
A PROOF OF THEOREM 1

First, we prove the following lemma.

Lemma 1. Let d < D and p be positive integers, and let L,M > 0 and ρ ∈ (0, 1) be constants.
Let S ⊂ RD be a bounded subset for which there exists a ρ-JL embedding A ∈ Rd×D of S into
[−M,M ]d. Then, for any L-Lipschitz function f : S → Rp, there exists an L

1−ρ -Lipschitz function
g : [−M,M ]d → Rp such that g(Ax) = f(x) for all x ∈ S.

Proof. For any x,x′ ∈ S , if Ax = Ax′ then since A is a ρ-JL embedding of S, we have that
‖x− x′‖2 ≤ 1

1−ρ‖Ax−Ax′‖2 = 1
1−ρ‖0‖2 = 0, and so, ‖x− x′‖2 = 0, i.e., x = x′. Therefore,

the map x 7→ Ax from S to A(S) := {Ax : x ∈ S} is invertible. We define A−1 : A(S)→ S to
be the inverse of the map x 7→ Ax.

Now, for any L-Lipschitz function f : S → Rp, we define g̃ : A(S)→ Rp by g̃ = f ◦ A−1. Then,
for any y,y′ ∈ A(S), we have

‖g̃(y)− g̃(y′)‖2 =
∥∥f(A−1(y))− f(A−1(y′))

∥∥
2

since g = f ◦A−1

≤ L
∥∥A−1(y)−A−1(y′)

∥∥
2

since f is L-Lipschitz

=≤ L

1− ρ
∥∥AA−1(y)−AA−1(y′)

∥∥
2

since A is a ρ-JL embedding of S

=
L

1− ρ
‖y − y′‖2 . since A−1 is the inverse of x 7→ Ax

Therefore, g̃ : A(S) → Rp is L
1−ρ -Lipschitz. Then, since A(S) ⊂ [−M,M ]d, by the Kirszbraun

theorem(Schwartz, 1969), there exists a L
1−ρ -Lipschitz extension of g̃ to [−M,M ]d, i.e., a function

g : [−M,M ]d → Rp which is L
1−ρ -Lipschitz on [−M,M ]d and satisfies g(y) = g̃(y) for all y ∈ S.

Finally, for any x ∈ S , we have Ax ∈ A(S), and so, g(Ax) = g̃(Ax) = f(A−1(Ax)) = f(x),
as required.

Remark: In (Azagra et al., 2021), the authors give an explicit formula for the Lipschitz extension of
a given Lipschitz function.

With Lemma 1, we can now prove each of the four parts of Theorem 1. As a reminder, we assume
that S ⊂ RD is a bounded set for which there exists a ρ-JL embedding A ∈ Rd×D of S into
[−M,M ]d.

a) Let f : S → Rp be an L-Lipschitz function. By Lemma 1, there exists a L
1−ρ -Lipschitz function

g : [−M,M ]d → Rp such that f(x) = g(Ax) for all x ∈ S . By assumption, g can be ε-
approximated by a feedforward neural network with at most N nodes, E edges, and L layers. In
other words, there exists a function ĝ such that ‖ĝ(y) − g(y)‖∞ ≤ ε for all y ∈ [−M,M ]d, and ĝ
can be implemented by a feedforward neural network with at most N nodes, E edges, and L layers.

Define another function f̂ = ĝ ◦A, i.e., f̂(x) = ĝ(Ax) for all x ∈ S . Since A(S) ⊂ [−M,M ]d

by assumption, we have that Ax ∈ [−M,M ]d for all x ∈ S. Then, ‖f̂(x)− f(x)‖∞ = ‖ĝ(Ax)−
g(Ax)‖∞ ≤ ε for all x ∈ S, i.e., f̂ is an ε-approximation of f .

Furthermore, we can construct a feedforward neural network to implement f̂ = ĝ ◦A by having a
linear layer to implement the map x 7→ Ax, and then feeding this into the neural network imple-
mentation of ĝ. The map x 7→ Ax can be implemented with D nodes for the input layer, and Dd
edges between the input nodes and first hidden layer. By assumption, ĝ can be implemented by a
feedforward neural network with at most N nodes, E edges, and L layers. Hence, f̂ = ĝ ◦A can
be implemented by a feedforward neural network with at most N + D nodes, E + Dd edges, and
L+ 1 layers, as desired.

b) If the same feedforward neural network architecture ε-approximates every L
1−ρ -Lipschitz function

g : [−M,M ]d 7→ Rp, then our construction of a feedforward neural network that implements
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f̂ = ĝ ◦A has the same architecture for every L-Lipschitz function f : S → Rp. Hence, the same
bounds on the number of nodes, edges, and layers hold.

c) In a similar manner as 1a), we form a CNN that can approximate f = g ◦A by first implementing
the linear map x 7→ Ax with a CNN and feeding this into a CNN that approximates g.

