420

421
422
423

424

425
426
427
428
429
430
431
432
433
434
435

437
438
439
440
441
442
443
444
445

446
447

A Environment Details

We evaluate our method in a real-world tabletop manipulation setup. We use a 6DOF WidowX-250
robot interacting with various objects both inside and outside of our training distribution at 5 Hz.
We use one 640x480 RGB camera mounted on top of the model as set up in BridgeData [5].

We evaluate our method in the following scenes, which include:

Sweep: This scene involves an object manipulation as well as sweeping task unseen in the Bridge-
Data’s initial training trajectories.
mint: Placing the mushroom in the pot, then sweep the mints on the right using the towel.
skittles: Instead of using mints and towel for sweeping, we use a swiffer and skittles instead.

Drawer: This scene involves using a drawer and perform manipulation within the space of the
drawer.
put in: Open the drawer, and then put a purple object (beet/sweet potato) inside the drawer.
pry away: A pot is stored inside the drawer space, and the robot must use a ladle to pry away the

pot within drawer.

Bowl: This scene involves object manipulation to a bowl and perform long-horizon or 6DOF ma-
nipulation.
salad: This task requires sequential object manipulation by putting a corn cob and a mushroom

in the bowl.
pouring: This task requires the robot to grasp a scoop and pour almonds inside the scoop into
the bowl.

Rotation: This scene involves rotating a spoon and a marker to fit into a white container not aligned
with the pen/marker, and naive pick-and-place will not correctly align the object into the con-
tainer.
spoon: Placing the spoon in the container placed on the left side of the table.
marker: Replacing the spoon with the marker and randomize location of the container while

being misaligned.

We summarize the evaluation tasks in Table 1. Frames from each evaluation task are presented in
Fig. 7.

Table 1: Task Breakdown

Scene | Task | Long-Horizon? 6DO required? Instruction
put in Yes Yes “put the beet toy/purple thing into
Drawer the drawer.”
pry away Yes Yes t }E);}lla(zﬁ; gle pot in the drawer using
salad Yes No “make a salad bowl with corn and
Bowl mushroom.”
pour scoop No Yes “pour the contents of the scoop into
the bowl.”
. “sweep the mints to the right after
mints Yes No putting the mushroom in the bowl.”
Sweep “sweep the skittles into the bin after
skittles Yes No putting the mushroom in the con-
tainer.”
marker No Yes “put the marker into the box while
Rotation aligning it.”
“put the spoon into the cleaner
spoon No Yes while aligning it.”

13

448

449
450
451
452

453
454
455
456
457

459
460

461

462

464
465
466
467

Instruction

“put the beet toy/purple
thing into the drawer”

“pry out the pot in the
drawer using the ladle”

“make a salad bowl with
corn and mushroom”

“pour the contents of the
scoop into the bowl”

“sweep the mints to the
right after putting the
mushroom in the bowl”

“sweep the skittles into the
bin after putting the
mushroom in the container”

“put the marker into the
box while aligning it”

“put the spoon into the
cleaner while aligning it”

Figure 7: Frames from each evaluation task and language instruction.

B Training Details

We train on an augmented version of the BridgeDataV2 dataset [5]. We algorithmically augment
the dataset with low-level instructions using heuristics designed over the proprioceptive states of the
robot and incorporate language context by parsing the language instruction using a language model.
We use the Adam optimizer [63] to minimize the loss function in Eq. (3).

Instead of naively looping through Algorithm 1, we batch our implementation with the exception
of the outermost for loop, thus reducing time consumption during optimization by a significant
margin via vectorization. We record an empirical time consumption of 470 seconds for our language
optimization module on computations ran on a V4 TPU module, in which only 200 seconds are
required for sampling 20000 different partitions to complete the optimization for all of the 15 sets of
language instructions. We save our optimal plans for future use, thus reducing overhead even more.

We encode both language instructions using a frozen MUSE model [60] before passing them into
the main ResNet with FiLM layers [61].

B.1 Hyperparameter Selection

We discuss the hyperparameters used in our method and baselines.

