
A Environment Details420

We evaluate our method in a real-world tabletop manipulation setup. We use a 6DOF WidowX-250421

robot interacting with various objects both inside and outside of our training distribution at 5 Hz.422

We use one 640⇥480 RGB camera mounted on top of the model as set up in BridgeData [5].423

We evaluate our method in the following scenes, which include:424

Sweep: This scene involves an object manipulation as well as sweeping task unseen in the Bridge-425

Data’s initial training trajectories.426

mint: Placing the mushroom in the pot, then sweep the mints on the right using the towel.427

skittles: Instead of using mints and towel for sweeping, we use a swiffer and skittles instead.428

Drawer: This scene involves using a drawer and perform manipulation within the space of the429

drawer.430

put in: Open the drawer, and then put a purple object (beet/sweet potato) inside the drawer.431

pry away: A pot is stored inside the drawer space, and the robot must use a ladle to pry away the432

pot within drawer.433

Bowl: This scene involves object manipulation to a bowl and perform long-horizon or 6DOF ma-434

nipulation.435

salad: This task requires sequential object manipulation by putting a corn cob and a mushroom436

in the bowl.437

pouring: This task requires the robot to grasp a scoop and pour almonds inside the scoop into438

the bowl.439

Rotation: This scene involves rotating a spoon and a marker to fit into a white container not aligned440

with the pen/marker, and naive pick-and-place will not correctly align the object into the con-441

tainer.442

spoon: Placing the spoon in the container placed on the left side of the table.443

marker: Replacing the spoon with the marker and randomize location of the container while444

being misaligned.445

We summarize the evaluation tasks in Table 1. Frames from each evaluation task are presented in446

Fig. 7.447

Table 1: Task Breakdown
Scene Task Long-Horizon? 6DO required? Instruction

Drawer
put in Yes Yes “put the beet toy/purple thing into

the drawer.”

pry away Yes Yes “pry out the pot in the drawer using
the ladle.”

Bowl
salad Yes No “make a salad bowl with corn and

mushroom.”

pour scoop No Yes “pour the contents of the scoop into
the bowl.”

Sweep

mints Yes No “sweep the mints to the right after
putting the mushroom in the bowl.”

skittles Yes No
“sweep the skittles into the bin after
putting the mushroom in the con-
tainer.”

Rotation
marker No Yes “put the marker into the box while

aligning it.”

spoon No Yes “put the spoon into the cleaner
while aligning it.”

13



“put the beet toy/purple 
thing into the drawer”

“pry out the pot in the 
drawer using the ladle”

“make a salad bowl with 
corn and mushroom”

“pour the contents of the 
scoop into the bowl”

“sweep the mints to the 
right after putting the 
mushroom in the bowl”

“sweep the skittles into the 
bin after putting the 
mushroom in the container”

“put the marker into the 
box while aligning it”

“put the spoon into the 
cleaner while aligning it”

Instruction t 1 t 2 t 3 t 4 t 5 t 6

Figure 7: Frames from each evaluation task and language instruction.

B Training Details448

We train on an augmented version of the BridgeDataV2 dataset [5]. We algorithmically augment449

the dataset with low-level instructions using heuristics designed over the proprioceptive states of the450

robot and incorporate language context by parsing the language instruction using a language model.451

We use the Adam optimizer [63] to minimize the loss function in Eq. (3).452

Instead of naively looping through Algorithm 1, we batch our implementation with the exception453

of the outermost for loop, thus reducing time consumption during optimization by a significant454

margin via vectorization. We record an empirical time consumption of 470 seconds for our language455

optimization module on computations ran on a V4 TPU module, in which only 200 seconds are456

required for sampling 20000 different partitions to complete the optimization for all of the 15 sets of457

language instructions. We save our optimal plans for future use, thus reducing overhead even more.458