The JL matrix A = MD can be represented by a Resnet-CNN structure as follows. Let x be
the input of the network, then Dx, the random sign flip of the input can be realized by setting the
weight/kernel w1 of the first two layers to be the delta function, and the bias vectors to take large
values at the location where D has a 1, and small values where D has a −1. Then with the help of
the ReLU activation, we can successfully flip the signs. More explicitly, set T = supx∈S ‖x‖∞ so
that x ∈ [−T, T ]D for all x ∈ S. Let bi be the bias to be added to the ith coordinate of the input.
We design a 2 layer Resnet-CNN, L(x), as follows

L(x)i = ReLU(2xi + bi)− ReLU(bi)− xi, i = 1, ..., D.

The bias bi are chosen to realize the sign flip as follows. If Dii contains a 1, then we set bi = 2T ,
which will make L(x)i = xi. If Dii contains a −1, then we set bi = −2T , which will make
L(x)i = −xi, thus realizing the sign-flip. This architecture can also be used to realize a mask (i.e.,
setting certain entries of x to 0). For the application of M to Dx, it is a simply a convolution with
a mask, therefore again can be achieved by 2 layers of Resnet-CNN.

This Resnet-CNN that implements x 7→ Ax requires 2D nodes, D parameters, and 2 layers to
apply D to x, and an additional D nodes, D + d parameters, and 2 layers to apply M to Dx.
By adding this to the N nodes, P parameters, and L layers needed for a CNN to approximate the
L

1−ρ -Lipschitz function g : [−M,M ]d → Rp, we obtain that the L-Lipshitz function f : S → Rp
can be approximated by a Resnet-CNN with N + 3D nodes, P + 2D + d parameters, and L + 4
layers.

d) If the same convolutional neural network architecture ε-approximates every L
1−ρ -Lipschitz func-

tion g : [−M,M ]d 7→ Rp, then our construction of a convolutional neural network that implements
f̂ = ĝ ◦A has the same architecture for every L-Lipschitz function f : S → Rp. Hence, the same
bounds on the number of nodes, edges, and layers hold.

B PROOF OF PROPOSITION 1

Consider a covering of US by N (US , ‖ · ‖2, δ) balls of radius δ. Each ball must intersect US
as otherwise we could remove that ball from the covering and obtain a covering of US with only
N (US , ‖·‖2, δ)−1 balls of radius δ, which contradicts the definition ofN (US , ‖·‖2, δ). Enumerate
these balls i = 1, . . . ,N (US , ‖ · ‖2, δ). For each i, pick a point ui ∈ US which is also in the
i-th ball, and then pick points xi,x

′
i ∈ S with xi 6= x′i such that xi−x′

i

‖xi−x′
i‖2

= ui. Then, set
S1 = {xi}i ∪ {x′i}i so |S1| ≤ 2N (US , ‖ · ‖2, δ).

Suppose A ∈ Rd×D is a ρ-JL embedding of S1. Then, by definition of a ρ-JL embedding,
(1− ρ)‖xi − x′i‖ ≤ ‖Axi −Ax′i‖ ≤ (1 + ρ)‖xi − x′i‖, for i = 1, . . . ,N (US , ‖ · ‖2, δ)

Now, for any two points y,y′ ∈ S with y 6= y′, there exists an index i such that y−y′

‖y−y′‖2 ∈ US lies

in the i-th ball of our covering of US . Since xi−x′
i

‖xi−x′
i‖2

is also in the i-th ball, we have that∥∥∥∥ xi − x′i
‖xi − x′i‖

− y − y′

‖y − y′‖

∥∥∥∥ ≤ 2δ.

