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Appendix

In this appendix, we first clarify more details about the datasets, evaluation, and implementation
in Section A1, Section A2, and Section A3. Afterwards, we provide more qualitative comparisons
in Section A4. Then, we conduct more experiments about pixel-pixel similarity transfer in Section
A5. Finally, we conduct experiments to explore the generalization ability of our model to dataset
expansion in Section A6.

A1. Datasets

For dataset setting, we generally follow MaskFomer [3], and choose two representative and challeng-
ing datasets, i.e., COCO-Stuff-10K [1] and ADE20K [13]. These two datasets both contain enough
classes and abundant images, which are appropriate for exploring the problem about transfer learning
across classes. Specifically, COCO-Stuff-10K [1] totally covers 171 semantic-level classes. The 10k
images are split as 9 : 1 for training and testing respectively. The images of COCO-Stuff-10K [1]
dataset come from the original COCO dataset [5]. ADE20K [13] totally contains 150 semantic-level
categories, and includes 20k images for training and 2k images for validation. The images belong to
the ADE20K-Full dataset where 150 semantic classes are selected to be covered in evaluation from
the SceneParse150 challenge.

A2. Evaluation

We use the standard evaluation API in Detectron2 [10] and MaskFormer [3] for computing
Intersection-over-Union (IoU). After obtaining the IoU of all classes, we average the IoU of novel
classes as the evaluation metric for final performance. Because base classes always have GT masks
for supervision in various methods and we find that the performances of base classes are relatively
robust in practice, we focus on the performance of novel classes for evaluation.

A3. Implementation Details

The training and inference settings generally follow these in Detectron2 [10] and MaskFormer [3] for
corresponding dataset. Specifically, we adopt AdamW [6] with the poly [2] learning-rate schedule.
We set the initial learning rate as 10−4 and the weight decay as 10−4. For data augmentation, we
include the random horizontal flipping, random color jittering, random scale jittering (between 0.5
and 2.0), as well as random cropping. For the COCO-Stuff-10k dataset [1], we adopt the crop size
640× 640, the batch size 8 and train all methods for totally 60k iterations. For the ADE20K dataset
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Figure 1: Visual comparison on COCO-Stuff-10K dataset. Columns (a,b) show input images and GT
masks. Column (c) shows the base/novel split maps indicating base pixels by red and novel pixels by
blue. Columns (d,e,f) show the results of three methods. The dotted rectangles highlight the major
differences.

[13], we employ the crop size 512 × 512, the batch size 8 and train all methods for totally 160k
iterations. In the test stage, we resize the shorter side of the image to the corresponding crop size.
The proposed method is implemented based on the codebase of MaskFormer [3]. Specifically, we use
Python 3.7, PyTorch 1.8.0 [7], and Detectron2 0.6 [10]. For the system environment, we conduct
experiments on Ubuntu 18.04 with 32 GB Intel 9700K CPU and four NVIDIA 3090 GPUs. The
random seed is set as 0 for all experiments if not stated otherwise.

A4. More Qualitative Comparisons

In this section, we provide more qualitative comparison for the re-trained WSSS baseline RIB [4],
RETAB [14] as well as our method on both datasets. As shown in Fig. 1 and Fig. 2, our method could
produce superior semantic masks for novel classes against WSSS baseline and RETAB. Specifically,
WSSS baseline and RETAB may suffer from “under-expansion” or “over-expansion” problem due to
the expansion on noisy CAM [12]. As a consequence, they may produce incomplete semantic masks
(e.g., the 2nd row in Fig. 1) or oversize semantic masks (e.g., the 5th row in Fig. 1). In contrast,
our method depends on similarity transfer based on MaskFormer [3], which could predict preferable
segmentation results. Even in complex scenes having large areas of novel classes (e.g., the 4th row
of Fig. 1 and the 4th row of Fig. 2), our method still produces satisfactory results for novel classes,
demonstrating the robustness of our method.
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Figure 2: Visual comparison on ADE20K dataset. Columns (a,b) show input images and GT masks.
Column (c) shows the base/novel split maps indicating base pixels by red and novel pixels by
blue. Columns (d,e,f) show the results of three methods. The dotted rectangles highlight the major
differences.

A5. Additional Experiments about Pixel-Pixel Similarity Transfer

As described in the main paper, we respectively sample J pixels from input image and reference
image, and construct J × J pixel pairs for learning and distilling pixel-pixel similarity. The impact
of J is summarized in Tab. 1, where we could see that our model is relatively robust to the value J .
Larger J leads to more dense pixel pairs, but suffers from larger computation memory and higher
complexity in the training stage. Considering that larger J only improves the performance slightly,
our default value J = 100 is a reasonable choice.

