
Diverse Prototypical Ensembles Improve Robustness to Subpopulation Shift

Minh Nguyen Nhat To 1 2 Paul F R Wilson 3 Viet Nguyen 4 Mohamed Harmanani 3 Michael Cooper 4

Fahimeh Fooladgar 1 Purang Abolmaesumi 1 Parvin Mousavi 3 2 Rahul G. Krishnan 4 2

Abstract
Subpopulation shift, characterized by a disparity
in subpopulation distribution between the training
and target datasets, can significantly degrade the
performance of machine learning models. Current
solutions to subpopulation shift involve modify-
ing empirical risk minimization with re-weighting
strategies to improve generalization. This strategy
relies on assumptions about the number and na-
ture of subpopulations and annotations on group
membership, which are unavailable for many real-
world datasets. Instead, we propose using an en-
semble of diverse classifiers to adaptively capture
risk associated with subpopulations. Given a fea-
ture extractor network, we replace its standard
linear classification layer with a mixture of proto-
typical classifiers, where each member is trained
to classify the data while focusing on different
features and samples from other members. In
empirical evaluation on nine real-world datasets,
covering diverse domains and kinds of subpopu-
lation shift, our method of Diverse Prototypical
Ensembles (DPEs) often outperforms the prior
state-of-the-art in worst-group accuracy. The
code is available at https://github.com/
minhto2802/dpe4subpop.

1. Introduction
The performance of machine learning models is known to
degrade substantially in the presence of distribution shifts be-
tween training and deployment (Koh et al., 2021). One com-
mon form of distribution shift is subpopulation shift (Yang
et al., 2023), where the proportions of subgroups vary be-
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tween training and target distributions. The study quantita-
tively categorized subpopulation shifts into four fundamen-
tal types: (1) Spurious Correlations – non-causal features
mistakenly influence predictions; (2) Attribute Imbalance
– certain attribute values appear more frequently than oth-
ers; (3) Class Imbalance – some labels are significantly
underrepresented; and (4) Attribute Generalization – mod-
els encounter previously unseen attribute values at test time.
These distinct shift types highlight the diverse challenges of
subpopulation robustness and motivate approaches aimed at
improving worst-group performance.

Naı̈ve training using empirical risk minimization (ERM)
can result in classifiers achieving good training loss but
not generalizing, performing poorly in challenging or un-
derrepresented subpopulations (Sagawa et al., 2019; San-
turkar et al., 2021). Such failures can be catastrophic in
performance-critical real-world applications such as medical
diagnostics (Oakden-Rayner et al., 2020), autonomous driv-
ing (Yu et al., 2020), and insurance risk assessment (Bood-
hun & Jayabalan, 2018). A commonly cited example is net-
works that learn to recognize pneumonia relying on hospital-
specific meta-tokens on X-ray scans due to their common
co-occurrence in training data (Zech et al., 2018), thus strug-
gling to generalize to new data without the tags.

Methods to mitigate subpopulation shift focus on sampling-
based (Idrissi et al., 2022; Kirichenko et al., 2022) or loss-
based (Michel et al., 2022; Han et al., 2022; Sagawa et al.,
2020) re-weighting strategies, such as up-weighting minor-
ity subpopulations to encourage the model to learn deci-
sion boundaries that adequately classify each subpopulation
group. But these often require subgroup annotations (Rud-
ner et al., 2024; Kirichenko et al., 2022), which are rarely
available or sufficiently granular in real-world datasets, or
explicit identification of minority groups (Liu et al., 2021;
Zhang et al., 2022), which significantly increases complex-
ity and training time while struggling to generalize to unseen
subgroups (Yang et al., 2023; Zhang et al., 2022).

We propose Diversified Prototypical Ensembles (DPE). Sub-
population shifts results in model degradation because a
single classifier typically focuses on the majority classes or
subgroups over the minority ones. By turning to ensembles
we can capture multiple different decision boundaries. But
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Figure 1. High-level overview of our method. (1) Binary classification with implicit (unannotated) subgroups. We aim to natively detect
and correct for subpopulation shifts without prior subgroup knowledge. (2) Given a frozen feature extractor, f(·), we train (3) an
ensemble of N prototype classifiers for each of the K classes to identify distinct sub-groups. These classifiers are trained using LIPS