For simplicity of notation, we set a = ‖xi − x′i‖, b = ‖y − y′‖. Then we immediately have

‖A(y − y′)‖ = ‖ b
a
A(xi − x′i) + A(y − y′)− b

a
A(xi − x′i)‖

≤ b

a
‖A(xi − x′i)‖+ ‖A(y − y′ − b

a
(xi − x′i))‖

≤ b

a
(1 + ρ)‖xi − x′i‖+ ‖A‖‖y − y′ − b

a
(xi − x′i)‖

≤ (1 + ρ)b+ 2‖A‖δb = (1 + ρ+ 2‖A‖δ)‖y − y′‖,
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where the second inequality used the previous two formulae. The other side of the bi-lipschitz
formula can be proved similarly. Hence, A is also a (ρ+ 2‖A‖δ)-JL embedding of S .

C PROOF OF PROPOSITION 4

a) By Proposition 1, there exists a finite set S1 with at most |S1| ≤ 2N (US , ‖ · ‖2, ρ

4
√

3D
) points

such that any ρ
2 -JL embedding of S1 is also a (ρ2 + ‖A‖ ρ

2
√

3D
)-JL embedding of S.

We now show that there exists a matrix A ∈ Rd×D with ‖A‖ ≤
√

3D which is ρ
2 -JL embedding

of S1 by generating a random A and showing that the probability of ‖A‖ ≤
√

3D and A is a ρ
2 -JL

embedding of S1 both occurring is greater than zero.

Let A ∈ Rd×D be a random matrix whose entries are i.i.d. from a subgaussian distribution with
mean 0 and variance 1

d . Since

E‖A‖2F =

d∑
i=1

D∑
j=1

EA2
i,j =

d∑
i=1

D∑
j=1

1

d
= D,

we have that

P
{
‖A‖2F ≥ 3D

}
≤ E‖A‖2F

3D
=

1

3
.

Furthermore, since

d & ρ−2 logN (US , ‖ · ‖2, ρ

4
√

3D
) &

(ρ
2

)−2

log(3|S1|),

by Proposition 2, A is a ρ
2 -JL embedding of S1 with probability at least 1− 1

3 = 2
3 . Therefore, A is

both a ρ
2 -JL embedding of S1 and satisfies ‖A‖ ≤

√
3D with probability at least 2

3 −
1
3 = 1

3 > 0.

Hence, there exists a matrix A ∈ Rd×D such that A is a ρ
2 -JL embedding of S1 and satisfies ‖A‖ ≤√

3D. Finally, by Proposition 1, since A is a ρ
2 -JL embedding of S1, it is also a (ρ2 +‖A‖ ρ

2
√

3D
)-JL

embedding of S. Since ‖A‖ ≤
√

3D, we have ρ
2 +‖A‖ ρ

2
√

3D
≤ ρ, and thus, A is a ρ-JL embedding

of S, as desired.

b) Again, by Proposition 1, there exists a finite set S1 with at most |S1| ≤ 2N (US , ‖ · ‖2, ρ

4
√

3D
)

points such that any ρ
2 -JL embedding of S1 is also a (ρ2 + ‖A‖ ρ

2
√

3D
)-JL embedding of S.

Let A ∈ Rd×D be a random matrix of the form MD where D ∈ RD×D is a diagonal matrix whose
entries are independent Rademacher random variables, and M ∈ Rd×D is a random circulant matrix
whose entries are Gaussian random variables with mean 0 and variance 1

d and entries in different
diagonals are independent. Again, we can show that

E‖A‖2F =

d∑
i=1

D∑
j=1

EA2
i,j =

d∑
i=1

D∑
j=1

EM2
i,jD

2
j,j =

d∑
i=1

D∑
j=1

EM2
i,j =

d∑
i=1

D∑
j=1

1

d
= D,

and so,

P
{
‖A‖2F ≥ 3D

}
≤ E‖A‖2F

3D
=

1

3
.

Now, set α = log(log |S1|)/ log(log(4D + 4d)) so that logα |S1| = log(4D + 4d). Then, since

d & ρ−2 log(4D + 4d) logN (US , ‖ · ‖2, ρ

4
√

3D
) &

(ρ
2

)−2

log1+α |S1|,

by Proposition 3, A is a ρ
2 -JL embedding of S1 with probability at least

2

3

(
1− (D + d)e− logα |S1|

)
=

2

3

(
1− (D + d)e− log(4D+4d)

)
=

2

3

(
1− 1

4

)
=

1

2
.

