that there is a highly statistically
significant di�erence between the Neural Clamping method and the TS by Grid Search method. The absolute
value of the t-statistic, 10.67, is far greater than the critical value of 2, further confirming the highly
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Table 7: Comparison with various calibration methods on CIFAR-100 with di�erent models (calibration
metric bins=10). The reported results are mean and standard deviation over 5 runs. The best/second-best
method is highlighted by blue/green color. On ECE, the relative improvement of Neural Clamping to the
best baseline is 26/2 % on ResNet-110/Wide ResNet-40-10, respectively.

ResNet-110
Method Accuracy (%) Entropy ø ECE (%) ¿ AECE (%) ¿ SCE (◊10≠2) ¿
Uncalibrated 74.15 0.47430 10.707 10.714 0.26065
Temperature Scaling 74.15 ±0 0.8991 ±0 1.37 ±0 1.48 ±0 0.1443 ±0
TS by Grid Search 74.15 ±0 0.9239 ±0 1.08 ±0 1.26 ±0 0.1425 ±0
Vector Scaling 73.81 ±0.05 0.8698 ±0.0008 2.16 ±0.14 2.13 ±0.18 0.1683 ±0.0031
Matrix Scaling 62.03 ±0.31 0.1552 ±0.0026 31.86 ±0.29 31.85 ±0.29 0.6749 ±0.0060
MS-ODIR 74.07 ±0.03 0.9035 ±0.0001 1.67 ±0.04 1.79 ±0.03 0.1555 ±0.0009
Dir-ODIR 74.10 ±0.04 0.9160 ±0.0002 1.16 ±0.03 1.19 ±0.08 0.1501 ±0.0008
Neural Clamping (CE) 74.17 ±0.07 0.8928 ±0.0061 1.60 ±0.19 1.50 ±0.11 0.1427 ±0.0012
Neural Clamping (FL) 74.16 ±0.09 0.9707 ±0.0049 0.80 ±0.12 0.86 ±0.07 0.1486 ±0.0015

Wide-ResNet-40-10
Method Accuracy (%) Entropy ø ECE (%) ¿ AECE (%) ¿ SCE (◊10≠2) ¿
Uncalibrated 79.51 0.4211 7.63 7.63 0.2009
Temperature Scaling 79.51 ±0 0.7421 ±0 2.17 ±0 2.18 ±0 0.1369 ±0
TS by Grid Search 79.51 ±0 0.8359 ±0 1.65 ±0 1.48 ±0 0.1417 ±0
Vector Scaling 79.08 ±0.09 0.7079 ±0.0012 2.49 ±0.08 2.33 ±0.07 0.1612 ±0.0033
Matrix Scaling 68.48 ±0.16 0.1372 ±0.0023 26.14 ±0.14 26.13 ±0.15 0.5563 ±0.0020
MS-ODIR 79.15 ±0.03 0.7529 ±0.0002 1.90 ±0.04 1.95 ±0.03 0.1501 ±0.0005
Dir-ODIR 79.51 ±0.02 0.7707 ±0.0001 1.74 ±0.02 1.98 ±0.01 0.1366 ±0.0007
Neural Clamping (CE) 79.53 ±0.01 0.7462 ±0.0030 2.15 ±0.06 2.22 ±0.03 0.1368 ±0.0003
Neural Clamping (FL) 79.53 ±0.04 0.8626 ±0.0033 1.61 ±0.10 1.61 ±0.10 0.1445 ±0.0008

significant di�erence between the two methods. In summary, experimental results demonstrate that the
Neural Clamping method has a significantly superior calibration performance compared to other baseline
methods.

H Statistical Significance Tests

We check all experiments in our main paper, our proposed method (Neural Clamping) shows extremely
statistically significant di�erences to the corresponding second-best baseline method (such as Dir-ODIR,
TS(GS), TS, etc.). The p-values are extremely low, typically less than 0.001 significance level, and some
even less than 0.00001. This means the observed di�erences are highly unlikely to have occurred by random
chance. The absolute values of the t-statistics are very high, often above 10, and some even exceeding
80. This indicates the performance gap between the two methods is very large. These statistical metrics
provide very strong evidence that your proposed Neural Clamping (FL) method significantly outperforms
the baseline methods across various datasets and network architectures.

