A PROOF OF THEOREM 1

First, we prove the following lemma.

Lemma 1. Let d < D and p be positive integers, and let L, M > 0 and p € (0,1) be constants.
Let S C RP be a bounded subset for which there exists a p-JL embedding A € R¥P of S into
[—M, M]?. Then, for any L-Lipschitz function f : S — RP, there exists an 2 -Lipschitz function

1—p
g: =M, M]% — RP such that g(Az) = f(z) forall x € S.

Proof. For any &, &’ € S, if Ax = Az’ then since A is a p-JL embedding of S, we have that
[z — 'l < 15[l Az — Az'|l> = 155]|0]|2 = 0, and s0, ||z — 2'[|2 = 0, i.e., z = @’. Therefore,
the map « — Az from S to A(S) := {Ax : € S} is invertible. We define A~! : A(S) — Sto
be the inverse of the map = — Ax.

Now, for any L-Lipschitz function f : S — R?, we define § : A(S) — RP by g = f o A~L. Then,
for any y,y’ € A(S), we have

19(y) — ()2 = || F(A~ (y) — F(A™ ()], since g = fo A
< LAY y) - A7 )], since f is L-Lipschitz

L
—< i [AA~ (y) — AA (y)]], since A is a p-JL embedding of S

L
=7 ly =9, since A~ is the inverse of & — Ax
—p

Therefore, g : A(S) — RP is ﬁ—Lipschitz. Then, since A(S) C [—M, M]?, by the Kirszbraun

theorem(Schwartz, 1969), there exists a T f p-LipschitZ extension of g to [—M, M ]d, i.e., a function

g:[—M,M]% — RP which is 1fp -Lipschitz on [~ M, M]? and satisfies g(y) = g(y) forally € S.

Finally, for any « € S, we have Az € A(S), and so, g(Az) = g(Azx) = f(A~1(Az)) = f(=),
as required. O

Remark: In (Azagra et al., 2021), the authors give an explicit formula for the Lipschitz extension of
a given Lipschitz function.

With Lemma 1, we can now prove each of the four parts of Theorem 1. As a reminder, we assume
that S ¢ RP is a bounded set for which there exists a p-JL embedding A € R?*P of S into
[—M, M]%.

a) Let f : S — RP be an L-Lipschitz function. By Lemma 1, there exists a lfp

g : [-M,M]* — RP such that f(x) = g(Az) for all z € S. By assumption, g can be e-
approximated by a feedforward neural network with at most N nodes, £ edges, and £ layers. In
other words, there exists a function g such that [|§(y) — g(y)||ec < € forally € [-M, M]¢, and §

-Lipschitz function

can be implemented by a feedforward neural network with at most A/ nodes, £ edges, and L layers.

Define another function f = jo A, ie., f(x) = g(Ax) forall & € S. Since A(S) C [-M, M]*
by assumption, we have that Az € [—~M, M]% forall z € S. Then, ||f(z) — f(x)|| = ||§(Ax) —

o~

9(Ax)||o < eforallx € S,i.e., f is an e-approximation of f.

Furthermore, we can construct a feedforward neural network to implement f = g o A by having a
linear layer to implement the map = +— A, and then feeding this into the neural network imple-
mentation of g. The map  — Ax can be implemented with D nodes for the input layer, and Dd
edges between the input nodes and first hidden layer. By assumption, g can be implemented by a
feedforward neural network with at most A nodes, £ edges, and L layers. Hence, f = g o A can
be implemented by a feedforward neural network with at most A" + D nodes, £ + Dd edges, and
L + 1 layers, as desired.
L

1—p
g : [-M,M]? — RP, then our construction of a feedforward neural network that implements

b) If the same feedforward neural network architecture e-approximates every -Lipschitz function
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f = g o A has the same architecture for every L-Lipschitz function f : S — RP. Hence, the same
bounds on the number of nodes, edges, and layers hold.

¢) In a similar manner as 1a), we form a CNN that can approximate f = go A by first implementing
the linear map = — Ax with a CNN and feeding this into a CNN that approximates g.

