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5 Broader impacts

In this paper, we propose a novel approach, Generalized fMRI-to-image reconstruction by adaptively
integrating Expanded Semantic manifold and Structural information (GESS), to address the semantic
gap in the fMRI-to-image reconstruction problem. The improvement in fMRI-to-image reconstruction
can lead to a better understanding of the human visual system and the neural representations of visual
stimuli, thus significantly enhancing the potential applications of brain-computer interface (BCI)
technologies. However, it is essential to consider the ethical implications of such advancements. As
BCI technologies move closer to being able to “read the mind”, privacy and consent concerns may
arise. It will be crucial to develop policies and guidelines for the responsible use of these technologies
and ensure that they are employed in a manner that respects individuals’ rights and autonomy.

6 Details of methods

6.1 Reprojection details

The proposed method [4] aims to refine the extracted semantic components by finding their closest
plausible counterparts in a given manifold. The method involves first finding the K nearest samples
(cnbk ∈ K) in the dataset under the cosine distance and then seeking a linear combination of these
neighbors to reconstruct the semantic component cte′ by minimizing the reconstruction error. The
interpolation weights can be found by solving a constrained least-squares problem. Once the weights
are solved, the reprojected point cte′ on the underlying manifold can be computed.

To project the feature vector of cte′ component to its manifold, the method assumes that the underlying
manifolds are locally linear. The main idea of the classic locally linear embedding (LLE) algorithm is
followed to achieve this. As mentioned in the main text, we use equation (1) to solve an optimization
problem for finding the weights, which can then be used to calculate the projected point cte′:

cte
′
=

∑
k∈K

wnb
k cnbk , (10)

In practice, we concatenate the semantic vectors of cte and cte
′ together as the conditional input to

LDM.
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6.2 Domain adaptation details

A first-order domain alignment method aims to align the mean and variance of the feature distributions
between the source and target domains. This can be achieved by transforming the features in such a
way that the statistical properties of the source and target domains become similar.

First, we need to whiten the testing set. Whitening is a preprocessing technique used to remove
correlations in the data and make it have a unit variance. Given a testing set Cte we can whiten it
using the following equation:

Cwhitened =
Cte − µte

σte
(11)

where µte and σte are the mean and standard deviation of the testing set respectively.Next, we need
to align the mean and variance of the testing set to the training set. This can be achieved using the
following equation:

Caligned = σtr · Cwhitened + µtr (12)
where µtr and σtr are the mean and standard deviation of the training set respectively.In this process,
we first whiten the testing set, removing correlations in the data and making it have unit variance.
Then, we align the mean and variance of the testing set to the training set, making the training set and
testing set have similar statistical properties.

6.3 Non-parametric kernel density estimation in gating function

To estimate the likelihood of cte being sampled from ctr, we use a non-parametric kernel density
estimation (KDE) method for p(cte|Ctr). KDE[3] is a non-parametric method for estimating the
probability density function of a random variable, based on a set of observations. It is a widely used
technique in statistical analysis and machine learning, as it does not require any assumptions about
the underlying distribution of the data.

KDE works by placing a kernel function at each observation point and summing up the contributions
from all kernels to estimate the density at any given point. The kernel function is typically a
probability density function itself, centered at the observation point and with a bandwidth parameter
that determines the width of the kernel.In this case we select Gaussian kernel, which has the form:

K(dc) =
1√

2π bw
e−

1
2 (

dc
bw

)
2

, (13)

where dc denotes the feature distance to be measured and bw is the bandwidth parameter, controlling
the width of the kernel (1.5 in our case). The estimated density function is then given by:

f̂(cte) =
1

n · bw

n∑
i=1

K

(
cte − ctr(i)

bw

)
(14)

where n is the number of Ctr and xi is the i-th observation. Note that choosing the appropriate
bandwidth parameter can be challenging, as a too small value can result in over-fitting and a too large
value can result in under-fitting. In our method cross-validation has been used to select an optimal
value for bw.

7 Details of experiments

7.1 More details of the datasets

GOD dataset. The God dataset[8] contains fMRI data collected from five healthy subjects during
visual image presentation and imagery experiments. The subjects are one female and four males, aged
23 to 38 years with normal or corrected-to-normal vision. A sample size of five subjects was chosen
to match previous fMRI studies with similar behavioral protocols. All subjects are highly experienced
with participating in fMRI experiments and provided written informed consent. The study was
approved by the Ethics Committee of ATR. For the visual image presentation experiment, images
were selected from 200 object categories in the ImageNet database. After excluding low-quality
images, the remaining images were cropped to the center. Subjects viewed the images in 24 training
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runs and 35 test runs while maintaining central fixation. In each 9-second stimulus block, 12 images
of the same category were flashed at 2 Hz. Subjects performed a one-back repetition detection task to
maintain attention. The training runs contained 1200 images from 150 categories, with 8 images per
category. The test runs contained 50 images from 50 new categories, each presented 35 times. In this
paper we used data of three subjects and pre-process the data in the same way as [2].