We encode both language instructions using a frozen MUSE model [60] before passing them into459

the main ResNet with FiLM layers [61].460

B.1 Hyperparameter Selection461

We discuss the hyperparameters used in our method and baselines.462

B.1.1 Policy Training463

We set our learning rate for our Adam Optimizer [63] to 3 · 10�4 and a dropout rate of 0.1 in our464

policy head. We employ random resizing and cropping, contrast, brightness, saturation, and hue for465

input images. We train our policy for 300,000 steps, in which we use the checkpoint with the lowest466

validation MSE. The total training time takes 12 hours when trained on 4 TPU pods.467

14



B.1.2 Language Decomposition Optimization468

During optimization, we sample 15 random instruction sets from GPT4-o, and we use 20,000 sam-469

pling steps in order to find the best subtask decomposition.470

In order to batch across demonstrations, which have different trajectory lengths, we pad our trajec-471

tories to a certain length (200 for long-horizon tasks, 150 for non long-horizon tasks). We sum the472

squared difference between generated action and oracle action in evaluation, thus giving a consistent473

baseline not affected by the length of the trajectory.474

B.2 Baseline Details475

We finetune an Octo-small [28] model that is trained on BridgeData [5] in order to perform few-shot476

learning on the collected trajectories for the baseline in Table 2. We use an Adam optimizer [63]477

with a learning rate of 3 · 10�4 and finetune our model’s action head for 5000 steps. We use the478

hyperparameters set by Octo for the rest of the settings.479

In order to perform tasks in long-horizon, we assign a language label for each task in order to trans-480

plant semantic understanding from human into Octo. The same language instruction for PALO eval-481

uation is also used for Octo finetuning.482

C Augmentation Details483

We augment our training data by decomposing into segments of translation, rotation, and gripper484

movement data. To achieve this, we use proprioception and use a language model to extract the485

target object to create context of language instruction.486

We chunk actions within training data into segments of length 4 and evaluate the low level instruction487

within these segments and append them into the training data.488

C.1 Proprioception489

We use standard deviation of each action against the metadata of BridgeData [5] and determine how490

to describe the proprioception of the label. We determine the biggest direction in which the gripper491

is moving (up, down, left, right, forward, backward) and the orientation it is rotating (up, down, left,492

right, clockwise, counterclockwise), and determine whether the movement is unambiguous enough493

by checking the largest z-score in translation and rotation. We then combine the movement as well494

as the keywords extracted to form language primitive commands.495

C.2 Target Object496

We identify the target object using a prompt heuristic to be fed into GPT3.5-Turbo [9] by taking497

advantage of the fact that BridgeData consists of mainly object manipulation data. We extract two498

keywords: the object to be manipulated and the destination of the object, based on the fact that much499

of BridgeData is focused on object manipulation. The precise prompt can be found at Appendix E500

C.3 Data Filtering501

We filter low-level instruction on two occasions: when the movement itself is ambiguous and when502

the language model gives inconsistent results. We check the former by looking up the norm of503

the translation and the norm of rotation, and we check the latter by using regular expression to see504

if the result was against the desired format and manually filtering out some common keywords of505

inadmissible GPT query. On the former occasion, we use an empty string as the low level instruction,506

and on the second occasion, we use only proprioceptive information for low-level instruction.507

D Ablation Details508

We ablate our experiment in progressive manners, going from full implementation to using only the509

barebone hierarchical policy network.510

15



• PALO w/o high level instruction: while running PALO, we derive both high and low level instruc-511

tion sets. However, during inference on robot, we mask out the high level instruction and feed in512

zero embeddings.513

• PALO w/o low level instruction: mask out the low level instruction and replace them with zero514

embeddings during inference.515

• Fixed Time During Optimization: for each trajectory that has corresponding length516