The JL matrix A = M D can be represented by a Resnet-CNN structure as follows. Let x be
the input of the network, then D, the random sign flip of the input can be realized by setting the
weight/kernel w of the first two layers to be the delta function, and the bias vectors to take large
values at the location where D has a 1, and small values where D has a —1. Then with the help of
the ReLU activation, we can successfully flip the signs. More explicitly, set T = sup g ||| oo SO
that x € [T, TP for all x € S. Let b; be the bias to be added to the ith coordinate of the input.
We design a 2 layer Resnet-CNN, L(x), as follows

The bias b, are chosen to realize the sign flip as follows. If D,; contains a 1, then we set b; = 2T,
which will make L(x); = «;. If D;; contains a —1, then we set b, = —2T, which will make
L(x); = —x;, thus realizing the sign-flip. This architecture can also be used to realize a mask (i.e.,

setting certain entries of @ to 0). For the application of M to D, it is a simply a convolution with
a mask, therefore again can be achieved by 2 layers of Resnet-CNN.

This Resnet-CNN that implements © — Ax requires 2D nodes, D parameters, and 2 layers to
apply D to x, and an additional D nodes, D + d parameters, and 2 layers to apply M to Dz.
By adding this to the N nodes, P parameters, and £ layers needed for a CNN to approximate the
T fp-Lipschitz function g : [—~M, M]¢ — RP, we obtain that the L-Lipshitz function f : S — RP
can be approximated by a Resnet-CNN with ' + 3D nodes, P + 2D + d parameters, and £ + 4
layers.

L
1—p
tion g : [~ M, M]? — RP, then our construction of a convolutional neural network that implements

d) If the same convolutional neural network architecture e-approximates every

-Lipschitz func-

/ = g o A has the same architecture for every L-Lipschitz function f : S — RP. Hence, the same
bounds on the number of nodes, edges, and layers hold.

B PROOF OF PROPOSITION 1

Consider a covering of Us by N'(Us, || - ||2,0) balls of radius 6. Each ball must intersect Ug
as otherwise we could remove that ball from the covering and obtain a covering of Us with only
N(Us, || ||l2,8) — 1 balls of radius &, which contradicts the definition of ' (Us, || - ||2, §). Enumerate

these balls ¢ = 1,...,N(Us,|| - ||2,9). For each i, pick a point w; € Us which is also in the
i-th ball, and then pick points x;,z; € S with ; # ! such that ﬁ = wu;. Then, set

S1 = {zi}i U{z}}iso [Si] < 2N (Us, || - 2, 0).

Suppose A € R¥*P is a p-JL embedding of S;. Then, by definition of a p-JL embedding,
(1= p)llw; — x| < [|Az; — Azi]| < (L+ p)lla; — @i, for i=1,....N(Us,||-[l2,9)

Now, for any two points ¢, y’ € S with y # v/, there exists an index ¢ such that H?j”_iy/ € Us lies

—y'll2
in the i-th ball of our covering of Us. Since M is also in the i-th ball, we have that
x; — T -y
2 ;L _ y y/ S 26.
lz: — il lly—v|

For simplicity of notation, we set a = ||x; — z}||,b = ||y — ¥'||. Then we immediately have

b b
Ay — )|l = - Alzi - z)+ Ay —y') — JA@i - ;)|

b b
< CNAG: - @) + | Aly — ' — (@i — 2)]

b b
< 20 pllas — 2l + [ Allly — ' — (s — )]
< (1+ )b+ 2046 = (1+ p+ 2] A19) |y — ¥/,
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where the second inequality used the previous two formulae. The other side of the bi-lipschitz
formula can be proved similarly. Hence, A is also a (p + 2||A||d)-JL embedding of S.

C PROOF OF PROPOSITION 4

a) By Proposition 1, there exists a finite set S; with at most |S;| < 2N (Us, || - |2, ﬁ) points

such that any £-JL embedding of S; is also a (£ ) -JL embedding of S.