NSD dataset As in [10], we utilized the Natural Scenes Dataset which provides fMRI data from
subjects viewing repeated presentations of natural images. In [10] they analyzed data from 4 out of 8
subjects who completed all scans. For the random split scenario in section 4.5, we used 982 images
as testing set which were viewed by all subjects. The remaining 24980 trials were used for training
following [10], and more descriptions could be found in [1].

Pairwise comparison In accordance with [5], we assessed the semantic accuracy of our results
using the n-way classification task. This involved performing multiple trials (10 trials in our tasks)
and calculating the top one classification accuracy for n−1 randomly selected classes plus the correct
one. It is worth noting that we take into account both of the pixel-level metrics (RMSE and SAM)
and the semantic-level metrics (perceptual similarity), as objective in this work is to recover images
with both structurally and semantically correct features.

7.2 The implementation details of the baseline method

In section 4.5 we propose that in the random split scenario [10], the model only has to learn a retrieval
based model (i.g., a K-nearest neighbor model) to achieve a good performance without learning visual
mechanism. Here we propose a simple KNN model as a baseline model to achieve comparatively
good performance based on the random split.

Here we implement a ridge regression method (parameter βn) to predict the semantic vector of the
test image cte from xte. The βn is fitted to learn the mapping from Xtr to Ctr that has been extracted
by a pretrained and fixed CLIP model. Then the predicted cte is used to retrieve the most similar
image in Xtr as reconstructions by calculating the cosine distance between cte and Ctr.

Pairwise comparison experiments show that while simple, this model achieves comparable perfor-
mance on the random split method (81.0% accuracy by perceptual similarity). More 1st nearest
neighbor images are shown in Figure 5.

Table 2: Pairwise comparison results of SAM similarity on GOD.

Subject Sub1 Sub2 Sub3 AVG
Ours 56.8% 58.6% 66.6% 60.7%

Beliy et al.[2] 49.2% 51.2% 55.4% 51.93%
Ozcelik et al.[9] 53.2% 52.4% 54.6% 53.4%
Takagi et al.[10] 53.8% 54.8% 47.8% 52.1%
Ferrante et al.[7] 53.4% 55.0% 57.6% 55.3%

Table 3: Pairwise comparison results of RMSE similarity on GOD.

Subject Sub1 Sub2 Sub3 AVG
Ours 67.6% 64.8% 66.6% 68.1%

Beliy et al.[2] 62.2% 66.8% 76.4% 68.5%
Ozcelik et al.[9] 55.4% 54.6% 54.6% 55.0%
Takagi et al.[10] 50.8% 52.6% 47.8% 51.7%
Ferrante et al.[6] 65.6% 65.2% 57.6% 67.1%

7.3 Additional results of performance comparison

In addition to the experimental results presented in the main text, Tables 2 and 3 list the accuracy of
various methods in pairwise comparison experiments based on RMSE and SAM similarity metrics.
By RMSE similarity, [2] performs better than other diffusion-based methods, which is probably
because the metric prefers smooth and blurry images.We also present the component substitution-
based reconstruction results of our method for all 50 test images across three subjects in Figures
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Figure 5: More baseline method’s reconstructions in the random split scenario.

Table 4: Time consuming of each module.

Method Time Consuming
Gradient Guidance 679.87 s

Component Substitute 215.45 s
Fitting Semantic Module Mc 0.158 s
Fitting Structual Module Ms 2.459 s

CLIP embedding (pre-processing) 47.553 s
VQVAE embedding (pre-processing) 72.366 s

6-8. The results indicate that the reconstruction quality has some slight differences across different
subjects, but our method can achieve good reconstructions for all. The results shown in the main text
are from subject 3.
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Raw Rec. Raw Rec. Raw Rec. Raw Rec.

Figure 6: Fully sampled and reconstructed images of subject 1.
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Raw Rec. Raw Rec. Raw Rec. Raw Rec.

Figure 7: Fully sampled and reconstructed images of subject 2.
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Figure 8: Fully sampled and reconstructed images of subject 3.
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