Therefore, A is both a ρ
2 -JL embedding of S1 and satisfies ‖A‖ ≤

√
3D with probability at least

1
2 −

1
3 = 1

6 > 0.
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Hence, there exists a matrix A ∈ Rd×D such that A is a ρ
2 -JL embedding of S1 and satisfies ‖A‖ ≤√

3D. Again, by Proposition 1, since A is a ρ
2 -JL embedding of S1, it is also a (ρ2 + ‖A‖ ρ

2
√

3D
)-JL

embedding of S. Since ‖A‖ ≤
√

3D, we have ρ
2 +‖A‖ ρ

2
√

3D
≤ ρ, and thus, A is a ρ-JL embedding

of S, as desired.

D PROOF OF PROPOSITION 6

We first construct a function ĝ that is an ε-approximation of g. To do this, we first define a compactly
supported “spike” function φ : Rd → [0, 1] by

φ(z) = max {1 + min {z1, . . . ,zd, 0} −max {z1, . . . ,zd, 0} , 0} .

Then, for any positive integer N , define an approximation ĝ : [−M,M ]d → Rp to g by

ĝ(y) :=
∑

n∈{−N,...,N}d
g(Mn

N )φ(Ny
M − n).

Similarly to what was done in (Yarotsky, 2018), it can be shown that the scaled and shifted spike
functions {φ(Ny

M − n)}n∈{−N,...,N}d form a partition of unity, i.e.∑
n∈{−N,...,N}d

φ(Ny
M − n) = 1 for all y ∈ [−M,M ]d.

Trivially, φ(y) ≥ 0 for all y ∈ Rd. Also, one can check that supp(φ) ⊆ [−1, 1]d, and thus,
φ(Ny

M −n) = 0 for all n such that ‖Ny
M −n‖∞ > 1. Furthermore, for any n such that ‖Ny

M −n‖∞ ≤
1, we have ∥∥g(y)− g(Mn

N )
∥∥

2
≤ L‖y − Mn

N ‖2 ≤ L
√
d‖y − Mn

N ‖∞ ≤
LM
√
d

N .

Hence, we can bound the approximation error for any y ∈ [−M,M ]d as follows:

‖ĝ(y)− g(y)‖2 =

∥∥∥∥∥∥
∑

n∈{−N,...,N}d
g(Mn

N )φ(Ny
M − n)− g(y)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

n∈{−N,...,N}d

(
g(Mn

N )− g(y)
)
φ(Ny

M − n)

∥∥∥∥∥∥
2

≤
∑

n∈{−N,...,N}d

∥∥g(Mn
N )− g(y)

∥∥
2
φ(Ny

M − n)

=
∑

∥∥∥∥Ny
M −n

∥∥∥∥
∞
≤1

∥∥g(Mn
N )− g(y)

∥∥
2
φ(Ny

M − n)

≤
∑

∥∥∥∥Ny
M −n

∥∥∥∥
∞
≤1

LM
√
d

N φ(Ny
M − n)

≤
∑

n∈{−N,...,N}d

LM
√
d

N φ(Ny
M − n)

= LM
√
d

N .

So by choosing N =
⌈
LM
√
d

ε

⌉
, we can obtain ‖ĝ(y) − g(y)‖∞ ≤ ‖ĝ(y) − g(y)‖2 ≤ ε for all

y ∈ [−M,M ]d, i.e., ĝ is an ε-approximation of g.

We now focus on constructing a ReLU NN architecture which can implement the ε-approximation
ĝ for any L-Lipschitz function g. We do this by first constructing a ReLU NN that is independent
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of g which implements the map Φ : Rd → R(2N+1)d defined by (Φ(y))n = φ(Ny
M − n). Then, we

add a final layer which outputs the appropriate linear combination of the φ(Ny
M − n)’s.

Lemma 2. For any integers N, d ≥ 1, the maps md : Rd → R(2N+1)d and Md : Rd → R(2N+1)d

defined by

(md(y))n := min
{
Ny1

M − n1, . . . ,
Nyd
M − nd, 0

}
for n ∈ {−N, . . . , N}d

and
(Md(y))n := max

{
Ny1

M − n1, . . . ,
Nyd
M − nd, 0

}
for n ∈ {−N, . . . , N}d,

can both be implemented by a ReLU NN with O((2N + 1)d) weights, O((2N + 1)d) nodes, and
dlog2(d+ 1)e layers.