We now show that there exists a matrix A € R?*P with ||A|| < V3D which is £-JL embedding

of S; by generating a random A and showing that the probability of || A|| < /3D and A is a £-JL
embedding of S7 both occurring is greater than zero.

Let A € R4*P be a random matrix whose entries are i.i.d. from a subgaussian distribution with
mean 0 and variance é. Since

d D d D 1
BlAl: =) ) EAL =Y -p

i=1 j=1 i=1 j=1

we have that ||A||
E 1
> < 0F
P {||A||F 3D} 5D 3

Furthermore, since

-2
42 p 2 log N (Us, |- 2. 75) 2 (5) o351,

by Proposition 2, A is a £-JL embedding of S; with probability at least 1 — 5 =
both a £-JL embedding of S; and satisfies || A|| < v/3D with probability at least

= 2. Therefore, A is
2—3=3>0.
Hence, there exists a matrix A € R?*? such that A is a £-JL embedding of S; and satisfies || A[| <
V/3D. Finally, by Proposition 1, since A isa £-JL embedding of Sy, itisalsoa (§ +[| Al 2\/"57D)-JL
embedding of S. Since || A < v/3D, we have £ and thus, A is a p-JL embedding
of S, as desired.

b) Again, by Proposition 1, there exists a finite set S; with at most |S1| < 2N (Us, || - |2, T’;—D)

points such that any £-JL embedding of S; is also a (5 4+ | ) JL embedding of S.

Let A € R%*P be a random matrix of the form M D where D € RD *D is a diagonal matrix whose
entries are independent Rademacher random variables, and M € R%*P is a random circulant matrix
whose entries are Gaussian random variables with mean 0 and variance d and entries in different
diagonals are independent. Again, we can show that

d D d D D
EI\AII%=ZZEA?,j=ZZEM2 D2, =SS EM?, - ZZ% 7

i=1 j=1 i=1 j=1 i=1 j=1

and so, )
P{|A|%2 >3D} < L
{H ||F = } — 3D 3

Now, set o = log(log |S1])/ log(log(4D + 4d)) so that log™ |S1| = log(4D + 4d). Then, since

—2
A% p* log(4D + 4d)log N (Us. | - 2. 45) 2 (§) o™ 11l

by Proposition 3, A is a £-JL embedding of S; with probability at least

2(_ —tog=Is1) — 2 (1 _ —togan+ad)) _ 2 (4 1) _1
3(1 (D + d)e )73(1 (D + d)e ),3 1-7)=5

Therefore, A is both a £-JL embedding of S; and satisfies || A|| < v/3D with probability at least

1 1
3=5=5>0
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Hence, there exists a matrix A € R?*P such that A is a £-JL embedding of S and satisfies || A|| <

V3D. Again, by Proposition 1, since A is a §-JL embedding of S1, itis alsoa (5 + || A|| 2\/"gT))-JL

embedding of S. Since ||A|| < V3D, we have £ +|| Al 2\/”5 < p, and thus, A is a p-JL embedding
of S, as desired.

D PROOF OF PROPOSITION 6
We first construct a function g that is an e-approximation of g. To do this, we first define a compactly
supported “spike” function ¢ : R? — [0, 1] by

¢(z) =max {1l + min{zy,...,24,0} —max{z1,...,24,0},0}.

Then, for any positive integer N, define an approximation g : [~ M, M]% — RP? to g by

[_
)= > gMr)e(5E —n).

ne{—N,....N}4

Similarly to what was done in (Yarotsky, 2018), it can be shown that the scaled and shifted spike
functions {gf)(% — M) }ne{—n,... N} form a partition of unity, i.e.