H1, H2, . . . , Hi, we choose fixed ui = [Hi
k
,
2Hi
k

, . . . ,
(k�1)Hi

k
] during optimization. We im-517

plement no u sampling, which reduce PALO into an argmax operation.518

• Zero-Shot Plan Generation: instead of sampling 15 plans, we sample only one plan from VLM519

and examine the behavior of the robot using that specific plan.520

• No VLM Guidance: We use only ` as our high level instruction, and mask out low level instruction521

with zero embeddings during inference.522

E Prompting Methods523

We employ a keyword decomposition prompt in our augmentation method and a planning prompt524

to generate VLM outputs. They are listed below:525

Keyword Decomposition Prompt526

User: "You are presented with a text for high level instruction for a527

robot , and you need to extract keywords in the task description528

text.529

In this instruction , the first keyword is the object being moved , and530

the second keyword , if applicable , what is the moving taking this531

to (either another object or a location) within the instruction.532

Only return the first and second keyword , and they should be separated533

by a comma. If the instruction is in another language , write your534

response in English.535

For example , if the text instruction says "Pick up the silver lid on536

the left to the middle of two burners", return "silver lid , middle537

of two burners ".538

Or if the instruction says: "Move the object to the top middle side of539

the table.", your response should be "object , top middle side of540

the table".541

Or if the instruction says : "Move the red greenish thing on the towel542

to the right.", return "red greendish thing on the towel , the543

right".544

Try your best to find the two key phrases , but if you can ’t find the545

second keyword within the instruction sentence , write "N/A".546

For example , if the instruction is "Move the pot lid.", the response547

should be "pot lid , N/A".548

There might be some other description regarding confidence at the end ,549

you are safe to ignore it.\n The specific task description for550

you to analyze is: \n {instruction} \n "551

Planning Prompt552

User: Here is an image observed by the robot in a tabletop robot553

manipulation environment. The gripper situated at the top of the554

center of table and perpendicular to it.555

Now plan for the the list of subtasks and skills the robot needs556

to perform in order to {instrs }.557

558

Each step in the plan can be selected from the available skills559

below:560

561

*movement direction:562

*forward. This skill moves the robot gripper away from the563

camera by a small distance.564

*backward. This skill moves the robot gripper towards the565

camera by a small distance.566

16



*left. This skill moves the robot gripper to the left of the567

image by a small distance.568

*right. This skill moves the robot gripper to the right of the569

image by a small distance.570

*up. This skill moves the robot gripper upward until a safe571

height.572

*down. This skill moves the robot gripper downward to the573

table surface.574

575

*rotation direction:576

*left. This skill tilts the gripper to an angle to the left.577

*right. This skill tilts the gripper to an angle to the right.578

*down. This skill tilts the gripper to an angle facing up.579

*up. This skill tilts the gripper to an angle facing down.580

*clockwise. This skill rotates the gripper and the objcet it581

is holding clockwise.582

*counterclockwise. This skill rotates the gripper and the583

object it is holding counterclockwise.584

585

*gripper movement:586

*close the gripper. This skill controls the robot gripper to587

close to grasp an object.588

*open the gripper. This skill controls the robot gripper to589

open and release the object in hand.590

591

You may choose between using one of movement direction. rotation592

direction , or gripper movement.593

If you were to choose to use movement direction , you may use one594

or two directions and include a target object , and you should595

format it like this:596

"move the gripper x towards z" or "move the gripper x and y597

towards z" where x and y are the directions and z is the598

target object.599

You also must start your command with "move the gripper ".600

Therefore , instead of saying something like "down" or "up",601

you should phrase it like "move the gripper down" and "move602

the gripper up". Make sure to include at least one direction603

in your command since otherwise this command format won ’t make604

sense.605

606

If you were to choose to use gripper movement , you should format607

the command as "close the gripper to pick up x" or "open the608

gripper to release x", where x is the target object.609

You may discard the target object if necessary. In that case use "610

close the gripper" or "open the gripper ".611

If you think the gripper is close to the target object , then you612

must choose to use gripper movement to grasp the target object613