B.1.1 Policy Training

We set our learning rate for our Adam Optimizer [63] to 3 - 10~ and a dropout rate of 0.1 in our
policy head. We employ random resizing and cropping, contrast, brightness, saturation, and hue for
input images. We train our policy for 300,000 steps, in which we use the checkpoint with the lowest
validation MSE. The total training time takes 12 hours when trained on 4 TPU pods.

14

468

470

471
472
473
474

475

476
477
478
479

480
481
482

483

484
485
486

487

489

490
491
492
493
494
495

496

497

498

500

501

502
503
504
505

507

508

509
510

B.1.2 Language Decomposition Optimization

During optimization, we sample 15 random instruction sets from GPT4-o, and we use 20,000 sam-
pling steps in order to find the best subtask decomposition.

In order to batch across demonstrations, which have different trajectory lengths, we pad our trajec-
tories to a certain length (200 for long-horizon tasks, 150 for non long-horizon tasks). We sum the
squared difference between generated action and oracle action in evaluation, thus giving a consistent
baseline not affected by the length of the trajectory.

B.2 Baseline Details

We finetune an Octo-small [28] model that is trained on BridgeData [5] in order to perform few-shot
learning on the collected trajectories for the baseline in Table 2. We use an Adam optimizer [63]
with a learning rate of 3 - 10~* and finetune our model’s action head for 5000 steps. We use the
hyperparameters set by Octo for the rest of the settings.

In order to perform tasks in long-horizon, we assign a language label for each task in order to trans-
plant semantic understanding from human into Octo. The same language instruction for PALO eval-
uation is also used for Octo finetuning.

C Augmentation Details

We augment our training data by decomposing into segments of translation, rotation, and gripper
movement data. To achieve this, we use proprioception and use a language model to extract the
target object to create context of language instruction.

We chunk actions within training data into segments of length 4 and evaluate the low level instruction
within these segments and append them into the training data.

C.1 Proprioception

We use standard deviation of each action against the metadata of BridgeData [5] and determine how
to describe the proprioception of the label. We determine the biggest direction in which the gripper
is moving (up, down, left, right, forward, backward) and the orientation it is rotating (up, down, left,
right, clockwise, counterclockwise), and determine whether the movement is unambiguous enough
by checking the largest z-score in translation and rotation. We then combine the movement as well
as the keywords extracted to form language primitive commands.

C.2 Target Object

We identify the target object using a prompt heuristic to be fed into GPT3.5-Turbo [9] by taking
advantage of the fact that BridgeData consists of mainly object manipulation data. We extract two
keywords: the object to be manipulated and the destination of the object, based on the fact that much
of BridgeData is focused on object manipulation. The precise prompt can be found at Appendix E

C.3 Data Filtering

We filter low-level instruction on two occasions: when the movement itself is ambiguous and when
the language model gives inconsistent results. We check the former by looking up the norm of
the translation and the norm of rotation, and we check the latter by using regular expression to see
if the result was against the desired format and manually filtering out some common keywords of
inadmissible GPT query. On the former occasion, we use an empty string as the low level instruction,
and on the second occasion, we use only proprioceptive information for low-level instruction.

D Ablation Details

We ablate our experiment in progressive manners, going from full implementation to using only the
barebone hierarchical policy network.

15

511
512
513
514
515
516
517
518
519
520
521
522

523

524
525

526

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

552

553
554
555
556
557
558
559
560
561

563
564
565
566

* PALO w/o high level instruction: while running PALO, we derive both high and low level instruc-
tion sets. However, during inference on robot, we mask out the high level instruction and feed in
zero embeddings.

* PALO w/o low level instruction: mask out the low level instruction and replace them with zero
embeddings during inference.

e Fixed Time During Optimization: for each trajectory that has corresponding length
H,,H,,...,H;, we choose fixed u; = [Ié , QTHi, R W] during optimization. We im-
plement no u sampling, which reduce PALO into an arg max operation.

e Zero-Shot Plan Generation: instead of sampling 15 plans, we sample only one plan from VLM
and examine the behavior of the robot using that specific plan.

