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ABSTRACT

Diffusion models achieved great success in image synthesis, but still face chal-
lenges in high-resolution generation. Through the lens of discrete cosine transfor-
mation, we find the main reason is that the same noise level on a higher resolution
results in a higher Signal-to-Noise Ratio in the frequency domain. In this work,
we present Relay Diffusion Model (RDM), which transfers a low-resolution image
or noise into an equivalent high-resolution one for diffusion model via blurring
diffusion and block noise. Therefore, the diffusion process can continue seam-
lessly in any new resolution or model without restarting from pure noise or low-
resolution conditioning. RDM achieves state-of-the-art FID on CelebA-HQ and
sFID on ImageNet 256256, surpassing previous works such as ADM, LDM
and DiT by a large margin. All the codes and checkpoints are open-sourced at
https://github.com/THUDM/RelayDiffusion.
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Figure 1: (left): Generated Samples by RDM on ImageNet 256 x256 and CelebA-HQ 256 x256.
(right): Benchmarking recent diffusion models on class-conditional ImageNet 256256 generation
without any guidance. RDM can achieve a FID of 1.99 (and a class-balanced FID of 1.87) if with
classifier-free guidance.

1 INTRODUCTION

Diffusion models (Ho et al.}[2020;[Rombach et al.} 2022)) succeeded GANSs (Goodfellow et al | [2020)
and autoregressive models (Ramesh et al., 2021} [Ding et all, 2021)) to become the most prevalent



https://github.com/THUDM/RelayDiffusion

Published as a conference paper at ICLR 2024

generative models in recent years. However, challenges still exist in the training of diffusion models
for high-resolution images. More specifically, there are two main obstacles:

Training Efficiency. Although equipped with UNet to balance the memory and computation cost
across different resolutions, diffusion models still require a large amount of resources to train on
high-resolution images. One popular solution is to train the diffusion model on a latent (usually
4x compression rate in resolution) space and map the result back as pixels (Rombach et al., 2022,
which is fast but inevitably suffers from some low-level artifacts. The cascaded method (Ho et al.,
2022; |Saharia et al.| |2022)) trains a series of varying-size super-resolution diffusion models, which
is effective but needs a complete sampling for each stage separately.

Noise Schedule. Diffusion models need a noise schedule to control the amount of the isotropic
Gaussian noise at each step. The setting of the noise schedule shows great influence over the perfor-
mance, and most current models follow the linear (Ho et al., |2020) or cosine (Nichol & Dhariwal,
2021) schedule. However, an ideal noise schedule should be resolution-dependent (See Figure
or |Chen|(2023)), resulting in suboptimal performance to train high-resolution models directly with
common schedules designed for resolutions of 32x32 or 64 x 64 pixels.

These obstacles hindered previous researchers from establishing an effective end-to-end diffusion
model for high-resolution image generation. [Dhariwal & Nichol| (2021)) attempted to directly train
a 256x256 ADM but found that it performs much worse than the cascaded pipeline. |Chen| (2023)
and [Hoogeboom et al.| (2023)) carefully adjusted the hyperparameters of the noise schedule and
architecture for high-resolution cases, but the quality is still not comparable to the state-of-the-art
cascaded method (Saharia et al.|, [2022).

In our opinion, the cascaded method contributes in both training efficiency and noise schedule: (1) It
provides flexibility to adjust the model size and architecture for each stage to find the most efficient
combination. (2) The existence of low-resolution condition makes the early sampling steps easy, so
that the common noise schedules (optimized for low-resolution models) can be applied as a feasible
baseline to the super-resolution models. Moreover, (3) high-resolution images are more difficult to
obtain on the Internet than low-resolution images. The cascaded method leverages the knowledge
from low-resolution samples, meanwhile keeps the capability to generate high-resolution images.
Therefore, it might not be a promising direction to completely replace the cascaded method with an
end-to-end one at the current stage.

The disadvantages of the cascaded method are also obvious: (1) Although the low-resolution part
is determined, a complete diffusion model starting from pure noise is still trained and sampled for
super-resolution, which is time-consuming. (2) The distribution mismatch between ground-truth and
the generated low-resolution condition will hurt the performance, so that tricks like conditioning
augmentation (Ho et al.| 2022) become vitally important to mitigate the gap. Besides, the noise
schedule of high-resolution stages are still not well studied.

Present Work. Here we present the Relay Diffusion Model (RDM), a new cascaded framework
to improve the shortcomings of the previous cascaded methods. In each stage, the model starts
diffusion from the result of the last stage, instead of conditioning on it and starting from pure noise.
Our method is named as the cascaded models work together like a “relay race”. The contributions
of this paper can be summarized as follows:

* We analyze the reasons of the difficulty of noise scheduling in high-resolution diffusion
models in frequency domain. Previous works like LDM (Rombach et al.| 2022) assume all
image signals from the same distribution when analyzing the SNR, neglecting the differ-
ence in frequency domain between low-resolution and high-resolution images. Our analysis
successfully accounts for phenomenon that the same noise level shows different perceptual
effects on different resolutions, and introduce the block noise to bridge the gap.

* We propose RDM to disentangle the diffusion process and the underlying neural networks
in the cascaded pipeline. RDM gets rid of the low-resolution conditioning and its distribu-
tion mismatch problem. Since RDM starts diffusion from the low-resolution result instead
of pure noise, the training and sampling steps can also be reduced.

¢ We evaluate the effectiveness of RDM on unconditional CelebA-HQ 256 x256 and condi-
tional ImageNet 256 x 256 datasets. RDM achieves state-of-the-art FID on CelebA-HQ and
sFID on ImageNet.
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2 PRELIMINARY

2.1 DIFFUSION MODELS

To model the data distribution pg,:q(X0), denoising diffusion probabilistic models (DDPMs, Ho
et al.| (2020)) define the generation process as a Markov chain of learned Gaussian transitions.
DDPMs first assume a forward diffusion process, corrupting real data xy by progressively adding
Gaussian noise from time steps 0 to T, whose variance {3} is called the noise schedule:

q(XtIth) = N(Xt; vV 1- ﬂtxtflaﬁt:[)- ()

The reverse diffusion process is learned by a time-dependent neural network to predict denoised
results at each time step, by optimizing the variational lower bound (ELBO).