Proof. First, we note that we can write

(md(y))n = min
{

min{Ny1

M − n1, . . . ,
Nydd/2e

M − ndd/2e},

min{Nydd/2e+1

M − ndd/2e+1, . . . ,
Nyd
M − nd, 0}

}
and

(Md(y))n = max
{

max{Ny1

M − n1, . . . ,
Nydd/2e

M − ndd/2e},

max{Nydd/2e+1

M − ndd/2e+1, . . . ,
Nyd
M − nd, 0}

}
In (Arora et al., 2016), it is shown that for any positive integer k, the maps (z1, . . . ,zk) 7→
min{z1, . . . ,zk} and (z1, . . . ,zk) 7→ max{z1, . . . ,zk} can be implemented by a ReLU NN with
at most c1k edges, c2k nodes, and dlog2 ke layers, where c1, c2 > 0 are universal constants. So to
construct the map md, we first implement the (2N + 1)dd/2e maps

(y1, . . . ,ydd/2e) 7→ min{Ny1

M − n1, . . . ,
Nydd/2e

M − ndd/2e} (5)

for (n1, . . . ,ndd/2e) ∈ {−N, . . . , N}dd/2e. Implementing each of these maps requires c1
⌈
d
2

⌉
edges, c2

⌈
d
2

⌉
nodes, and

⌈
log2

⌈
d
2

⌉⌉
layers. Next, we implement the (2N + 1)bd/2c maps

(ydd/2e+1, . . . ,yd) 7→ min{Nydd/2e+1

M − ndd/2e+1, . . . ,
Nyd
M − nd, 0} (6)

for (ndd/2e+1, . . . ,nd) ∈ {−N, . . . , N}bd/2c. Implementing each of these maps requires c1(
⌊
d
2

⌋
+

1) edges, c2(
⌊
d
2

⌋
+1) nodes, and

⌈
log2(

⌊
d
2

⌋
+ 1)

⌉
layers. After placing these (2N+1)dd/2e+(2N+

1)bd/2c maps in parallel, we construct one final layer as follows. For each n = (n1, . . . ,nd) ∈
{−N, . . . , N}d, we combine the output of the (n1, . . . ,ndd/2e)-th map of the form in Equation 5
and the output of the (ndd/2e+1, . . . ,nd)-th map of the form in Equation 6 by using them as inputs
to a ReLU NN that implements the map (a, b) 7→ min{a, b}. Each of these requires at most 2c1
edges and 2c2 nodes.

The total number of edges used to implement md is

c1
⌈
d
2

⌉
(2N + 1)dd/2e + c1(

⌊
d
2

⌋
+ 1)(2N + 1)bd/2c + 2c1(2N + 1)d

≤c1(
⌈
d
2

⌉
+
⌊
d
2

⌋
+ 1)(2N + 1)dd/2e + 2c1(2N + 1)d

=c1(d+ 1)(2N + 1)dd/2e + 2c1(2N + 1)d

=c1

(
(d+ 1)(2N + 1)−bd/2c + 2

)
(2N + 1)d

≤c1
(

(d+ 1) · 3−bd/2c + 2
)

(2N + 1)d

≤4c1(2N + 1)d,

where we have used the fact that N ≥ 1 by definition, and the easily verifiable inequality (d + 1) ·
3−bd/2c ≤ 2 for all positive integers d.
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A nearly identical calculation shows that the total number of nodes used to implement md is at most
4c2(2N+1)d. Finally, since the (2N+1)dd/2e maps of the form in Equation 5 and the (2N+1)bd/2c

maps of the form in Equation 6 are in parallel, the total number of layers used to implement md is

max
{⌈

log2

⌈
d
2

⌉⌉
,
⌈
log2(

⌊
d
2

⌋
+ 1)

⌉}
+ 1 = dlog2(d+ 1)e .

Hence, the mapmd can be implemented by a ReLU NN with at most C1(2N +1)d edges, C2(2N +
1)d nodes, and dlog2(d+ 1)e layers, as desired. The proof for Md is identical, except with min
replaced by max.

Next, we note that

(Φ(y))n = φ(Ny
M − n) = max {1 + (md(y))n − (Md(y))n, 0} for all n ∈ {−N, . . . , N}d.

So to construct a ReLU NN which implements Φ, we first place a ReLU NN that implements md in
parallel with a ReLU NN that implements Md. Then, we add an extra layer which has (2N + 1)d

nodes, where the n-th node of this layer has two edges, one from the n-th node of md and one
from the n-th node of Md. Since md and Md are in parallel and each can each be implemented
with ReLU NNs with O((2N + 1)d) edges, O((2N + 1)d) nodes, and dlog2(d+ 1)e layers, and
the last layer has 2(2N + 1)d edges and (2N + 1)d nodes, the ReLU NN which implements Φ has
O((2N + 1)d) edges, O((2N + 1)d) nodes, and dlog2(d+ 1)e+ 1 layers.