(Equation 4) to maximize prototype diversity, ensuring robust subpopulation capture within each class. (4) A low-dimensional projection
of the centroids and proximal images for class “Landbird” in Waterbirds. The learned centroids for each ensemble member reveal
unique latent subpopulations. Points closest to each centroid appear in blue, while points farther away are in red. The closest few
points are shown in dark blue, with corresponding images visualized in (5). (5) Visualization confirms DPE’s ability to capture salient
subgroups. We have manually annotated the theme associated with each learned prototype centroid. The closest points to each centroid
exhibit thematic consistency, aligning with implicit data subgroups (e.g., birds “on land” vs. “in water”).

a naive algorithm for learning ensembles may not necessar-
ily encourage each member to capture a different decision
boundary. We take inspiration from recent work studying
out of distribution detection and improving generalization
(Ginsberg et al., 2022; Pagliardini et al., 2022) by encour-
aging diversity among members of an ensembles. If ERM
encourages focusing on the majority class’ decision bound-
ary, explicitly encouraging diversity could encourage sub-
sequent members of the ensemble to capture the different
decision boundaries corresponding to subgroups even when
labels are unavailable or the number, identity or distribution
of the subpopulations is unknown. Given a feature extractor
obtained from standard ERM training, we replace its classifi-
cation head with an ensemble of prototype classifiers. Each
new prototype serves to predict the class of nearby points in
the latent space. An inter-prototype similarity loss is used to
promote diversity among the ensemble members, resulting
in the discovery of many different decision boundaries, each
better suited to different subpopulations. This approach
yields a model that is robust to subpopulation shifts, as it
can adapt to diverse data distributions and maintain classi-
fication accuracy across a broad range of subpopulations.
Our primary contributions are summarized as follows:

• We propose a novel differentiable end-to-end solution
to subpopulation shift based on the idea of diversified
ensemble, training a collection of diversified predictors

to discover and classify subpopulations in the data. Our
method improves robustness to subpopulation shifts,
even under unknown subgroup annotations, subpopula-
tion number, identity, or distribution.

• Our solution replaces the linear layer of a trained
network with the Diversified Prototypical Ensemble
(DPE), a collection of distance-based classifiers that
incorporate explicit diversification through a loss term
and sampling strategy.

• We empirically validate DPE using nine real-world
datasets proposed in (Yang et al., 2023) to assess ro-
bustness against different types of subpopulation shifts.
Our results show DPE’s superior performance over
prior state-of-the-art methods, including in challenging
cases like attribute generalization and imbalance.

2. Related Work
Subpopulation Shift Sugiyama et al. (2008) character-
ized the effects of the covariate shift on a variety of per-
formance metrics. Rabanser et al. (2019); Li et al. (2021)
showed how metrics changed relatively among the sub-
groups of the data under the covariate shift. Yang et al.
(2023) created a unified framework for the analysis of the
performance of models under various types of subpopula-
tion shift.
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Several methods have been proposed to mitigate the ef-
fects of spurious correlations in DL models. By optimizing
for the worst-performing subgroup, Group Distributionally
Robust Optimization (gDRO) (Sagawa et al., 2019; 2020)
forces the model to learn features that are robust predictive
across all subgroups, while UnLearning from Experience
(ULE) (Mitchell et al., 2024) trains a student model with
no constraints to pursue the spurious correlations in the data
while a teacher model is trained to solve the same prob-
lem while avoiding the student’s mistakes. Hierarchical
methods tackle the same problem by defining a structured
feature space via predefined label taxonomies (Mukherjee
et al., 2023) to improve worst-group generalization under
structured shift. Liang et al. (2022) propose a prototype-
based incremental learning method that sequentially adapts
classifiers to new subpopulations using margin-enforce loss,
aiming to balance acquisition and forgetting in the presence
of subpopulation shift. Just train twice (JTT) (Liu et al.,
2021) trains the model twice, with the second stage mini-
mizing the loss over training examples from a resampled
dataset that are misclassified at the end of the first stage.
Idrissi et al. (2022); Deng et al. (2024) highlight the effects
of simple data balancing and subgroup-balanced sampling
on worst-group accuracy, showing that simple reweighting
and resampling can achieve state-of-the-art performance on
most benchmarks. Unlike this prior work, which often relies
on explicit subgroup annotations, our method automatically
discovers subgroups to accommodate subpopulation shift
without prior knowledge of subgroup identities.