Many other formulations for diffusion models include stochastic differential equations (SDE, [Song
et al.| (2020b)), denoising diffusion implicit models (DDIM, |Song et al.|(2020a))), etc. [Karras et al.
(2022) summarizes these different formulations into the EDM framework. In this paper, we gener-
ally follow the EDM formulation and implementation. The training objective of EDM is defined as
Ly error terms:

Expiara.omp(o) Eenron [ D(x + o€, 0) — x]%, 2

where p(o) represents the distribution of a continuous noise schedule. D(x + o€, o) represents
the denoiser function depending on the noise scale. We also follow the EDM precondition for
D(x + o¢, o) with o-dependent skip connection (Karras et al.,[2022).

Cascaded diffusion model (CDM, |Ho et al.|(2022))) is proposed for high-resolution generation. CDM
divides the generation into multiple stages, where the first stage generates low-resolution images and
the following stages perform super-resolution conditioning on the outputs of the previous stage. f-
DM (Gu et al.| [2022) unifies multiple resolutions of image generation with a linear interpolation in a
single model. Cascaded models are extensively adopted in recent works of text-to-image generation,
e.g. Imagen (Saharia et al., [2022)), DALL-E-2 (Ramesh et al.,[2022)) and eDiff-I (Balaji et al.| [2022).

2.2 BLURRING DIFFUSION

The Inverse Heat Dissipation Model (IHDM) (Rissanen et al.| 2022)) generates images by reversing
the heat dissipation process. The heat dissipation is a thermodynamic process describing how the
temperature u(x,y,t) at location (x,y) changes in a (2D) space with respect to the time ¢. The

dynamics can be denoted by a PDE 2% = 2% + g%ﬁ

Blurring diffusion (Hoogeboom & Salimans), 2022) is further derived by augmenting the Gaus-
sian noise with heat dissipation for image corruption. Since simulating the heat equation up to
time ¢ is equivalent to a convolution with a Gaussian kernel with variance 02> = 2t in an infinite
plane (Bredies et al., [2018)), the intermediate states x; become blurry, instead of noisy in the stan-
dard diffusion. If Neumann boundary conditions are assumed, blurring diffusion in discrete 2D
pixel space can be transformed to the frequency space by Discrete Cosine Transformation (DCT)
conveniently as:

q(u¢lug) :N(ut|Dtuo,otzI), 3

. . . . ;2 i2
where u; = DCT(z;) , and D; = e?? is a diagonal matrix with Aixwyj = —Wz(# + #) for
coordinate (4, j). Here Gaussian noise with variance o7 is mixed into the blurring diffusion process

to transform the deterministic dissipation process to a stochastic one for diverse generation.

3 METHOD

3.1 MOTIVATION

The noise schedule is vitally important to the diffusion models and is resolution-dependent. A
certain noise level appropriately corrupting the 64 x 64 images, could fail to corrupt the 256 x 256
(or a higher resolution) images, which is shown in the first row of Figure 2{a)(b). [Chen| (2023) and
Hoogeboom et al.|(2023)) attributed this to the lack of schedule-tuning, but we found that an analysis
from the perspective of frequency spectrum can help us better understand this phenomenon.
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Figure 2: Tllustration of spatial and frequency results after adding independent Gaussian and block
noise. (a)(b) At the resolution of 64 x 64 and 256 x 256, the same noise level results in different
perceptual effects, and in the frequency plot, the SNR curve shifts upward. (c) The independent
Gaussian noise at the resolution 64 x 64 and block noise (kernel size = 4) at the resolution 256 x 256
produce similar results in both spatial domain and frequency domain. The noise is A/(0,0.32) for
(a). These SNR curves are universally applicable to most natural images.

Frequency spectrum analysis of the diffusion process. The natural images with different reso-
lutions can be viewed as the result of visual signals sampled at varying frequencies. To compare
the frequency features of a 64 x 64 image and a 256 x 256 image, we can upsample the 64 x 64
one to 256 x 256, perform DCT and compare them in the 256-point DCT spectrum. The second
row of Figure [2(a) shows the signal noise ratio (SNR) at different frequencies and diffusion steps.
In Figure 2|b), we clearly find that the same noise level on a higher resolution results in a higher
SNR in (the low-frequency part of) the frequency domain. Detailed frequency spectrum analysis are
included in Appendix [D]

At a certain diffusion step, a higher SNR means that during training the neural network presumes
the input image more accurate, but the early steps may not be able to generate such accurate images
after the increase in SNR. This training-inference mismatch will accumulate over step by step during
sampling, leading to the degradation of performance.

Block noise as the equivalence at high resolution. After the upsampling from 64 x 64 to 256 x 256,
the independent Gaussian noise on 64 x 64 becomes noise on 4 x 4 grids, thus greatly changes its
frequency representation. To find a variant of the s x s-grid noise without deterministic boundaries,
we propose Block noise, where the Gaussian noises are correlated for nearby positions. More
specifically, the covariance between noise €5y, and €, 4, is defined as

2
o . .