Finally, we can construct a ReLU NN which implements

ĝ(x) :=
∑

n∈{−N,...,N}d
g(Mn

N )φ(Nx
M − n)

by using the ReLU NN which implements Φ, followed by a linear layer which computes the
weighted sum for ĝ. This last layer has p nodes, and p(2N + 1)d edges. So the ReLU NN that
implements ĝ has (p+C1)(2N + 1)d edges, C2(2N + 1)d+p nodes, and dlog2(d+ 1)e+ 2 layers,
as desired.

E PROOF OF THEOREM 2

By combining Proposition 4a and Proposition 5, we have that there exists a ρ-JL embedding A ∈
Rd×D of S with

d & min
{
ρ−2 logN (US , ‖ · ‖2, ρ

4
√

3D
), ρ−2 (ω(US))

2
}
.

Let M = supx∈S ‖Ax‖∞ so that A(S) ⊂ [−M,M ]d, and so, A is a ρ-JL embedding of S into
[−M,M ]d. By Proposition 6, there exists a ReLU NN architecture with at most

E = (p+ C1)
(

2
⌈
LM
√
d

(1−ρ)ε

⌉
+ 1
)d

edges,

N = C2

(
2
⌈
LM
√
d

(1−ρ)ε

⌉
+ 1
)d

+ p nodes

and L = dlog2(d+ 1)e+ 2 layers

which can ε-approximate any L
1−ρ -Lipschitz function g : [−M,M ]d. Finally, by applying Theo-

rem 1b, we have that there exists a a ReLU NN architecture with at most

E +Dd = (p+ C1)
(

2
⌈
LM
√
d

(1−ρ)ε

⌉
+ 1
)d

edges,

N +D = C2

(
2
⌈
LM
√
d

(1−ρ)ε

⌉
+ 1
)d

+ p+D nodes

and L+ 1 = dlog2(d+ 1)e+ 3 layers

which can ε-approximate any L-Lipschitz function f : S → Rp, as desired.
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F PROOF OF THEOREM 3

Let f : S → Rp be the target function to approximate. By Proposition 4b, we have that there exists
a matrix A ∈ Rd×D in the form MD where M is a partial circulant matrix and D is a diagonal
matrix with ±1 entries such that A is a ρ-JL embedding of S with

d & ρ−2 log(4D + 4d) logN (US , ‖ · ‖2, ρ

4
√

3D
).

Let M = supx∈S ‖Ax‖∞ so that A(S) ⊂ [−M,M ]d, and so, A is a ρ-JL embedding of S into
[−M,M ]d.

By Lemma 1, there exists an L
1−ρ -Lipschitz function g : [−M,M ]d → Rp such that g(Ax) = f(x)

for all x ∈ S. Let gi : [−M,M ]d → R be the i-th coordinate of g. Let g̃i : [−1, 1]d → R be
defined by g̃i(y) = gi(My) for all y ∈ [−1, 1]d. Note that each gi is L

1−ρ -Lipschitz, and so, each
g̃i is LM

1−ρ -Lipschitz,

Then, by Proposition 7, for each g̃i, there exists a CNN g̃
(CNN)
i with O(N) residual blocks, each

of which has depth O(logN) and O(1) channels, and whose filter size is at most K such that
‖g̃i − g̃(CNN)‖∞ ≤ Õ(N−1/d).

Now, we construct a CNN to approximate f as follows. First, we implement the map x 7→ 1
MAx

using the same 4 layer Resnet CNN described in the proof of Theorem 1c. Then, we pass the output
of that Resnet CNN into p parallel CNNs which implement g̃(CNN)

i for i = 1, . . . , p. The output
of the i-th of these parallel CNNs is g̃(CNN)

i ( 1
MAx), which is an Õ(N−1/d)-approximation of

g̃i(
1
MAx) = gi(Ax) = fi(x). Hence, the constructed CNN is a Õ(N−1/d)-approximation of f .

The CNN which implements the map x 7→ 1
MAx needs O(1) residual blocks, each of which has

depth O(1) and O(1) channels. Each of the p parallel CNNs which implement the g̃(CNN)
i ’s have

O(N) residual blocks, each of which has depthO(logN) andO(1) channels. So the overall network
to approximate f hasO(pN) residual blocks, each of which has depthO(logN) andO(1) channels.