Feature Learning Under Subpopulation Shift Geirhos
et al. (2020) investigate when and how neural networks
learn spurious features that potentially cause performance
degradation. Xing et al. (2021); Salazar et al. (2021); Tian
et al. (2022) either implicitly or explicitly learn features
while optimizing for various fairness metrics. Kirichenko
et al. (2022) demonstrated that core information can be ex-
tracted from feature representations learned by standard
ERM even when spurious correlation exists in training
data. Izmailov et al. (2022) explores last-layer retraining by
introducing deep feature reweighting (DFR), further high-
lighting that ERM-learned features are competitive with
those from group robustness methods as DFR achieves state-
of-the-art results on many vision and NLP benchmarks. Qiu
et al. (2023); LaBonte et al. (2024) provide ablation studies
of the last-layer retraining paradigm and propose different
reweighting schemes to improve group robustness and op-
timize execution time. DPE builds on these insights by
freezing the feature extractor and replacing the ERM-based
classifiers with distance-based classifiers to effectively cap-
ture subpopulation structures.

Prototypical Networks and Representations Prototype
methods use data prototypes as representatives values in

their class. Prototypical networks (Snell et al., 2017) ap-
proximated a latent space using a neural network, where
classification was performed using distances to latent proto-
types of each class. The automated discovery of prototype
latent spaces has found success in supervised vision (Yang
et al., 2018) and image segmentation (Dong & Xing, 2018).
Prototype-based classification has proven effective in few-
shot learning (Snell et al., 2017) and robustness against
shortcut learning (Wei et al., 2023) by leveraging distance-
based representations. Their results show promising applica-
tions of prototypical classifiers in addressing subpopulation
shift, since most successful methods rely on the limited
availability of balanced group-annotated data. Our method
extends these findings by training multiple prototypes per
class, allowing the ensemble to adapt to heterogeneous sub-
populations within each category.

Ensemble Diversity Diversification of ensemble mem-
bers is thought to improve the robustness and generalization
of ensemble learning methods (Fort et al., 2019). Several
studies have explored methods to promote diversity and
extract hidden patterns in the latent space, such as varying
training data subsets (bagging and boosting) (Chawla et al.,
2003; Seiffert et al., 2009; Zhang et al., 2019), or using
regularizers (Xie et al., 2017; Xie, 2015). Diversification
through disambiguation (DivDis) (Lee et al., 2022) aims to
enhance ensemble diversity by resolving uncertainties that
arise from ambiguous data representations. DivDis intro-
duces heterogeneity by encouraging models to specialize
in different interpretations of overlapping or uncertain in-
stances. D-BAT (Pagliardini et al., 2023) learns a diverse
ensemble of models by pushing the models to agree on the
source distribution while disagreeing on out-of-distribution
inputs. Gating networks (Riquelme et al., 2021; Zhou et al.,
2022) determine which experts in mixture-of-experts frame-
works to activate for a given input, thus promoting diversity
by encouraging specialization in different regions of the
input space. Our approach explicitly enforces this diversity
within a prototypical ensemble, ensuring that each classifier
captures complementary subpopulation-specific features,
leading to improved worst-group accuracy.

3. Subpopulation Prototypical Ensemble
Motivation To minimize training loss, a learned decision
boundary often exploits features that correlate with the ma-
jority subpopulations but fail to generalize. For example,
a classifier that distinguishes “cow” from “camel” using
background cues such as “grassy” versus “sandy” performs
poorly on minority cases, such as cows in desert environ-
ments. In contrast, forcing the model to consider multiple,
diverse decision rules—each relying on distinct feature sub-
sets—increases the likelihood of discovering a rule that
generalizes across subpopulations (e.g., “hump” versus “no
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Figure 2. Motivation of DPE. (a) The synthetic training data consists of two classes, with major subgroups containing Attribute 1 and
minority subgroups containing Attributes 2 and 3. Training a single model on the entire dataset leads to suboptimal decision boundaries,
focusing primarily on the major subgroups; (b, c, d) as the number of models in the prototypical ensemble increases, where each member is
trained to classify based on a distinct attribute, decision boundaries become more refined, improving classification across subpopulations.

hump,” and “beige” versus “spotty”).

This intuition serves as the basis for our Diversified Proto-
typical Ensemble (DPE). Given a set of features, DPE learns
an ensemble of distance-based prototypical classifiers, each
providing a plausible decision rule while exploiting differ-
ent features than other members of the ensemble. We argue
that even when one decision rule fails on a given subpopu-
lation, other ensemble members are likely to succeed. As
a result, the ensemble exhibits improved generalization un-
der subpopulation shift (Fig. 2). We choose prototypical
classifiers as base learners due to their ability to preserve
feature space geometry in the limited-data regime compared
to ERM (Snell et al., 2017). This approach augments con-
temporary methods of mitigating subpopulation shift that
require re-training the classifier using a small, subgroup-
annotated subset of the validation set (Yang et al., 2023).