COV(Ezo,yoa Gml,yl) - ? max (0’ s — dls("an xl)) max (07 s — dls(yOa yl))7 (4)
where o is the noise variance, and s is a hyperparameter kernel size. The dis(-, -) function here is
the Manhattan distance. For simplicity, we “connect” the top and bottom edges and the left and right
edges of the image, resulting in

dis(zo, 1) = min (|zo — 21|, Tmaz — |20 — 1)) - %)

The block noise with kernel size s can be generated by averaging s x s independent Gaussian noise.
Suppose we have an independent Gaussian noise matrix e, the block noise construction function
Block(s](-) is defined as
1 s—1s—1
Block[s](€)zy = - YD oiuis (6)

i=0 ;=0

where Block([s|(€),,, is the block noise at the position (z,y), and e_, = €,,,,. —o. Figure Ekc)
shows that the block noise with kernel size s = 4 on 256 x 256 has a similar frequency spectrum as
the independent Gaussian noise on 64 x 64 images.
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The analysis above seems to indicate that we can design an end-to-end model for high-resolution
images by introducing block noise in early diffusion steps, while cascaded models already achieves
great success. Therefore, a revisit of the cascaded models is necessary.

Why does the cascaded models alleviate this issue? Experiments in previous works (Nichol &
Dhariwall [2021}; |Dhariwal & Nichol,2021) have already shown that cascaded models perform better
than end-to-end models under a fair setting. These models usually use the same noise schedule in
all stages, so why are the cascaded models not affected by the increase of SNR? The reason is that
in the super-resolution stages, the low-resolution condition greatly eases the difficulty of the early
steps, so that although the higher SNR requires a more accurate input, the accuracy is within the
capability of the model.

A natural idea is that since the low-frequency information in the high-resolution stage has already
been determined by the low-resolution condition, we can continue generating directly from the up-
sampled result to reduce both the training and sampling steps. However, the generation of low-
resolution images is not perfect, and thus the solution of the distribution mismatch between ground-
truth and generated low-resolution images is a priority to “continue” the diffusion process.

3.2 RELAY DIFFUSION

Blurring diffusion:
Continue from block noisy upsampled images to 256x256 images

Ordinary diffusion
from noise to 64x64 images
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Figure 3: Pipeline of Relay Diffusion Models (RDM).

We propose relay diffusion model (RDM), a cascaded pipeline connecting the stages with block
noise and (patch-level) blurring diffusion. Different from CDM, RDM considers the equivalence of
the low-resolution generated images when upsampled to high resolution. Suppose that the generated
64 x 64 low-resolution image x} = x* + ¢, can be decomposed into a sample in real distribution
x% and a remaining noise €;, ~ N(0, 32I). As mentioned in section the 256 x 256 equivalence
of €y, is Block[4] noise with variance 33, denoted by €. After (nearest) upsampling, x* becomes
x!, where each 4 x 4 grid share the same pixel values. We can define it as the starting state of a
patch-wise blurring diffusion.

Unlike blurring diffusion models (Rissanen et al., 2022} (Hoogeboom & Salimans, 2022)) that per-
form the heat dissipation on the entire space of images, we propose to implement the heat dissipation
on each 4 x 4 patch independently, which is of the same size as the upsampling scale. We first define
a series of patch-wise blurring matrices { DY}, which is introduced in detail in Appendix The
forward process would have a similar representation with equation 3}

q(z|zo) = N(2:|VDYV g, 0.2D), t€{0,.,T}, (7)

where VT is the projection matrix of DCT and o is the variance of noise. Here the D?. is chosen to
guarantee V. D}V Tz in the same distribution as a2, meaning that the blurring process ultimately
makes the pixel value in each 4 x 4 patch the same.
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The training objective of the high-resolution stage of RDM generally follows EDM (Karras et al.,
2022) framework in our implementation. We replace the Gaussian noise in equation[7]with a mixture
of Gaussian noise and block noise in section [3.1} The loss function is defined on the prediction of
denoiser function D to fit with true data x, which is written as:

Eogmpaasa t~td(0,1),e~N (0.1).e/ A (0.1) || D (@4, 00) — |2,

where z; = VD'VTe + —% (¢ + - Block[s] (¢ , 8
' ; Nl [s](<") @®)

blurring block noise

where ¢ and €’ are two independent Gaussian noise. The main difference in training between RDM
and EDM is that the corrupted sample x; is not simply x; = « + €, but a mixture of the blurred
image, block noise and independent Gaussian noise. Ideally, the noise should gradually transfer from
block noise to high-resolution independent Gaussian noise, but we find that a weighting average
strategy perform well enough, because the low-frequency component of the block noise is much
larger than the independent Gaussian noise, and vice versa for high-frequency component. « is a
hyperparameter and the normalizer \/ﬁ? is used to keep the variance of the noise, o unchanged.

The advantages of RDM compared to CDM includes:

* RDM is more efficient, because RDM skips the re-generation of low-frequency information
in the high-resolution stages, and reduce the number of training and sampling steps.

* RDM is simpler, because it gets rid of the low-resolution conditioning and conditioning
augmentation tricks. The consumption from cross-attention with the low-resolution condi-
tion is also spared.

* RDM is more potential in performance, because RDM is a Markovian denoising process
(if with DDPM sampler). Artifacts in the low-resolution images could be corrected in the
high-resolution stage, while CDM is trained to correspond to the low-resolution condition.

Compared to end-to-end models (Chen| |2023; Hoogeboom et al.||[2023),

* RDM is more flexible to adjust the model size and leverage more low-resolution data.

3.3 STOCHASTIC SAMPLER

Since RDM differs from traditional diffusion models in the forward process, we also need to adapt
the sampling algorithms. In this section, we focus on the EDM sampler (Karras et al., 2022)) due to
its flexibility to switch between the first and second order (Heun’s) samplers.

Heun’s method introduces an additional step for the correction of the first-order sampling. The

updating direction of a first-order sampling step is controlled by the gradient term d,, =
Zu=®0(@n.9t1) The correction step updates current states with an averaged gradient term %.

Heun’s method takes account of the change of gradient term ‘fi—“t” between t,, and t,,_1. Therefore, it

achieves higher quality while allowing for fewer steps of sampling.