• ResNet-50 @ BloodMNIST Neural Clamping (FL)) vs. Dir-ODIR:
t-statistic: 22.36 and p-value: 0.000000044

• ResNet-110 @ CIFIAR-100 Neural Clamping (FL) vs. TS(GS):
t-statistic: 17.14 and p-value: 0.000067

• Wide-ResNet-40-10 @ CIFAR-100 Neural Clamping (FL) vs. TS (GS):
t-statistic: 23.88 and p-value: 0.000018

• ResNet-101 @ ImageNet-1K Neural Clamping (FL) vs. TS:
t-statistic: 83.41 and p-value: 0.00000012
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Table 8: Comparison with various calibration methods on CIFAR-100 with di�erent models (calibration
metric bins=20). The reported results are mean and standard deviation over 5 runs. The best/second-best
method is highlighted by blue/green color. On ECE, the relative improvement of Neural Clamping to the
best baseline is 26/6 % on ResNet-110/Wide ResNet-40-10, respectively.

ResNet-110
Method Accuracy (%) Entropy ø ECE (%) ¿ AECE (%) ¿ SCE (◊10≠2) ¿
Uncalibrated 74.15 0.4743 10.74 10.71 0.2937
Temperature Scaling 74.15 ±0 0.8991 ±0 1.72 ±0 1.68 ±0 0.1943 ±0
TS by Grid Search 74.15 ±0 0.9240 ±0 1.62 ±0 1.51 ±0 0.1938 ±0
Vector Scaling 73.81 ±0.05 0.8699 ±0.0008 2.31 ±0.19 2.25 ±0.21 0.2155 ±0.0027
Matrix Scaling 62.03 ±0.31 0.1552 ±0.0026 31.86 ±0.29 31.86 ±0.29 0.6914 ±0.0060
MS-ODIR 74.07 ±0.03 0.9035 ±0.0001 1.89 ±0.08 1.82 ±0.02 0.2031 ±0.0010
Dir-ODIR 74.10 ±0.04 0.9160 ±0.0002 1.48 ±0.07 1.44 ±0.20 0.2046 ±0.0020
Neural Clamping (CE) 74.17 ±0.07 0.8929 ±0.0061 1.78 ±0.18 1.62 ±0.12 0.1937 ±0.0029
Neural Clamping (FL) 74.16 ±0.09 0.9941 ±0.0049 1.09 ±0.16 1.20 ±0.17 0.2003 ±0.0029

Wide-ResNet-40-10
Method Accuracy (%) Entropy ø ECE (%) ¿ AECE (%) ¿ SCE (◊10≠2) ¿
Uncalibrated 79.51 0.4211 7.63 7.63 0.2351
Temperature Scaling 79.51 ±0 0.7421 ±0 2.22 ±0 2.21 ±0 0.1818 ±0
TS by Grid Search 79.51 ±0 0.8359 ±0 1.74 ±0 1.75 ±0 0.1900 ±0
Vector Scaling 79.08 ±0.09 0.7079 ±0.0012 2.59 ±0.09 2.47 ±0.08 0.2020 ±0.0032
Matrix Scaling 68.48 ±0.16 0.1372 ±0.0023 26.14 ±0.14 26.13 ±0.15 0.5728 ±0.0013
MS-ODIR 79.15 ±0.03 0.7529 ±0.0002 1.95 ±0.04 1.96 ±0.03 0.1915 ±0.0006
Dir-ODIR 79.51 ±0.01 0.7707 ±0.0001 1.94 ±0.02 1.99 ±0.01 0.1834 ±0.0008
Neural Clamping (CE) 79.53 ±0.01 0.7462 ±0.0030 2.20 ±0.03 2.24 ±0.04 0.1816 ±0.0003
Neural Clamping (FL) 79.53 ±0.04 0.8626 ±0.0033 1.63 ±0.06 1.70 ±0.14 0.1916 ±0.0019

• ViT-S/16 @ ImageNet-1K Neural Clamping (FL) vs. TS (GS):
t-statistic: 11.18 and p-value: 0.00036

• MLP-Mixer B/16 @ ImageNet-1K Neural Clamping (FL) vs. TS (GS):
t-statistic: 5.68 and p-value: 0.0047
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Table 9: Comparison with various calibration methods on ImageNet with di�erent models (calibration metric
bins=10). The reported results are mean and standard deviation over 5 runs. The best/second-best method
is highlighted by blue/green color. On ECE, the relative improvement of Neural Clamping to the best
baseline is 17/1/11 % on ResNet-101/ViT-S16/MLP-Mixer B16, respectively.