Our method proceeds in two stages. First, we train a general-
purpose backbone feature extractor using ERM on the train-
ing set. Next, we select a subset of data from the validation
set (Izmailov et al., 2022), and train DPE on this subset
using the fixed features extracted by the backbone. Our
DPE ensemble is characterized by the use of distance-based
prototypical classifiers, explicit (loss-based) diversity regu-
larization, and implicit (sampling-based) diversity regular-
ization.

Two-Stage Training The first step of our pipeline entails
training a feature extractor f : Rn → Rd to map raw inputs
into a lower-dimensional representation space. We train our
feature extractor to convergence on the full training set, fol-
lowing prior results that classical ERM suffices to produce
strong features despite subpopulation shift (Izmailov et al.,
2022; Kirichenko et al., 2022).

We then freeze f and and train our Diversified Prototypi-
cal Ensemble (DPE) classifier using a small, held-out sub-

set of data. In our implementation, following similar ap-
proaches in the literature, we use a subset of the validation
set (Izmailov et al., 2022; Kirichenko et al., 2022), and for
robustness, we use a class-balanced subset of these data.
Crucially, unlike many existing methods, our approach does
not require subgroup attribute annotations at this stage, al-
though if such annotations are available, we recommend
using them to construct an attribute-balanced subset for this
stage, which functionally serves to combine our more robust
DPE (described in the following sections) with classifier
retraining methods like (Kang et al., 2020; Kirichenko et al.,
2022).

Prototype Classifier Given a feature extractor f : Rn →
Rd and a collection of K classes, a prototype classifier de-
fines a set of learnable prototypes {p(i) : i = 1, ...,K} ⊂
Rd. For an input X , the classifier computes the probabil-
ity of label y based on the distance between the extracted
feature f(X) and each prototype,

P (y|X) =
exp

(
−D(f(X), p(y))

)∑K
i=1 exp

(
−D(f(X), p(i))

) , (1)

where D : Rd × Rd → R is a scaled Euclidean distance
between normalized vectors, as in Macêdo & Ludermir
(2021),

D(x, y) = |ds| ·
∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥
2

,

where ds is a learnable scaling factor. Then, the loss for
each data-label pair (X, y) is,

L(X, y) = − log

(
exp

(
−D(fθ(X), p(y)/τ)

)∑K
i=1 exp

(
−D(fθ(X), p(i))/τ

)),
(2)

where τ is a temperature hyperparameter. We initialize pro-
totypes randomly with mean µ = 0 and standard deviation
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σ = 0.01, and train them by minimizing Equation 2 using
stochastic gradient descent.

Prototypical Ensemble Rather than a single prototype
per class, our method uses an ensemble of N prototypes per
class, yielding a collection {p(i)j }i=1,...,K, j=1,...,N . This
ensemble classifier implements the following classification
rule to aggregate predictions from the N prototype-based
classifiers:

ŷ = arg max
k∈{1,...,K}

1

N

N∑
j=1

P
(k)
j (y|X), (3)

where P
(k)
j (y|X) is the prediction from the jth ensemble

member under Equation 1.

Ensemble Diversification To encourage diverse decision
rules across ensemble members, we employ two prototype
diversification strategies: an explicit inter-prototype simi-
larity (IPS) loss and implicit diversification via bootstrap
aggregation. Without these, naı̈vely training each ensemble
member may lead to redundant decision boundaries between
members of the ensemble.

The IPS loss decorrelates the representations of different
prototypes of the same class. For the n’th ensemble member,
this loss is,

LIPS =

K∑
k=1

n∑
i=1

n∑
j=1

1{i̸=j}
|
〈
p
(k)
i , p

(k)
j

〉
|

n · d
, (4)

where 1 denotes the indicator function, and ⟨·, ·⟩ denotes
the Euclidean inner product. In LIPS, note that terms are
scaled by n and d, the number of ensemble members and
embedding dimensions, respectively. At each ensemble
stage n, we simultaneously optimize all prototypes asso-
ciated with that stage {p(k)n }k=1,...,K while freezing the
prototypes that have been optimized in previous stages,
{p(k)n′ }k=1,...,K, n′=1,...,n−1. We optimize each prototype
via stochastic gradient descent on the sum of LIPS and
L(X, y) (Equation 2).