Ttn

We adapt the EDM sampler to the blurring diffusion of RDM’s super-resolution stage following
the derivation of DDIM (Song et al., [2020a). We define the indices of sampling steps as {t;}}¥,
in corresponding to the noisy states of images {acl}fio To apply blurring diffusion, images are
transformed into frequency space by DCT as u; = V Tx;. Song et al. (2020a) uses a family of
inference distributions to describe the diffusion process. We can write it for blurring diffusion as:

N
gs(u1:n|wo) = gs(un|uo) H a5 (Un—1|tn, wo), 9)

n=2

where § € Rl;IO denotes the index vector for the distribution. For all n > 1, the backward process is:

1
45 (W1 |Un, ug) = j\/(un,1|;(, [o} | —2un+ (00, D} —\[o} | — 062D} Yuy), 5ZI).

(10)



Published as a conference paper at ICLR 2024

The mean of the normal distribution ensures the forward process to be consistent with the formula-
tion of blurring diffusion in Section which is g(u,|ug) = N(u,| DY ug, 07 I). We provide
a detailed proof of the consistency between our sampler and the formulation of blurring diffusion
in Appendix When the index vector 9§ is 0, the sampler degenerates into an ODE sampler. We
set 8, = noy, _, for our sampler, where n € [0, 1) is a fixed scalar controlling the scale of random-
ness injected during sampling. We substitute the definition into equation [I0]to obtain our sampler
function as:

Un-1 = (Dfn_l + (I — Dfn))un + oy, ('Vann - Dfn_l)

Uy, — U
=0 4 oy, €, (11
Utn

where v, £ /1 — 77202’17"1. As in the section we also need to consider block noise besides

blurring diffusion. The aéaptation is just to replace isotropic Gaussian noise € with €, which is a
weighted sum of the block noise and isotropic Gaussian noise. %y = ug(u,, o0, ) is predicted by
the neural network.

Finally, a stochastic sampler for the super-resolution stage of RDM is summaried in Appendix [A.4]
4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Dataset. We use CelebA-HQ and ImageNet in our experiments. CelebA-HQ (Karras et al., [2018)
is a high-quality subset of CelebA (Liu et al., 2015)) which consists of 30,000 images of faces from
human celebrities. ImageNet (Deng et al.| 2009) contains 1,281,167 images spanning 1000 classes
and is a widely-used dataset for generation and other vision tasks. We train RDM on these datasets
to generate 256 x 256 images. See Appendix [C.1|for further experiments on higher resolutions.

Architecture and Training. RDM adopts UNet (Ronneberger et al., [2015)) as the backbone of dif-
fusion models for all stages. The detailed architectures largely follow ADM (Dhariwal & Nichol,
2021) for fair comparison. We train unconditional models on CelebA-HQ and class-conditional
models on ImageNet respectively. Since we follow the EDM implementation, we directly use the
released checkpoint from EDM in ImageNet in the 64 x 64 stage. We calculate the training consump-
tion by the number of training samples at 256 x 256 resolution, while also including the training cost
of the 64 x 64 stage in the total calculation. According to Appendix [B.I] the FLOPs of the 64 x 64
model are less than 1/10 that of the 256 x 256 model. So we add 1/10 of the first stage’s number
of training samples to the 256 x 256 stage’s to be the total training consumption. See Appendix [B.1]
for more information about the architecture and hyperparameters.

Evaluation. We use metrics including FID (Heusel et al.| 2017), sFID (Nash et al., [2021)), IS (Sali-
mans et al.,|2016), Precision and Recall (Kynkididnniemi et al.,[2019) for a comprehensive evaluation
of the results. FID measures the difference between the features of model generations and real
images, which is extracted by a pretrained Inception network. sFID differs from FID by using inter-
mediate features, which better measures the similarity of spatial distribution. IS and Precision both
measure the fidelity of the samples, while Recall indicates the diversity. We compute metrics with
50,000 and 30,000 generated samples for ImageNet and CelebA-HQ respectively.

Table 2: Effect of stochasticity in the sampler on
ImageNet 256 x 256 (top) and CelebA-HQ 256 x 256
(bottom). We explored different values of 7 in Eq.@

Table 1: Benchmarking unconditional image genera-
tion on CelebA-HQ 256 x 256.

Unconditional CelebA-HQ 256 x 256

Model FID| Precisiont Recallt Cost(IterxBS) n 0 0.10 0.5 020 025 030 040 0.50
LSGM (Vahdat et al.|2021} 722 - - 470K x 128 FID] 5.65 544 531 527 548 591 691 09.17
WaveDiff (Phung et al.[[2023) 5.94 - 0.37 234k x 64
LDM-4 (Rombach et al.2022]  5.11 0.72 0.49 410k <48
StyleSwin (Zhang et al.|| 2022} 3.25 - - 25600k x 32 i 0 0.10 0.15 0.20 0.25 030 040 0.50
RDM 3.15 0.77 0.55 46k x 1024

FID| 4.11 374 343 315 323 352 479 641

4.2 RESULTS

CelebA-HQ We compare RDM with the existing methods on CelebA-HQ 256 x 256 in Table
512 x 512 in Table [6] and 1024 x 1024 in Table []] RDM outperforms the state-of-the-art model

! class-balance means making the number of images generated for each class same among 50,000 images.
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Table 3: Benchmarking class-conditional image generation on ImageNet 256 x 256. The cost
of RDM in the table has taken the first-stage model into consideration and made equivalent conver-
sions according to Section The cost of latent diffusion model’s vae is not taken into considera-
tion. The calculation process of NFE is clarified in sampling steps part of Section