Z ¢(%—n)=1 forall y e [—M,M]%
nG{fN ..... N}d

Trivially, ¢(y) > O for all y € R<. Also, one can check that supp(¢) C [—1,1]¢, and thus,

(b(%fn) = 0 for all n such that ||%fn\|oo > 1. Furthermore, for any n such that ||%fn\|oo <
1, we have

lg(y) — g(M2)||, < Ly — 42|, < LVd|ly — Mo, < LMY,

Hence, we can bound the approximation error for any y € [—M, M]? as follows:

15(y) — 9w, = > g(Mr)e(5E —n) —g(y)

2
(22) — 9|, 6(5E —n)

(7]

|5t <
< w Lo — )
Jir] =
< Y YR -m

So by choosing N = [%‘/ﬂ, we can obtain [|g(y) — 9(¥) |l < [[9(y) — 9(y)[l2 < € for all
y € [-M, M]%,i.e., g is an e-approximation of g.

We now focus on constructing a ReLU NN architecture which can implement the e-approximation
g for any L-Lipschitz function g. We do this by first constructing a ReLU NN that is independent
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of g which implements the map ® : R¢ — RN+1D" defined by (®(y))n = ¢(52 — n). Then, we
add a final layer which outputs the appropriate linear combination of the gb(% —n)’s.

Lemma 2. For any integers N,d > 1, the maps mg : R? — REN+D? gpd My : R4 — REN+D*
defined by

(ma(y))n ::]rnin{N]\Z1 —nl,...,]\;\gd—nd,O} for me{-N,...,N}¢

and

(Ma(y))n 1= max { 50 —ny,. 200 —ng 0} for me{-N,...,N},

can both be implemented by a ReLU NN with O((2N + 1)%) weights, O((2N + 1)) nodes, and
[logy(d + 1)] layers.

Proof. First, we note that we can write

N

(ma(y))n =min {min{ T en, . % —nra/2}
min{% — M[d/2] 415 s % — nyg, O}}
and
(My(y))n =max {max{ Nj\’jl —1n,..., Ny]{;m — N2t
max{% — /2] 415 % —ng, O}}
In (Arora et al., 2016), it is shown that for any positive integer k, the maps (z1,...,2g) —
min{zy,...,2x} and (21, ..., 2x) — max{zy,..., z;} can be implemented by a ReLU NN with

at most ¢ k edges, cok nodes, and [log, k] layers, where ¢;,co > 0 are universal constants. So to
construct the map m, we first implement the (2N + 1) [4/2] maps

. N
(ylw"vy[d/Z])'_)mln{N]\Zl —MNy,..., yg/m —'n(d/gw} 5)

for (n1,...,npa/2) € {=N,...,N} 2. Implementing each of these maps requires c; [ 4]
edges, ¢z [ 4] nodes, and [log, [4]] layers. Next, we implement the (2N + 1)\%/2) maps

N
(Yrajo141s - Ya) = mm{% —N[/2) 415 s % —ng,0} (6)

for (nrq/2141,---,ma) € {—N,..., N} L4/2] Tmplementing each of these maps requires ¢; ( [%J +
1) edges, caf L%J +1) nodes, and [log, ( L%J + 1)] layers. After placing these (2N +1) [4/21 1 (2N +
1)14/2] ‘maps in parallel, we construct one final layer as follows. For each m = (n1,...,n4) €
{=N,...,N}%, we combine the output of the (ni,... ;M [q/21)-th map of the form in Equation 5
and the output of the (724/2741, - - . , a)-th map of the form in Equation 6 by using them as inputs
to a ReLU NN that implements the map (a,b) — min{a, b}. Each of these requires at most 2¢;
edges and 2c¢o nodes.

The total number of edges used to implement m, is
er [2] @N + D21 foy(|4] +1)2N + D)LY 420, (2N + 1)1
<ar([4] + [2] + DN + 121 4 2¢, (2N + 1)?
=ci(d+1)(2N + )21 426, (2N +1)¢
= ((d+ 1)(2N + 1)~ 14/2] ¢ 2) (2N +1)4
<e ((d +1)-3714/2 4 2) (2N +1)¢
<4e; (2N +1)4,

where we have used the fact that N > 1 by definition, and the easily verifiable inequality (d + 1) -
3 L4/2] < 2 for all positive integers d.
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A nearly identical calculation shows that the total number of nodes used to implement m,; is at most
4¢o(2N +1)%. Finally, since the (2N +1)[4/2] maps of the form in Equation 5 and the (2N +1)L/2]
maps of the form in Equation 6 are in parallel, the total number of layers used to implement m is

max { [log, [2]], [logo(|4] + 1)]} + 1 = [logy(d + 1)].