G PROOF OF PROPOSITION 9

By the sin Θ theorem (Wedin, 1972), we have∥∥∥∥ x1

‖x1‖
− x2

‖x2‖

∥∥∥∥ ≤ ‖x1k
T
1 − x2k

T
2 ‖

‖x1‖‖k1‖
(7)

and ∥∥∥∥ k1

‖k1‖
− k2

‖k2‖

∥∥∥∥ ≤ ‖x1k
T
1 − x2k

T
2 ‖

‖x2‖‖k2‖
. (8)

Let us find a set whose covering number is easy to compute while containing the unit secant UY as
a subset{

y1 − y2

‖y1 − y2‖
, y1, y2 ∈ Y

}
=

{
x1 ⊗ k1 − x2 ⊗ k2

‖x1 ⊗ k1 − x2 ⊗ k2‖
, xi = Φui, ki = Ψvi, i = 1, 2

}

=

x1 ⊗ k1 − (‖x1‖
‖x2‖x2)⊗ k1

‖x1 ⊗ k1 − x2 ⊗ k2‖
+

(‖x1‖
‖x2‖x2)⊗ k1 − x2 ⊗ k2

‖x1 ⊗ k1 − x2 ⊗ k2‖
, xi = Φui, ki = Ψvi, i = 1, 2


⊆

x1 ⊗ k1 − (‖x1‖
‖x2‖x2)⊗ k1

‖x1 ⊗ k1 − x2 ⊗ k2‖
, xi = Φui, ki = Ψvi, i = 1, 2


+

 (‖x1‖
‖x2‖x2)⊗ k1 − x2 ⊗ k2

‖x1 ⊗ k1 − x2 ⊗ k2‖
, xi = Φui, ki = Ψvi, i = 1, 2

 .
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For the first set in the sum, by using (3) and (7), we havex1 ⊗ k1 − (‖x1‖
‖x2‖x2)⊗ k1

‖x1 ⊗ k1 − x2 ⊗ k2‖
, xi = Φui, ki = Ψvi, i = 1, 2


⊆

t · x1 ⊗ k1 − (‖x1‖
‖x2‖x2)⊗ k1

‖x1kT1 − x2kT2 ‖
, t ∈ [0, L], xi = Φui, ki = Ψvi, i = 1, 2


⊆

t · x1 ⊗ k1 − (‖x1‖
‖x2‖x2)⊗ k1

‖x1 − ‖x1‖
‖x2‖x2‖‖k1‖

, t ∈ [0, L], xi = Φui, ki = Ψvi, i = 1, 2


⊆


√t · x1 − ‖x1‖

‖x2‖x2

‖x1 − ‖x1‖
‖x2‖x2‖

⊗ (√t · k1

‖k1‖

)
, t ∈ [0, L], xi = Φui, ki = Ψvi, i = 1, 2


The covering number with ε balls of the set

{√
t ·

x1⊗k1−(
‖x1‖
‖x2‖x2)

‖x1⊗k1−(
‖x1‖
‖x2‖x2)‖

, t ∈ [0, L]

}
is
(

3
√
L
ε

)n
, and

that for the set {
√
t · k1
‖k1‖ , t ∈ [0, L]} is

(
3
√
L
ε

)m
. So the covering number with ε balls of S is(

6L

ε

)n
+

(
6L

ε

)m
.

The same argument holds for the second set in the sum.

H PROOF OF PROPOSITION 10

By definition,

UY =

{
y1 − y2

‖y1 − y2‖
, y1, y2 ∈ Y

}
=

{
PΩ(X1 −X2)

‖PΩ(X1 −X2)‖
, X1, X2 ∈ Y

}
Since y1 − y2 = PΩ(X1 −X2) and X{

PΩ(X1 −X2)

‖PΩ(X1 −X2)‖
, X1, X2 ∈ Y

}
⊆
{
t · PΩ

(X1 −X2)

‖X1 −X2‖F
, t ∈ [0, L], X1, X2 ∈ Y

}
Notice that (X1−X2)

‖X1−X2‖F are matrices of unit Frobenius norm with rank at most 2r. By Lemma 3.1 in

(Candes & Plan, 2011), they form a set whose covering number is at most
(

9
δ

)r(m+n+1)
.
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