Class-Conditional ImageNet 256 x 256

Model FID| sFID] ISt PrecisionT  Recallf Cost(IterxBS) Sampling NFE
BigGAN-deep (Brock et al.|2018)  6.95 7.36 171.4 0.87 0.28 165k %2048 -
StyleGAN-XL (Sauer et al.[|2022)  2.30 4.02  265.12 0.78 0.53 - -
ADM (Dhariwal & Nichol/[2021) 1094  6.02 100.98 0.69 0.63 1980k x 256 250
LDM-4 (Rombach et al.[[2022) 10.56 - 103.49 0.71 0.62 178k x 1200 250
CDM (Ho et al.[[2022) 4.88 - 158.71 - - - 100
DiT-XL/2 (Peebles & Xie![2022) 9.62 6.85 121.50 0.67 0.67 7000k x 256 250
MDT-XL/2 (Gao et al.[|2023) 6.23 5.23 143.02 0.71 0.65 6500k X256 250
RDM 5.27 4.39 153.43 0.75 0.62 290k x 4096 125
ADM-U,G 3.94 6.14 21584 0.83 0.53 1980k x256 500
LDM-4-G (CFG=1.50) 3.60 - 247.67 0.87 0.48 178k x 1200 500
DiT-XL/2-G (CFG=1.50) 2.27 460 27824 0.83 0.57 7000k <256 500
MDT-XL/2-G (dynamic CFG) 1.79 457  283.01 0.81 0.61 6500k <256 500
MDT-XL/2-G (CFG=1.325) 2.26 4.28  246.06 0.81 0.59 6500k X256 500
RDM (CFG=3.50) 1.99 399  260.45 0.81 0.58 290k <4096 250
+ class-balancd'] 1.87 3.97 278.75 0.81 0.59 290k %4096 250

StyleSwin (Zhang et al.| 2022} with a remarkably fewer training iterations (50M versus 820M trained
images). We also achieve the best precision and recall among the existing works.

ImageNet Table[3|shows the performance of class-conditional generative models on ImageNet 256 x
256. We report the best results as possible of the existing methods with classifier-free guidance
(CFG) (Ho & Salimans} 2022). RDM achieves the best sFID and outperforms all the other methods
by FID except MDT-XL/2 (Gao et al., [2023) with a dynamic CFG scale. If with a fixed but best-
picked CFG scal MDT-XL/2 can only achieve an FID of 2.26. While achieving competitive
results, RDM is trained with only 70% of the iterations of MDT-XL/2 (1.2B versus 1.7B trained
images), indicating that the longer training and a more granular CFG strategy are potential directions
to further optimize the FID of RDM.

Training Efficiency We also compare the performance of RDM with existing methods along with
the training cost in Figure [l When CFG is disabled, RDM achieves a better FID than previous
state-of-the-art diffusion models including DiT (Peebles & Xie, [2022) and MDT (Gao et al., [2023).
RDM outperforms them even with only about 1/3 training iterations.

4.3 ABLATION STUDY

In this section, we conduct ablation experiments on the designs of RDM to verify their effectiveness.
Unless otherwise stated, we report results of RDM on 256 x 256 generation without CFG.

The Effectiveness of block noise. We compare the performance of RDM with and without adding
block noise in Figure ] With a sufficient phase of training, RDM with block noise outperforms
the model without block noise by a remarkable margin on both ImageNet and CelebA-HQ. This
demonstrates the effectiveness of the block noise. The addition of block noise introduces higher
modeling complexity of the noise pattern, which contributes to a slower convergence of training in
the initial stage, as illustrated by Figure [a). We assume that training on a significantly smaller
scale of samples leads to a fast convergence of the model, which obliterates such a feature, therefore
a similar phenomenon cannot be observed in the training of CelebA-HQ.

The scale of stochasticity. As previous works (Song et al., [2020b) have shown, SDE samplers
usually perform better than ODE samplers. We want to quantitatively measure how the scale of
the stochaticity affects the performance in the RDM sampler (Algorithm [T). Table 2] shows results
with 1 varying from 0 to 0.50. For both CelebA-HQ and ImageNet, the optimal FID is achieved by
1n = 0.2. We hypothesize a small 7 is insufficient for the noise addition to cover the bias formed

The best CFG scale is 1.325 with a hyperparameter sweep from 1.0 to 1.8. We observed the FID increases
greatly if CFG scale > 1.5 for MDT-XL/2.
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Figure 4: The effectiveness of block noise. We compare the performance of RDM along the training
on (a) ImageNet 256 x 256 and (b) CelebA-HQ 256 x 256. To apply block noise in RDM, we set
a = 0.15 and kernel size s = 4.

in earlier sampling steps, while a large 7 introduces excessive noise into the process of sampling,
which makes a moderate 7 to be the best choice. Within a reasonable scale of stochasticity, an SDE
sampler always outperforms the ODE sampler by a significant margin.

Sampling steps. To show the efficiency of our
model, we compare the performance of RDM vty DITXL/2

and other methods with fewer sampling steps. R N MDT-XL/2
Number of Function Evaluations (NFE), i.e., —— RDM,50+(3-5)
the number that a neural network is called dur- 121 YL RDM,100+(3-10)
ing sampling, is used as the index of the com- el ROM50+15)
parison for fairness. For RDM, the NFE con- v
sists of the NFE in the second stage and 1/10
the NFE in the first stage, according to the pro-
portion of the FLOPs. As shown in Figure [3
the performance of DiT-XL/2 and MDT-XL/2
both drop significantly with a lower NFE, while
RDM barely declines. Considering that the
steps in different stages may contribute differ- & $oom= i Inblulytel etk ' §
ently in FID, we demonstrates three FLOPs al-
location strategies in Figure[5] With more NFE 80 120 160 200
allocated in the first stage, RDM achieves a bet- NFE

ter FID. In all settings, RDM performs better

than MDT-XL/2 and DiT-XL/2 if NFE < 200.  Figure 5: Comparison of FID on ImageNet with
different sampling steps. For allocation of NFE

= N inRDM, 10n + (£ — n) means 10n for the
first stage and % — n for the second.