As mentioned in the main paper, we construct pixel pairs across images, which could also introduce
a “global context” as discussed in [9, 11, 8]. In Tab. 2, we report a version constructing the pixel
pairs within the input image, named “self-pair”, i.e., using the input image itself as the reference
image. “Cross-Pair” is our full-fledged model using pixel pairs across images, while “Basic Model”
is our full-fledged model without pixel-pixel similarity transfer. As shown in Tab. 2, “Self-Pair” only
slightly improves the basic model. Therefore, enhancing semantic consistency across images could
benefit the model more significantly.

A6. Generalization Ability to Dataset Expansion

As discussed in the main paper, our weak-shot semantic segmentation focuses on making full use of
the off-the-shelf datasets of base classes to support further segmenting novel classes with only cheaper
image-level annotations. Therefore, the expansion in class number is a practical scenario in our
focused problem. In this section, we additionally include more splits to investigate the generalization
ability of our model in scenarios containing more novel classes. As shown in Tab. 3, from Split 5 to
Split 9, we progressively move random base classes to novel classes based on the original class split
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Table 1: The impact of sample pixel number J
on our model on four splits of COCO-Stuff-10K
dataset.

Point Number S1 S2 S3 S4
J = 50 30.7 25.6 31.1 29.2
J = 100 31.1 26.0 31.5 29.5
J = 150 31.2 26.3 31.6 29.6

Table 2: The performance of different configura-
tions of our model on four splits of COCO-Stuff-
10K dataset.

Configuration S1 S2 S3 S4
Basic Model 27.0 23.6 29.1 25.6

Self-Pair 27.8 24.3 30.0 26.6
Cross-Pair 31.1 26.0 31.5 29.5

Table 3: Performances of splits containing more novel classes on COCO-Stuff-10K dataset [1]. The
base ratio (resp., novel ratio) of each split indicates the ratio of base classes (resp., novel classes) in
all 171 classes.

Split 4 Split 5 Split 6 Split 7 Split 8 Split 9
Base Ratio 75% 70% 65% 60% 55% 50%
Novel Ratio 25% 30% 35% 40% 45% 50%

RETAB* 25.6 23.0 22.5 21.5 19.9 19.8
SimFormer 29.5 27.1 26.3 25.1 23.9 23.2

SimFormer* 31.7 28.3 28.2 25.9 24.3 24.0
FullyOracle 36.0 35.1 36.0 36.0 36.5 34.7

in the Split 4 of main paper. The performances of FullyOracle slightly vary across splits, because
different numbers of novel classes are involved in the evaluation metric of different splits. Overall,
in the scenario of more novel classes (e.g., Split 9), the performances of our methods and baseline
RETAB [14] are all degraded to some extent, due to the reduction of total annotations. Nevertheless,
our method shows robustness even in the challenging Split 9, where the split ratio between base
classes and novel classes is 1 : 1. Therefore, the similarity in our method is highly and robustly
transferrable across classes. Our method has preferable potential to learn more novel classes in
practical and wide applications.

References
[1] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-stuff: Thing and stuff classes in context. In

CVPR, 2018.
[2] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Deeplab:

Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs.
IEEE transactions on pattern analysis and machine intelligence, 40(4):834–848, 2017.

[3] Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-pixel classification is not all you need for
semantic segmentation. NeurIPS, 2021.

[4] Jungbeom Lee, Jooyoung Choi, Jisoo Mok, and Sungroh Yoon. Reducing information bottleneck for
weakly supervised semantic segmentation. NeurIPS, 2021.

[5] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

[6] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. ICLR, 2019.
[7] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming

Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.
[8] Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, and Luc Van Gool. Unsupervised

semantic segmentation by contrasting object mask proposals. In ICCV, 2021.
[9] Wenguan Wang, Tianfei Zhou, Fisher Yu, Jifeng Dai, Ender Konukoglu, and Luc Van Gool. Exploring

cross-image pixel contrast for semantic segmentation. In ICCV, 2021.
[10] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2. https:

//github.com/facebookresearch/detectron2, 2019.
[11] Chuanguang Yang, Helong Zhou, Zhulin An, Xue Jiang, Yongjun Xu, and Qian Zhang. Cross-image

relational knowledge distillation for semantic segmentation. CVPR, 2022.
[12] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep features

for discriminative localization. In CVPR, 2016.
[13] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene parsing

through ade20k dataset. In CVPR, 2017.

4

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2


[14] Siyuan Zhou, Li Niu, Jianlou Si, Chen Qian, and Liqing Zhang. Weak-shot semantic segmentation by
transferring semantic affinity and boundary. BMVC, 2022.

5