to maintain efficiency.614

615

If you were to choose gripper rotation , you should format the616

command as "rotate the gripper x", where x is the target617

rotation direction. You need to make sure that in pouring618

tasks , the opening of the container is aligned with the pot.619

For example , if the object is aligned vertically but you want it620

to align it horizontally , then you should call "rotate the621

gripper counterclockwise ". If you want to tilt the object in622

the gripper to pour it , you should call "rotate the gripper623

left"624

625

Pay close attention to these factors:626

*Which task are you doing.627

*Whether the gripper is closed.628

*Whether the gripper is holding the target object.629

*How far the two target objects are. If they are across the table ,630

then duplicate the commands with a copy of it.631

17



*Where the gripper is. After the end of each subtask , it is632

reasonable to assume that the gripper will not be at where it633

originally was in the image , but somewhere close to the last634

target object.635

636

Especially pay attention to the actual direction between the637

gripper and the target object. Remember that the robot ’s angle638

is roughly the same as the camera ’s angle.639

To determine whether the gripper should move forward or backward ,640

look into the edge of the table. If the target object is641

closer to the edge of the table that is near the top of the642

image , you should move forward , and if it is closer to the643

edge that is near the bottom of the image , you should move644

backward.645

At the end of each subtask , you need to use the skill "move the646

gripper back to neutral. This will move the gripper back to647

the original position of the image after completing the task.648

649

Start by looking at what objects are in the image , and then plan650

with the direction of the objects in mind. The tasks should be651

completed sequentially , therefore you need to consider the652

position of the gripper after each task before planning the653

next task.654

You should return a json dictionary with the following fields:655

- subtask: this should be the key of the dictionary. It should656

contain the only the verbal description of the subtask the657

robot needs to perform sequentially in order to finish the658

task , and they should be ordered in the same way the task is659

completed.660

- list of skills: this should be the value of the dictionary. It661

should be a list of skills the robot needs to perform in order662

to finish the corresponding subtask.663

Be concise , and do not return any other comments other than the664

dictionary mentioned above. Do not put "subtask: " or "lsit of665

skills: " in the key and value of the dictionary you generate666

. Remember only the description and list should be returned.667

F Execution Breakdown668

In this section, we provide more details for PALO during inference.669

F.1 Inference Details670

During inference, we chunk each low-level instruction into length 8 intervals, switching to the new671

set of low-level (and high-level, if applicable) after these 8 steps. We chose a fixed interval instead of672

a dynamically allocated one due to the policy choosing to mostly stay put after finishing the action673

prescribed by the low-level instruction.674

F.2 Success Cases675

We show the full breakdowns of success cases here. Fig. 8 and Fig. 9 gives detailed description of676

the robot’s action primitives generated by PALO during inference.677

F.3 Failures Cases678

We discuss failure cases in more details here.679

F.3.1 Failure During Full Inference680

While PALO is robust in generating language primitives that help achieve the task, it does not681

guarantee a successful execution of the policy as shown in Fig. 10.682

18



“pry out the pot using the ladle”

move the 
gripper right 
towards the 
ladle

move the gripper 
down

close the gripper 
to pick up the 
ladle

Move the 
gripper forward 
and left 
towards the 

move the 
gripper left

move the 
gripper down 
towards the 
pot

move the gripper 
backward

ℓ =

c1:k
H =

c1:k
L =

Pick up the ladle Move the ladle to the drawer Pry out the pot using 
the ladle

open the gripper

st
Figure 8: An execution of our method on the task “Pry out the pot using the ladle.”

“pour the contents of the scoop into the bowl”

Move the gripper 
down and right 
towards the 
scoop

ℓ =

c1:k
H =

c1:k
L =

ℓ

Move the gripper 
down

Close the gripper 
to pick up the 
scoop

Move the gripper 
up and left 
towards the bowl

Rotate the 
gripper 
counterclockwise

Rotate the 
gripper left

Move the gripper 
right away from 
the bowl

Open the gripper 
to release the 
scoop

st

Figure 9: An execution of our method on the task “pour the contents of the scoop into the bowl.”.
Note that the high level instruction is ` itself, as the best-proposed language decomposition does not
create additional subtasks.