FID-50K
=
o

>

<

5 CONCLUSION AND DISCUSSION

In this paper, we propose relay diffusion to optimize the cascaded pipeline. The diffusion process
can now continue when changing the image resolution or model architectures. We anticipate that our
method can reduce the cost of training and inference, and help create more advanced text-to-image
model in the future.

The frequency analysis in the paper reveals the relation between noise and image resolution, which
might be helpful to design a better noise schedule. However, our numerous attempts to theoretically
derive the optimal noise schedule on the dataset from a frequency perspective did not yield good
results. The reason might be that the optimal noise schedule is also related to the size of the model,
inductive bias, and the nuanced distribution characteristics of the data. Further investigation is left
for future work.
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A DERIVATION

A.1 PATCH-WISE BLURRING

The forward process of blurring diffusion is defined as Eq. |3, where uy = V' Taxy denotes the
representation of the image x in the frequency space. The diagonal matrix D; = e’ defines a

non-isotropic blurring projection, where A(i x W+ j,i x W+ j) = 77r2(;_'1—22 + V]V—Zz) corresponds
to the coordinate (4, j) in the 2D frequency space. In the equation q(u|ug) = N (us|Dyug, o2 1),
we can utilize the dot product of matrices to transform D, and wg into 2D matrices, ﬁt and ug, in
the shape of H x W for calculation:

D,ug = D, - 4 (12)

In the super-resolution stage of RDM, we apply blurring on each k x k patch independently. We
name it as patch-wise blurring and define the diagonal blurring matrix in the shape of k£ x k for each
patch as:

9 Z'2 ]2)

Dy ik = exp(Apxit), Apxp(i,j) = —7 (z+5z (13)

where i € [0,k),j € [0,k). For any patch, Dy j} remains the same. The blurring matrix D?
of the patch-wise blurring is a combination of all the independent blurring matrices Dy x. The
relationship between the elements of Df and D, i« can be expressed as:

DP(i,5) = Dy (i mod k, j mod k), (14)

where (4, j) corresponds to the coordinate in the 2D frequency space. Finally, DY in Eq. 7| can be
formulated as: _
D? = diag(unfold(D?)), (15)

where unfold(D?) means unfolding the H x W matrix into a vector of H¥ dimensions and diag(v)
denotes the diagonal matrix with vector v as its diagonal line.

A.2 COMBINATION OF SCHEDULE

We follow Karras et al| (2022) to set the noise schedule for standard diffusion as In(c) ~
N(Prean, Pft 4)- We use Fp and Fr ! to denote the cumulative distribution function (CDF) and the
inverse distribution function (IDF) for distribution D in the following description. With ¢ sampled
from uniform distribution 2/(0, 1), the noise scale is formulated as:

o(t) = exp(Fyp,  pa (1)) (16)

mean g1q

For the super-resolution stage of RDM, we apply a truncated version of diffusion noise schedule
o'(t),t ~U(0,1). If we set t, as the starting point of the truncation, the new noise schedule can be
formally expressed as:

o' (t) = o(Fyyo 1) (Fuao.1) () Fuao,1) (1)), (17)

which means we only sample the noise scale ¢’ from positions of the normal distribution
N (Prean, P2 ) where its CDF is less than .

For the process of blurring, we set its schedule following the setting of [Hoogeboom & Salimans
(2022). They found that the heat dissipation is equivalent to a Gaussian blur with the variance of its
kernel as 01237t = 27. They set the blurring scale o p + as:

t
OBt = OB .mas s’ (), (18)
where ¢ is also sampled from the uniform distribution /(0, 1) and 0 g sq, denotes a fixed hyperpa-
rameter. Empirically, we set 0y, = 3 for ImageNet 256 x 256 and 0B ;mq, = 2 for CelebA-HQ
2

256 x 256. The blurring matrix is formulated as D; = €A™, where 7, = a’;’*. As illustrated in
.2

Section A is a diagonal matrix and A,y ; = —72 (45 + V]V—zg) for coordinate (i, 7).

13
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A.3 SAMPLER DERIVATION

In this section, we prove the consistency between the design of our sampler and the formulation
of blurring diffusion. We need to prove that the jointly distribution gs(w,—1|wy, ug) we define in
Eq.[10|matches with the marginal distribution

s (un|wo) = N (un| DY ug, 07, 1) (19)

under the condition of Eq.[9}

proof- Given that gs(un|uo) = N(un|DY ug, o7 I), we proceed with a mathematical induction
approach. Assuming that for any n < N, ¢s(un|ug) = N (u,|Df wg,of I)holds. We only need
to prove gs(ty—1|tg) = N(u,—1|D? _ uo,07,_ I),and then the conclusion above will be proved
based on the induction hypothesis.

Firstly, based on
45 (tn_1|tg) = / 45 (21 [t 10 ) (2t 220t 20)

we introduce

1
Q6(un71|umu0> = N(un71|7< Uth,l - 572Lun + (Utann,l —/ UtZ,,L,l - 5,21Df")u0),521)

Oty
(21
and
g5 (un|uo) = N(un| DY, uo, o7 ). (22)
Then according to Bishop & Nasrabadil (2006), gs(w,—1|ug) is also a Gaussian distribution:
g5 (wn|wo) = N (wp|phn—1, 20 1). (23)

Therefore, from Eq.[20, we can derive that

1
Hn—1 = —— (y/oi,_, — 02D} wo+ (0¢, D} —\Jof | —062D7 Jug) =D} wuy (24)
¢

n

and

2 2

Otp1 — 671
2n—l = D)
T,

o} I+6:1 =07 I (25)

Summing up, ¢s(w,—1|ug) = N(w,—1|D}  ug,o7,  I). The inductive proof is complete.