ResNet-101
Method Accuracy (%) Entropy ø ECE (%) ¿ AECE (%) ¿ SCE (◊10≠3) ¿
Uncalibrated 75.73 0.6608 5.88 5.88 0.2808
Temperature Scaling 75.73 ±0 0.9376 ±0 1.97 ±0 1.91 ±0 0.2677 ±0
TS by Grid Search 75.73 ±0 0.9244 ±0 2.04 ±0 1.97 ±0 0.2683 ±0
Vector Scaling 75.67 ±0.07 1.0463 ±0.0017 1.99 ±0.09 1.91 ±0.05 0.2775 ±0.0009
Matrix Scaling 51.97 ±0.30 0.0593 ±0.0008 45.60 ±0.29 45.60 ±0.28 0.8997 ±0.0052
MS-ODIR 70.71 ±0.10 0.9904 ±0.0016 3.28 ±0.06 3.28 ±0.06 0.2990 ±0.0009
Dir-ODIR 70.72 ±0.03 0.9841 ±0.0007 3.47 ±0.05 3.47 ±0.05 0.3016 ±0.0024
Neural Clamping (CE) 75.73 ±0.01 0.9429 ±0.0240 1.91 ±0.16 1.89 ±0.12 0.2682 ±0.0004
Neural Clamping (FL) 75.73 ±0.01 1.0103 ±0.0245 1.63 ±0.06 1.62 ±0.05 0.2700 ±0.0014

ViT-S/16
Method Accuracy (%) Entropy ø ECE (%) ¿ AECE (%) ¿ SCE (◊10≠3) ¿
Uncalibrated 79.90 0.7161 1.28 1.31 0.2460
Temperature Scaling 79.90 ±0 0.7314 ±0 1.06 ±0 1.12 ±0 0.2462 ±0
TS by Grid Search 79.90 ±0 0.7791 ±0 0.73 ±0 0.83 ±0 0.2481 ±0
Vector Scaling 80.02 ±0.03 0.9410 ±0.0014 2.62 ±0.03 2.68 ±0.04 0.2598 ±0.0008
Matrix Scaling 53.99 ±0.29 0.0646 ±0.0010 43.36 ±0.29 43.36 ±0.29 0.8765 ±0.0055
MS-ODIR 75.94 ±0.09 0.9810 ±0.0018 0.86 ±0.10 0.90 ±0.10 0.2722 ±0.0019
Dir-ODIR 75.93 ±0.09 0.9788 ±0.0007 0.86 ±0.06 0.81 ±0.08 0.2721 ±0.0014
Neural Clamping (CE) 79.98 ±0.01 0.7898 ±0.0028 0.73 ±0.02 0.88 ±0.04 0.2475 ±0.0004
Neural Clamping (FL) 79.97 ±0.01 0.7934 ±0.0038 0.72 ±0.05 0.79 ±0.04 0.2474 ±0.0002

MLP-Mixer B/16
Method Accuracy (%) Entropy ø ECE (%) ¿ AECE (%) ¿ SCE (◊10≠3) ¿
Uncalibrated 73.94 0.6812 11.56 11.55 0.3316
Temperature Scaling 73.94 ±0 1.2735 ±0 4.92 ±0 4.91 ±0 0.2847 ±0
TS by Grid Search 73.94 ±0 1.6243 ±0 2.60 ±0 2.74 ±0 0.2844 ±0
Vector Scaling 73.24 ±0.06 1.1474 ±0.0089 6.87 ±0.17 6.81 ±0.13 0.3022 ±0.0017
Matrix Scaling 40.96 ±0.31 0.1137 ±0.0010 54.50 ±0.28 54.50 ±0.28 1.0897 ±0.0042
MS-ODIR 73.16 ±0.02 1.8049 ±0.0016 4.48 ±0.03 4.73 ±0.05 0.3006 ±0.0011
Dir-ODIR 73.13 ±0.05 1.8083 ±0.0013 4.51 ±0.07 4.75 ±0.08 0.3009 ±0.0009
Neural Clamping (CE) 74.14 ±0.01 1.7952 ±0.0302 2.51 ±0.21 2.50 ±0.18 0.2937 ±0.0022
Neural Clamping (FL) 74.12 ±0.01 1.7673 ±0.0269 2.31 ±0.16 2.32 ±0.13 0.2916 ±0.0016
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Table 10: Comparison with various calibration methods on ImageNet with di�erent models (calibration
metric bins=20). The reported results are mean and standard deviation over 5 runs. The best/second-best
method is highlighted by blue/green color. On ECE, the relative improvement of Neural Clamping to the
best baseline is 12/6/12 % on ResNet-101/ViT-S16/MLP-Mixer B16, respectively.