* No VLM Guidance: We use only ¢ as our high level instruction, and mask out low level instruction
with zero embeddings during inference.

E Prompting Methods

We employ a keyword decomposition prompt in our augmentation method and a planning prompt
to generate VLM outputs. They are listed below:

Keyword Decomposition Prompt

User: "You are presented with a text for high level instruction for a
robot, and you need to extract keywords in the task description
text.

In this instruction, the first keyword is the object being moved, and
the second keyword, if applicable, what is the moving taking this
to (either another object or a location) within the instruction.

Only return the first and second keyword, and they should be separated

by a comma. If the instruction is in another language, write your
response in English.

For example, if the text instruction says "Pick up the silver 1lid onmn

the left to the middle of two burners", return "silver 1lid, middle
of two burners".

Or if the instruction says: "Move the object to the top middle side of
the table.", your response should be "object, top middle side of
the table".

Or if the instruction says : "Move the red greenish thing on the towel
to the right.", return "red greendish thing on the towel, the
right".

Try your best to find the two key phrases, but if you can’t find the
second keyword within the instruction sentence, write "N/A".

For example, if the instruction is "Move the pot 1id.", the response
should be "pot 1lid, N/A".

There might be some other description regarding confidence at the end,
you are safe to ignore it.\n The specific task description for
you to analyze is: \n {instruction} \m "

Planning Prompt

User: Here is an image observed by the robot in a tabletop robot
manipulation environment. The gripper situated at the top of the
center of table and perpendicular to it.

Now plan for the the list of subtasks and skills the robot needs
to perform in order to {instrs}.

Each step in the plan can be selected from the available skills
below:

*movement direction:
*forward. This skill moves the robot gripper away from the
camera by a small distance.
*backward. This skill moves the robot gripper towards the
camera by a small distance.

16

567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

624
625
626
627
628
629
630
631

*left. This skill moves the robot gripper to the left of the
image by a small distance.

*right. This skill moves the robot gripper to the right of the

image by a small distance.

*up. This skill moves the robot gripper upward until a safe
height.

*down. This skill moves the robot gripper downward to the
table surface.

*rotation direction:

*left. This skill tilts the gripper to an angle to the left.

*right. This skill tilts the gripper to an angle to the right.

*down. This skill tilts the gripper to an angle facing up.

*up. This skill tilts the gripper to an angle facing down.

*clockwise. This skill rotates the gripper and the objcet it
is holding clockwise.

*counterclockwise. This skill rotates the gripper and the
object it is holding counterclockwise.

*gripper movement:
*close the gripper. This skill controls the robot gripper to
close to grasp an object.
*open the gripper. This skill controls the robot gripper to
open and release the object in hand.

You may choose between using one of movement direction. rotation
direction, or gripper movement.

If you were to choose to use movement direction, you may use one
or two directions and include a target object, and you should
format it like this:

"move the gripper x towards z" or "move the gripper x and y
towards z" where x and y are the directions and z is the
target object.

You also must start your command with "move the gripper".
Therefore, instead of saying something like "down" or "up",
you should phrase it like "move the gripper down" and "move

the gripper up". Make sure to include at least one direction
in your command since otherwise this command format won’t make
sense.

If you were to choose to use gripper movement, you should format
the command as "close the gripper to pick up x" or "open the
gripper to release x", where x is the target object.

You may discard the target object if necessary. In that case use "
close the gripper" or "open the gripper".

If you think the gripper is close to the target object, then you
must choose to use gripper movement to grasp the target object

to maintain efficiency.

If you were to choose gripper rotation, you should format the
command as "rotate the gripper x", where x is the target
rotation direction. You need to make sure that in pouring
tasks, the opening of the container is aligned with the pot.

For example, if the object is aligned vertically but you want it
to align it horizontally, then you should call "rotate the

gripper counterclockwise". If you want to tilt the object in
the gripper to pour it, you should call "rotate the gripper
left"

Pay close attention to these factors:

*Which task are you doing.