Hence, the map m, can be implemented by a ReLU NN with at most Cy (2N +1)9 edges, Co (2N +
1)? nodes, and [log,(d + 1)] layers, as desired. The proof for M, is identical, except with min
replaced by max. O

Next, we note that
(®(Y))n = ¢(52 —n) = max {1 + (ma(y))n — (Ma(y))n,0} forall ne{-N,...,N}".

So to construct a ReLU NN which implements ®, we first place a ReLU NN that implements m in
parallel with a ReLU NN that implements M. Then, we add an extra layer which has (2N + 1)¢
nodes, where the n-th node of this layer has two edges, one from the n-th node of my and one
from the m-th node of M,. Since my and M, are in parallel and each can each be implemented
with ReLU NNs with O((2N + 1)%) edges, O((2N + 1)?) nodes, and [log,(d + 1)] layers, and
the last layer has 2(2N + 1)¢ edges and (2N + 1)? nodes, the ReLU NN which implements ® has
O((2N + 1)%) edges, O((2N + 1)9) nodes, and [log,(d + 1)] + 1 layers.

Finally, we can construct a ReLU NN which implements

glx) = > g(M)e(5E —n)

by using the ReLU NN which implements ®, followed by a linear layer which computes the
weighted sum for g. This last layer has p nodes, and p(2N + 1)¢ edges. So the ReLU NN that
implements g has (p+ C1)(2N + 1)? edges, C2(2N + 1) + p nodes, and [log,(d + 1)] + 2 layers,
as desired.

E PROOF OF THEOREM 2

By combining Proposition 4a and Proposition 5, we have that there exists a p-JL embedding A €
RI*P of S with

d 2 min {p_2 log N(Us, || - ll2: 155 ) p~? (w(Ug))2} .

Let M = sup,cs ||A%||w so that A(S) C [-M, M]%, and so, A is a p-JL embedding of S into
[—M, M]?. By Proposition 6, there exists a ReLU NN architecture with at most

E=(p+Ch) (2 [(Lll‘f;/)ﬂ + 1)d edges,

N =0C, (2 [(Ll]\f;/)ﬂ + 1>d + p nodes

and £ = [log,(d + 1)] + 2 layers

which can e-approximate any 7 fp -Lipschitz function g : [—M, M]<. Finally, by applying Theo-

rem 1b, we have that there exists a a ReLU NN architecture with at most

E+Dd=(p+Ch) (2 [é"f;ﬁﬂ + 1>d edges,

(1—p)e
and £ + 1 = [logy(d + 1)] + 3 layers

which can e-approximate any L-Lipschitz function f : S — RP, as desired.

N+D=0Cy (2 {“‘Nﬂ +1)d+p+Dnodes
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F PROOF OF THEOREM 3

Let f : S — RP be the target function to approximate. By Proposition 4b, we have that there exists
a matrix A € R¥ P in the form M D where M is a partial circulant matrix and D is a diagonal
matrix with 41 entries such that A is a p-JL embedding of S with

42 p210g(4D + 4d) og N (Us. | - |2, 755)-
Let M = sup,cs ||Az||w so that A(S) C [—M, M]%, and so, A is a p-JL embedding of S into
[—-M, M.

By Lemma 1, there exists an ﬁ-Lipsohitz function g : [~ M, M]% — RP? such that g(Az) = f(x)
forallz € S. Let g; : [-M, M]? — R be the i-th coordinate of g. Let g; : [~1,1]? — R be
defined by g;(y) = g;(My) for all y € [—1,1]%. Note that each g; is 1%p-Lipschitz, and so, each
gi is %—Lipsohitz,

Then, by Proposition 7, for each g;, there exists a CNN ﬁgCNN) with O(N) residual blocks, each
of which has depth O(log N) and O(1) channels, and whose filter size is at most K such that

15: — NN || o < O(N—V4).