F.3.2 Failure During Ablation683

Within ablations of PALO, more critical errors, such as grounding and reasoning errors, may happen.684

Fig. 11 demonstrates a case of grounding failure when cH is masked out.685

G Evaluation Results686

We present detailed results of our method across four tasks in the studied scenes in Table 2. We also687

present ablation results in Table 3. We evaluate each entry of the result for 10 trials, shifting the688

starting location of both target and background objects randomly.689

19



“put the beet toy in the drawer”

move the 
gripper down 
towards the 
drawer handle

close the gripper 
to pick up the 
drawer handle

move the gripper 
backward to 
open the drawer

open 
the 
gripper

move the gripper right 
and down towards the 
purple thing

close the 
gripper to pick 
up the purple 
thing

move the gripper 
left and forward 
towards the 
drawer

move the 
gripper down 
towards the 
drawer

open the gripper 
to release the 
purple thing

ℓ =

c1:k
H =

c1:k
L =

open the drawer pick up the purple thing move the purple thing 
to the drawer

place the purple thing 
in the drawer

st

Figure 10: Failure in execution: while the robot completed every subtask correctly up until the last
subtask, it did not achieve it due to errors within the policy.

“make a salad with corn and mushroom”ℓ =

c1:k
H =

c1:k
L =

[MASKED]… …

… …
Move the gripper 
right and down 
towards the 
mushroom

Close the gripper 
on the mushroom

…

Move the gripper 
up

Move the gripper 
forward and left

st
Figure 11: In this instance, we mask out the high level instructions, and the policy is only conditioned
on the low-level instructions. We see that the low-level instruction “move the gripper forward and
left.” causes the robot to overshoot its trajectory and causes failure in execution.

H Code690

We make our code publicly available at https://anonymous.4open.science/r/691

palo-robot-0FCF.692

20

https://anonymous.4open.science/r/palo-robot-0FCF
https://anonymous.4open.science/r/palo-robot-0FCF
https://anonymous.4open.science/r/palo-robot-0FCF


Table 2: Method Comparisons
Scene Task PALO (Ours) RT-2-X FT-Octo Octo GRIF LCBC

Drawer put in 0.7 0.0 0.0 0.2 0.1 0.1
pry away 0.6 0.2 0.2 0.1 0.0 0.0

Bowl salad 0.7 0.5 0.0 0.3 0.4 0.0
pour scoop 0.5 0.1 0.2 0.3 0.0 0.0

Sweep mints 0.7 0.3 0.1 0.2 0.0 0.0
skittles 0.8 0.4 0.0 0.4 0.3 0.2

Rotation marker 0.9 0.4 0.0 0.1 0.3 0.0
spoon 0.8 0.2 0.1 0.1 0.1 0.0

Average 0.713 0.263 0.1 0.213 0.15 0.08

Table 3: Ablations
Scene Task Ours No cH No cL Fixed Times Zero-shot No VLM

Drawer put in 0.7 0.2 0.4 0.4 0.3 0.0
pry open 0.6 0.4 0.2 0.1 0.4 0.1

Bowl salad 0.7 0.4 0.5 0.4 0.2 0.0
pour scoop 0.5 0.1 0.4 0.4 0.2 0.0

Sweep mints 0.7 0.5 0.3 0.5 0.0 0.0
skittles 0.8 0.7 0.2 0.5 0.4 0.2

Rotation marker 0.9 0.6 0.3 0.3 0.1 0.3
spoon 0.8 0.6 0.1 0.2 0.3 0.2

21


	Introduction
	Related Work
	Policy Adaptation via Language Optimization
	Problem Statement
	Task Decomposition with Language
	Few-Shot Adaptation through Language Decomposition
	Learning Composable Instruction-Following Primitives
	System Summary

	Experiments
	Experimental Setup
	Baselines
	Quantitative Results
	Ablations
	Qualitative Results

	Discussion
	Environment Details
	Training Details
	Hyperparameter Selection
	Policy Training
	Language Decomposition Optimization

	Baseline Details

	Augmentation Details
	Proprioception
	Target Object
	Data Filtering

	Ablation Details
	Prompting Methods
	Execution Breakdown
	Inference Details
	Success Cases
	Failures Cases
	Failure During Full Inference
	Failure During Ablation


	Evaluation Results
	Code