*Whether the gripper is closed.

*Whether the gripper is holding the target object.

*How far the two target objects are. If they are across the table,
then duplicate the commands with a copy of it.

17

632
633
634
635
636
637
638
639
640
641
642
643
644

646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667

668

669

670

671
672
673
674

675

677

678

679

680

681
682

*Where the gripper is. After the end of each subtask, it is
reasonable to assume that the gripper will not be at where it
originally was in the image, but somewhere close to the last
target object.

Especially pay attention to the actual direction between the
gripper and the target object. Remember that the robot’s angle

is roughly the same as the camera’s angle.

To determine whether the gripper should move forward or backward,
look into the edge of the table. If the target object is
closer to the edge of the table that is near the top of the
image, you should move forward, and if it is closer to the
edge that is near the bottom of the image, you should move
backward.

At the end of each subtask, you need to use the skill "move the
gripper back to neutral. This will move the gripper back to
the original position of the image after completing the task.

Start by looking at what objects are in the image, and then plan

with the direction of the objects in mind. The tasks should be

completed sequentially, therefore you need to consider the
position of the gripper after each task before planning the
next task.

You should return a json dictionary with the following fields:

- subtask: this should be the key of the dictiomary. It should
contain the only the verbal description of the subtask the
robot needs to perform sequentially in order to finish the
task, and they should be ordered in the same way the task is
completed.

- list of skills: this should be the value of the dictiomary. It
should be a list of skills the robot needs to perform in order

to finish the corresponding subtask.

Be concise, and do not return any other comments other than the
dictionary mentioned above. Do not put "subtask: " or "lsit of

skills: " in the key and value of the dictionary you generate
Remember only the description and list should be returned.

F Execution Breakdown

In this section, we provide more details for PALO during inference.

F.1 Inference Details

During inference, we chunk each low-level instruction into length 8 intervals, switching to the new
set of low-level (and high-level, if applicable) after these 8 steps. We chose a fixed interval instead of
a dynamically allocated one due to the policy choosing to mostly stay put after finishing the action
prescribed by the low-level instruction.

F.2 Success Cases

We show the full breakdowns of success cases here. Fig. 8 and Fig. 9 gives detailed description of
the robot’s action primitives generated by PALO during inference.

F.3 Failures Cases

We discuss failure cases in more details here.

F.3.1 Failure During Full Inference

While PALO is robust in generating language primitives that help achieve the task, it does not
guarantee a successful execution of the policy as shown in Fig. 10.

18

683

684
685

686

687
688
689

{ = “pry out the pot using the ladle”

— / AN

: . Pry out the pot usin
1:k = Pick up the ladle Move the ladle to the drawer y P &
p
H the ladle
move the close the gripper Move the move the
1:k gripper right move the gripper {0 “gﬂf;" gripper forward move the gripper down move the gripper L
C . = towards the down I the and left gripper left towards the backward pen The grippe
ladle adie towards the pot
S
. . : 113 1 "
Figure 8: An execution of our method on the task “Pry out the pot using the ladle.
— GG 3 99
t = “pour the contents of the scoop into the bowl
c 1k V4
o=
Move the gripper) ’ . . .
1:k down snd right Move the gripper | 1% the gripper Move the gripper - Rotate the Rotate the Move the gripper Open the gripper
C = towards th 1 to pick up the up and left gripper e ot right away from to release the
L owards the down scoop towards the bowl comnterclockwise S PP the bowl scoop

scoop

Figure 9: An execution of our method on the task “pour the contents of the scoop into the bowl.”.
Note that the high level instruction is ¢ itself, as the best-proposed language decomposition does not
create additional subtasks.

F.3.2 Failure During Ablation

Within ablations of PALO, more critical errors, such as grounding and reasoning errors, may happen.
Fig. 11 demonstrates a case of grounding failure when cz is masked out.