14
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A.4 STOCHASTIC SAMPLER

Algorithm 1 the RDM second-order stochastic sampler

sample 'y from results of the first stage > i.e. images at the resolution of 64 x 64
xy = interpolate(Ly, 256, mode = "nearest”) + oy, € > upsample 64px images to blurry
256px images and apply the truncated schedule in Appendix [A22]

uy =V 'y > transformed into the frequency domain
forne {N,...,1} do
g e ~
Yo =+/1— 772;%:, On =N0ot, > coefficient of the random term
Uy = Ug (’U:n, ot,,) > model prediction at ¢,
d, = % > first-order gradient term at ¢,,
i,
_ (PP p j4 P =
Up—-1 = (Dtn71 + (I — Dtn))un + oy, (’YnDtn - Dtn,l)dn +dp€
> from ¢,, to ¢,,_1 using Euler’s method
if n # 1 then > the second-order part
al = up(Un—1,0¢, ;) > model prediction at ¢,, 1
~/
d,_1= w > gradient term at ¢,, 1
n—1

dntdi,— .
d, = dntdn_y > second-order gradient term

2
uy,_ = (D |+ — D} ))u,+oy, (D —D; | )d;, +0,€ B> correction
end if
Up—1 = u;z—l
end for
o = V’LLO

As for the sampler of the first stage, we follow the EDM sampler (Karras et al., [2022). Of course,
samplers such as DDPM are also capable. After all, the first stage is just a standard diffusion model.

B MODEL DETAILS

B.1 HYPERPARAMETERS

Hyperparameters we use for the training of RDM are presented in Table ] We set the architecture
hyperparameters for diffusion models following |Dhariwal & Nichol| (2021), in corresponding to
the input resolutions. For the experiments on CelebA-HQ, we set the model dropout to be larger
(0.15 and 0.2 for two stages respectively), and enable sample augmentation to prevent RDM from
overfitting.

B.2 TRAINING COST

On ImageNet, the first stage model was trained on 32 V100 for 13 days according to EDM (Karras
et al., |2022) and the second stage model (64 — 256) was trained on 64 40G-A100 for 12.5 days.
On CelebA-HQ, we trained the first stage model on 32 40G-A100 for 16 hours and the second stage
model (64 — 256) on 32 40G-A100 for 25.5 hours.

C ADDITIONAL EXPERIMENTS

C.1 FURTHER EXPERIMENTS ON HIGHER RESOLUTIONS

To further show that RDM can easily scale to high-resolution image generation without carefully
adjusting the hyperparameters of noise schedule and architecture. We take dataset CelebA-HQ as
an example and conduct experiments on higher resolutions: 512 and 1024. Except for the different
hyperparameters shown in Table [5] other settings remain the same as the 64—256 model in the
second stage.
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Table 4: Hyperparameters for RDM.

ImageNet 64 ImageNet 64—256 CelebA-HQ 64

CelebA-HQ 64—256

Diffusion steps 256
Model size 295M
GFLOPs 104
Mixed-precision (FP16) v
Channels 192
Channels multiple 1,2,34
Heads Channels 64
Attention resolution 32,16,8
Dropout 0.1
Augment probability 0
Blurring 7,44 -
Batch size 4096
Training Images 2500M
Learning Rate le-4

100
553M
1117
v
256
1,1,2,2.4,4
64
32,16,8
0.1
0
3.0
4096
1000M
le-4

120 53
295M 553M
104 1117
- v
192 256
1,2,3,4 1,1,2,2,4,4
64 64
32,16,8 32,16,8
0.15 0.2
0.2 0.2
- 2.0
1024 1024
70M 40M
le-4 le-4

Table 5: Hyperparameters for RDM on higher resolutions of 512 and 1024.

CelebA-HQ 256—512  CelebA-HQ 256—1024

Diffusion steps 35
Model size 558M
GFLOPs 1987
Mixed-precision (FP16) v
Channels 256
Channels multiple 0.5,1,1,2,2,4,4
Heads Channels 64
Attention resolution 32,16,8
Dropout 0.2
Augment probability 0.2
Blurring 0,44 1.25
Batch size 256
Training Images 15M
Learning Rate le-4

35

562M
4509

v
256

0.5,0.5,1,1,2,244

64

32,16,8

0.1
0.2
2.0
256
11M
le-4

The cost in Table [6] and Table [7] contains the training of three stages, with the same equivalent
conversion as Table E] and Table E], according to GFLOPs. As shown in the table, RDM achieves
state-of-the-art FID at the resolution of both 512 and 1024, and only requires a small amount of
training in the third stage according to Table[5] This demonstrates that RDM can be easily extended
from two stages to three stages and higher resolutions. Examples are shown in Figure 2]

Table 6: Benchmarking unconditional image generation on CelebA-HQ 512 x 512.

Unconditional CelebA-HQ 512 x 512

Model FID]  Cost(Number of Training Images)
WaveDiff (Phung et al., 2023) 6.40 12M

RDM 3.47 41M

C.2 ADD BLOCK NOISE TO END-TO-END DIFFUSION MODEL

To further demonstrate the effectiveness of block noise, we conduct ablation experiments on an end-
to-end model followed by the setting of ADM (Dhariwal & Nichol, 2021). We use a mixture of
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Table 7: Benchmarking unconditional image generation on CelebA-HQ 1024 x 1024.

Unconditional CelebA-HQ 1024 x 1024

Model FID|  Cost(Number of Training Images)
HiT-B (Zhao et al., 2021) 8.83 16M
Polarity-ProGAN (Humayun et al.|2022)  7.28 -

StyleGAN (Karras et al.[[2019) 5.06 -

StyleSwin (Zhang et al.| [2022) 4.43 819M

RDM 3.85 23M

fixed ratio block noise and Gaussian noise as illustrated in section As shown in Figure[6] ADM
with block noise outperforms the model without block noise by a remarkable margin on CelebA-HQ
256 x 256.

231
21
hV4
0
9 19_ .
- '\ —e—- w/ Block Noise
\ —»— w/o Block Noise
LY
i AN
17 .\'
\¢
- _
5 o ——. -o-——0
15K 25K 35K 45K
Iterations

Figure 6: The effectiveness of block noise. We compare the performance of ADM along the training
on CelebA-HQ 256 x 256. For block noise, we set & = 0.15 and kernel size s = 4.