ResNet-101
Method Accuracy (%) Entropy ø ECE ¿ AECE ¿ SCE (◊10≠3) ¿
Uncalibrated 75.73 0.6608 5.93 5.88 0.3482
Temperature Scaling 75.73 ±0 0.9376 ±0 1.98 ±0 1.91 ±0 0.3404 ±0
TS by Grid Search 75.73 ±0 0.9244 ±0 2.09 ±0 1.97 ±0 0.3401 ±0
Vector Scaling 75.67 ±0.07 1.0463 ±0.0017 2.05 ±0.13 1.99 ±0.08 0.3502 ±0.0013
Matrix Scaling 51.97 ±0.30 0.0593 ±0.0008 45.61 ±0.28 45.60 ±0.28 0.9058 ±0.0053
MS-ODIR 70.71 ±0.10 0.9904 ±0.0016 3.29 ±0.04 3.28 ±0.06 0.3795 ±0.0011
Dir-ODIR 70.72 ±0.03 0.9841 ±0.0007 3.49 ±0.05 3.47 ±0.05 0.3842 ±0.0017
Neural Clamping (CE) 75.73 ±0.01 0.9429 ±0.0240 1.96 ±0.14 1.89 ±0.12 0.3405 ±0.0004
Neural Clamping (FL) 75.73 ±0.01 1.0103 ±0.0245 1.74 ±0.03 1.64 ±0.03 0.3434 ±0.0018

ViT-S/16
Method Accuracy (%) Entropy ø ECE ¿ AECE ¿ SCE (◊10≠3) ¿
Uncalibrated 79.90 0.7161 1.32 1.31 0.3079
Temperature Scaling 79.90 ±0 0.7314 ±0 1.13 ±0 1.12 ±0 0.3084 ±0
TS by Grid Search 79.90 ±0 0.7791 ±0 0.88 ±0 0.97 ±0 0.3101 ±0
Vector Scaling 80.02 ±0.03 0.9410 ±0.0014 2.62 ±0.03 2.72 ±0.03 0.3269 ±0.0012
Matrix Scaling 53.99 ±0.29 0.0646 ±0.0010 43.36 ±0.29 43.36 ±0.29 0.8835 ±0.0056
MS-ODIR 75.94 ±0.09 0.9810 ±0.0018 0.92 ±0.09 0.98 ±0.09 0.3504 ±0.0022
Dir-ODIR 75.93 ±0.09 0.9788 ±0.0007 0.97 ±0.09 0.91 ±0.10 0.3485 ±0.0016
Neural Clamping (CE) 79.98 ±0.01 0.7898 ±0.0028 0.82 ±0.10 1.00 ±0.08 0.3115 ±0.0005
Neural Clamping (FL) 79.97 ±0.01 0.7934 ±0.0038 0.84 ±0.09 0.91 ±0.01 0.3117 ±0.0004