G Evaluation Results

We present detailed results of our method across four tasks in the studied scenes in Table 2. We also
present ablation results in Table 3. We evaluate each entry of the result for 10 trials, shifting the
starting location of both target and background objects randomly.

19

{= “put the beet toy in the drawer”

1:k . . move the purple thing place the purple thing
= open the drawer ick up the purple thin, .
CH P p P pwrp & to the drawer in the drawer
move the .) N close the move the gripper move the)
’ close the gripper move the gripper open move the gripper right ’ ’ : open the gripper
: 1 ’ x dow
c Ik gripper down L the backward to the and down towards the S1PPer o pick - left and forward - gripper down L
L T towwdsthe drawer handle | | open the drawer || gripper | | purple thin up the purple - towards the towards the urple thiny
drawer handle P TP purp g thing drawer drawer purp! s

S

Figure 10: Failure in execution: while the robot completed every subtask correctly up until the last
subtask, it did not achieve it due to errors within the policy.

= “make a salad with corn and mushroom”

/

CH’k = cen [MASKED| cee
Move the gripper
C 1 :k —_— right and down Close the gripper Move the gripper Move the gripper
L - oo towards the on the mushroom up forward and left oo
mushroom

i

S

Figure 11: In this instance, we mask out the high level instructions, and the policy is only conditioned
on the low-level instructions. We see that the low-level instruction “move the gripper forward and
left.” causes the robot to overshoot its trajectory and causes failure in execution.

sc0 H Code

69t We make our code publicly available at https://anonymous.4open.science/r/
692 palo-robot-OFCF.

20

https://anonymous.4open.science/r/palo-robot-0FCF
https://anonymous.4open.science/r/palo-robot-0FCF
https://anonymous.4open.science/r/palo-robot-0FCF

Table 2: Method Comparisons

Scene | Task | PALO (Ours) RT-2-X FT-Octo Octo GRIF LCBC
Drawer put in 0.7 0.0 0.0 0.2 0.1 0.1
pry away 0.6 0.2 0.2 0.1 0.0 0.0
Bowl salad 0.7 0.5 0.0 0.3 0.4 0.0
pour scoop 0.5 0.1 0.2 0.3 0.0 0.0
Swee mints 0.7 0.3 0.1 0.2 0.0 0.0
P skittles 0.8 0.4 0.0 0.4 0.3 0.2
Rotation marker 0.9 04 0.0 0.1 0.3 0.0
spoon 0.8 0.2 0.1 0.1 0.1 0.0
Average \ 0.713 0.263 0.1 0.213 0.15 0.08

Table 3: Ablations

Scene | Task | Ours Nocy Nocp Fixed Times Zero-shot No VLM
Drawer putin | 0.7 0.2 0.4 04 0.3 0.0
pry open | 0.6 0.4 0.2 0.1 0.4 0.1
Bowl salad | 0.7 04 0.5 04 0.2 0.0
pour scoop | 0.5 0.1 0.4 0.4 0.2 0.0
Swee mints | 0.7 0.5 0.3 0.5 0.0 0.0
P skittles | 0.8 0.7 0.2 0.5 0.4 0.2
Rotation marker | 0.9 0.6 0.3 0.3 0.1 0.3
spoon | 0.8 0.6 0.1 0.2 0.3 0.2

21

	Introduction
	Related Work
	Policy Adaptation via Language Optimization
	Problem Statement
	Task Decomposition with Language
	Few-Shot Adaptation through Language Decomposition
	Learning Composable Instruction-Following Primitives
	System Summary

	Experiments
	Experimental Setup
	Baselines
	Quantitative Results
	Ablations
	Qualitative Results

	Discussion
	Environment Details
	Training Details
	Hyperparameter Selection
	Policy Training
	Language Decomposition Optimization

	Baseline Details

	Augmentation Details
	Proprioception
	Target Object
	Data Filtering

	Ablation Details
	Prompting Methods
	Execution Breakdown
	Inference Details
	Success Cases
	Failures Cases
	Failure During Full Inference
	Failure During Ablation

	Evaluation Results
	Code