C.3 CORRECT ARTIFACTS IN THE LOW-RESOLUTION IMAGES

As illustrated in section [3.2] the super-resolution generation of RDM is a Markovian process, in
comparison of CDM and ADM-U using low-resolution conditioning all along the generation pro-
cess. This could improve the robustness of RDM on handling artifacts from low-resolution stages.
Figure [/|shows the comparison of super-resolution generation between RDM and ADM-U. We use
64 x 64 samples from ImageNet as low-resolution inputs, adding 0.05 scale of Gaussian Noise to
introduce artifacts. While RDM successfully handles the noise to generate clean 256 x 256 samples,
ADM-U preserves the noise to the 256 x 256 samples.

D DETAILS ABOUT THE POWER SPECTRAL DENSITY

D.1 CALCULATION PROCEDURE OF THE PSD

We follow the setting of |Rissanen et al.| (2022) to calculate the PSD in the frequency space. The
PSD at a certain frequency is defined as the square of the DCT coefficient at that frequency. Firstly,
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ADM

Add
Gaussian s
Noise
a 64 to 256
generation

RDM

Figure 7: Input 64px images with artifacts into the 64—256 model of RDM (right top) and ADM-U
(right bottom) to generate 256px images.

we transform the image into the 2D frequency space by DCT and set the frequency range to [0, 7].
To obtain the 1D curve of the PSD, we calculate the distance from each point (z, y) to the origin

in the frequency space, i.e. \/x2 + y2, considering it as a 1D frequency value. Subsequently, we
uniformly divide the frequency domain into N intervals, and take the midpoint of each interval as
its representative frequency value. Finally, we take the mean of the PSD values for all points within
the interval as the PSD value for that interval, in order to get N coordinate pairs for plotting. The
SNR curve in Figure [2] can be obtained in a similar approach, while the only difference is that the
vertical axis values are replaced with the absolute value of the ratio between the DCT coefficients
for the image and noise in the frequency space.

D.2 ANALYSIS OF THE PSD

As shown in Figure[§] the PSD of real images gradually decreases from low frequency to high fre-
quency. And the intensity of Gaussian noise components across all frequency bands is generally
equal. Therefore, when corrupting real images, Gaussian noise initially drowns out high-frequency
components until the noise intensity becomes high enough to drown out the low-frequency compo-
nents of real images. And it is demonstrated in Figure 2] that, as the resolution of images increases,
less information is corrupted under the same noise intensity. Correspondingly, as shown in Fig-
ure[8a) and Figure[§|b), the low-frequency portion of the PSD gets drowned out more slowly as the
resolution increases. It is indicated that we will introduce excessive high-frequency components of
noise when corrupting the low-frequency information of real images, especially for high-resolution
images.

Differently, the low-frequency portion of the PSD from block noise is notably higher than that of
Gaussian noise with the same intensity. Furthermore, the PSD of block noise exhibits a decreasing
trend as frequency increases, and its curve is quite similar to the PSD curve of Gaussian noise at the
resolution of 64 upsampled to the resolution of 256. This leads to the PSD curves of high-resolution
images with added block noise and that of low-resolution images with added Gaussian noise also
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being quite similar. As a result, the low-frequency portion of the PSD from images with added
block noise gets drowned out more quickly than that from images with added Gaussian noise. We
can conclude that block noise can corrupt the low-frequency components of images more easily.

Power Spectral Density
Power Spectral Density
Power Spectral Density

PSD of added noise
10°¢ 10°¢

10! 10° 10! 100 10! 10°
Frequency Frequency Frequency
(a) (b) ©

Figure 8: The power spectral density (PSD) of real images after adding (a) 64px Gaussian noise, (b)
256px Gaussian noise and (c) 256px block noise with block size of 4. The black curve represents
the PSD of real images. The red curves, from dark to light, represent adding noise with increasing
intensity. In order to make comparisons within the same frequency space, for the images at the
resolution of 64, we firstly upsample them to the pixel space at the resolution of 256.

E ADDITIONAL SAMPLES

Section [£.3] quantitatively compares the performance of RDM with other models under the same
NFE and demonstrates the superiority of RDM with fewer sampling steps. Figure 9] shows quali-
tative comparison results. While other models achieve competitive quality of generation with suf-
ficient NFE, their performances degenerate noticeably with the decrease of NFE. In contrast, RDM
still maintains comparable generation quality with a low NFE.

Figure[I0]compares visualized samples generated by the best settings of StyleGAN-XL (Sauer et al.|
2022), DiT (Peebles & Xie, |2022) and RDM. StyleGAN-XL is in the framework of GAN, while
DiT and RDM are diffusion models. RDM achieves the best quality of images synthesis. Figure [IT]
exhibits more examples generated by our model RDM on ImageNet 256 x 256.
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Figure 9: Comparison of ImageNet samples with varied NFE. DiT-XL/2 (left) vs MDT-XL/2 (mid-
dle) vs RDM (right). The allocation of NFE between the two stages of RDM is: [2, 18], [8, 32], [20,

60], [40, 120].

# |

20



Published as a conference paper at ICLR 2024

class = 207

class = 388

class = 511

class = 812

Figure 10: Comparison of best ImageNet samples. StyleGAN-XL (FID 2.30, left) vs DiT-XL/2
(FID 2.27, middle) vs RDM (FID 1.87, right).
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Figure 11: Additional ImageNet samples generated by RDM. Classes are 279: Arctic fox, 90:
lorikeet, 301: ladybug, 973: coral reef, 980: volcano, 497: church, 717: pickup truck, 927: trifle.
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Figure 12: Samples generated by RDM on CelebA-HQ 512 x 512 (left) and CelebA-HQ 1024 x 1024
(right).
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