MLP-Mixer B/16
Method Accuracy (%) Entropy ø ECE ¿ AECE ¿ SCE (◊10≠3) ¿
Uncalibrated 73.94 0.6812 11.56 11.55 0.3781
Temperature Scaling 73.94 ±0 1.2735 ±0 5.04 ±0 4.91 ±0 0.3450 ±0
TS by Grid Search 73.94 ±0 1.6243 ±0 2.71 ±0 2.74 ±0 0.3553 ±0
Vector Scaling 73.24 ±0.06 1.1474 ±0.0089 6.91 ±0.17 6.84 ±0.13 0.3552 ±0.0017
Matrix Scaling 40.96 ±0.31 0.1137 ±0.0010 54.50 ±0.28 54.50 ±0.28 1.1024 ±0.0042
MS-ODIR 73.16 ±0.02 1.8049 ±0.0016 4.71 ±0.08 4.73 ±0.05 0.3821 ±0.0018
Dir-ODIR 73.13 ±0.05 1.8083 ±0.0013 4.73 ±0.09 4.77 ±0.09 0.3821 ±0.0011
Neural Clamping (CE) 74.14 ±0.01 1.7952 ±0.0302 2.55 ±0.18 2.53 ±0.18 0.3672 ±0.0028
Neural Clamping (FL) 74.12 ±0.01 1.7673 ±0.0269 2.36 ±0.13 2.36 ±0.13 0.3644 ±0.0021
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Table 11: Time comparison with Computationally E�cient Neural Clamping (NC (E�.)) and temperature
scaling by grid search.

ResNet-50 on BloodMNIST
Method Resolution Acc. (%) Entropy ø ECE (%) ¿ Time (s)

Uncalibrated N/A 85.79 0.2256 5.77 N/A
TS-Grid 0.01 85.79 0.3654 2.16 1.5
TS-Grid 0.001 85.79 0.3684 2.13 11.9
NC (E�.) 0.01 85.79 0.3953 1.47 5.8
NC (E�.) 0.001 85.79 0.3953 1.43 16.2
NC (FL) N/A 85.79 0.4204 1.05 35.0

ResNet-110 on CIFAR-100
Method Resolution Acc. (%) Entropy ø ECE (%) ¿ Time (s)

Uncalibrated N/A 74.15 0.4742 10.74 N/A
TS-Grid 0.01 74.15 0.9268 1.36 2.2
TS-Grid 0.001 74.15 0.9239 1.35 13.0
NC (E�.) 0.01 74.19 0.9371 1.23 7.2
NC (E�.) 0.001 74.19 0.9342 1.23 18.0
NC (FL) N/A 74.16 0.9707 0.89 227.0

Table 12: Comparison with various calibration methods on CIFAR-100 with ResNet-110 with di�erent
training seeds (calibration metric bins=15). The reported results are mean and standard deviation over 25
runs (5 training initialization seeds ◊ 5 calibration runs). The best/second-best method is highlighted by
blue/green color. We conducted a Welch’s t-test to compare our proposed method (Neural Clamping) and
the second-best baseline method (TS by Grid Search), the results also showed highly significant di�erence
between the two methods

ResNet-110 on CIFAR (training with di�erent seeds)
Method Accuracy (%) Entropy ø ECE (%) ¿ AECE (%) ¿ SCE (◊10≠2) ¿
Uncalibrated 73.95 ±0.28 0.5041 ±0.0144 10.14 ±0.69 10.12 ±0.68 0.2722 ±0.1196
Temperature Scaling 73.95 ±0.28 0.9146 ±0.0169 1.75 ±0.68 1.56 ±0.90 0.1776 ±0.0304
Temperature Scaling (FL) 73.95 ±0.28 1.0777 ±0.0036 2.35 ±0.36 2.35 ±0.36 0.1889 ±0.0267
TS by Grid Search 73.95 ±0.28 0.9476 ±0.0040 1.49 ±0.19 1.27 ±0.18 0.1480 ±0.0434
Vector Scaling 73.45 ±0.78 0.8738 ±0.0164 2.27 ±0.21 2.11 ±0.22 0.1799 ±0.0449
Matrix Scaling 63.95 ±1.85 0.1648 ±0.0055 31.71 ±0.41 31.71 ±0.41 0.6813 ±0.0830
MS-ODIR 73.58 ±0.31 0.9187 ±0.0230 1.83 ±0.22 1.51 ±0.28 0.1801 ±0.0304
Dir-ODIR 73.78 ±0.32 0.9504 ±0.0140 1.58 ±0.24 1.32 ±0.21 0.1762 ±0.0290
Neural Clamping (CE) 74.16 ±0.47 0.9514 ±0.0314 1.06 ±0.15 1.14 ±0.17 0.1634 ±0.0506
Neural Clamping (FL) 74.17 ±0.61 0.9921 ±0.0289 0.96 ±0.16 1.01 ±0.18 0.1797 ±0.0481
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