Now, we construct a CNN to approximate f as follows. First, we implement the map « +— %Aw

using the same 4 layer Resnet CNN described in the proof of Theorem 1c. Then, we pass the output

of that Resnet CNN into p parallel CNNs which implement §§CNN) fori = 1,...,p. The output

of the i-th of these parallel CNNs is §§CNN)(ﬁAm), which is an O(N~/)-approximation of

Ji(4;Ax) = gi(Ax) = f;(x). Hence, the constructed CNN is a O(N~1/4)-approximation of f.

The CNN which implements the map « +— ﬁAa: needs O(1) residual blocks, each of which has

depth O(1) and O(1) channels. Each of the p parallel CNNs which implement the §§CNN) ’s have

O(N) residual blocks, each of which has depth O(log N) and O(1) channels. So the overall network
to approximate f has O(pN) residual blocks, each of which has depth O(log V) and O(1) channels.

G PROOF OF PROPOSITION 9

By the sin © theorem (Wedin, 1972), we have

T X H < ||x1k1T — fﬂngH )
1l [lz2]] [l || |
and
k1 - ko ‘ ||‘T1k? - J:ngH 8)
eall &A1~ N2l ll&2]

Let us find a set whose covering number is easy to compute while containing the unit secant Uy as
a subset

_ ki — k

llyr — e 1 @ k1 — 29 @ ko]
21 @k — (2le) @ ky I=1ll20) @ k1 — 29 @ ke
(leat22) iz Ly = By, ky = Uy i = 1,2
|21 ® k1 — 2 ® ks lz1 ® k1 — 22 ® ks

1 ®k1 _ (Hmlllz2)®k1

[EA

|21 ® k1 — 22 ® kal|

s Ly :(I)’Uq,kl :\IJUZ',’L.:].,Q

(HIIHIQ) ®k1 — 29 ®k2

[EA

|$1 R k1 — 29 ®k2||

,xiszmi,ki:\I/vi,z’:lﬂ
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For the first set in the sum, by using (3) and (7), we have

1 @k — (”Il”ﬂfg) ® ki

[EA

H-Tl Rk — 22 ® kg”

y I’l:(pu“kz :\I/vi,i: 1,2

1k — (Hrlez) ® k1

. [EA]
B |1k — xok3 ||

, t€[0,L], v = Puy, by = Vvj,1 = 1,2

1 ®ky — (HrlHﬂﬁz) ® k1

llz=l

w1 — L2l |[lky )

€ [O7L]7 T = ¢U1,kz = \Ij’l/i7i = 1,2

[E2
m — fie b
= : ||$2|| ®<\/{f'),t€[0,L], r; = Puy, ky = Vo,;,i =1,2
lz1 — {5 ([l

. . z1 @k — (122l 5,) . (3vD\"
The covering number with e balls of the set { v/t ————=21—— ¢ € [0, L] ¢ is ( ) , and

1@k — (22|’ €

that for the set {/# - Hllzi ppt €0, L]} is (#) . So the covering number with ¢ balls of S is

<6L) " (6L> "
€ €
The same argument holds for the second set in the sum.

H PROOF OF PROPOSITION 10

By definition,
Y1 — Y2 Po (X1 — Xz)
Uy=97— 41,02 € y} = {,X1,X2 c)y
Y {|y1 — 2 [Pa(X1 — Xo)]
Since y1 — y2 = Po(X1 — Xo) and X
(X1 — X»)

{ Po (X1 — X)
1P (Xy = Xo)||”

(X1—X>)
[X1—X2|lr

leXQGy}C{t'PQ te[oaLLXlaXQGy}

[ X1 — Xa|[p’

Notice that are matrices of unit Frobenius norm with rank at most 2r. By Lemma 3.1 in

(Candes & Plan, 2011), they form a set whose covering number is at most (%)r(m+n+1).
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