In parallel, we apply bootstrap aggregation by training each
ensemble member on a different class-balanced subset of
the validation data. These random subsets expose each
prototype to slightly different distributions, implicitly en-
couraging diversity in the learned decision boundaries. The
ensemble is thus trained end-to-end by sequentially solv-
ing the joint prototype and IPS loss for each new ensemble
member.

4. Experiments
4.1. Datasets

We conduct comprehensive experiments across nine real-
world datasets spanning multiple domains to evaluate the ro-
bustness of DPE against subpopulation shift. These datasets
represent diverse challenges, including spurious correla-
tions, attribute and class imbalances, and attribute gener-
alization, all common sources of subpopulation shift. The
datasets are chosen based on their ability to test various
robustness aspects in machine learning models, particularly
under settings where attribute information may be unknown
or imbalanced. Specifically, the evaluation includes WA-
TERBIRDS (Wah et al., 2011), CELEBA (Liu et al., 2015),
METASHIFT (Liang & Zou, 2022), IMAGENETBG (Xiao
et al., 2021), NICO++ (Zhang et al., 2023), LIVING17 (San-
turkar et al., 2021), CHEXPERT (Irvin et al., 2019), CIVIL-
COMMENTS (Borkan et al., 2019), and MULTINLI (Schuh-
mann et al., 2022). We use the same training/validation/test
splits given by (Yang et al., 2023). More details of all
datasets are provided in Appendix A.1.

4.2. Attribute Availability

Attribute availability significantly affects a model’s abil-
ity to handle subpopulation shift. Following recent
works (Kirichenko et al., 2022; Rudner et al., 2024), we
consider a scenario where the group-annotated validation
set is available and can be used for model selection, hyper-
parameters tuning, and re-training the classifier head when
freezing the feature extractor. Yang et al. (2023) showed that
that most methods for robust learning with subpopulation
shift greatly benefit from access to a small set of group-
annotated data to improve performance on underrepresented
groups. However, in many real-world scenarios, attribute
annotations are not available during training or validation.
In such cases, models must rely on the inherent structure of
the data to handle subpopulation shift.

DPE is designed to perform effectively in both settings. We
evaluate DPE’s capability to identify and adapt to potential
subpopulations based on inherent data distribution alone in
the absence of explicit subgroup annotations, and its efficacy
in utilizing the subgroup annotations to specifically tailor
the prototype representations on well-defined subpopula-
tions. Specifically, we use all the aforementioned datasets
in experiments without subgroup annotations, and only
WATERBIRDS, CELEBA, CIVILCOMMENTS, MULTINLI,
METASFHIT, and CHEXPERT in experiments with subgroup
annotations.

4.3. Baselines

To rigorously evaluate the effectiveness of DPE in handling
subpopulation shift, we compare its performance against
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Table 1. Worst-group accuracy (WGA) on the test set without subgroup annotations. The top half reproduces baselines from Subpop-
Bench (Yang et al., 2023) using the same ERM backbone, while the bottom half includes results from original papers and our method
applied to a stronger ERM* backbone. DPE denotes our diversified prototypical ensemble. Best and second-best values are bolded within
each half of the table. The best result per group is underlined and bolded, the second-best is in bold. “-” indicates results not reported.

Algorithm WATERBIRDS CELEBA CIVILCOMMENTS MULTINLI METASHIFT CHEXPERT IMAGENETBG NICO++ LIVING17

ERM 69.1±4.7 57.6±0.8 63.2±1.2 66.4±2.3 82.1±0.8 41.7±3.4 76.8±0.9 35.0±4.1 48.0±1.5

CRT 76.3±0.8 69.6±0.7 67.8±0.3 65.4±0.2 83.1±0.0 74.6±0.4 78.2±0.5 33.3±0.0 −
ReWeightCRT 76.3±0.2 70.7±0.6 64.7±0.2 65.2±0.2 85.1±0.4 75.1±0.2 77.5±0.7 33.3±0.0 −
DFR 89.0±0.2 73.7±0.8 64.4±0.1 63.8±0.0 81.4±0.1 75.8±0.3 74.4±1.8 38.0±3.8 −
ERM + DPE 91.0±0.5 81.9±0.2 69.9±0.9 69.3±0.8 84.1±1.5 − 87.9±0.6 50.0±0.0 54.0±4.0

ERM* 77.9±3.0 66.5±2.6 69.4±1.2 66.5±0.7 80.0±0.0 75.6±0.4 86.4±0.8 33.3±0.0 53.3±0.9

RWY 86.1±0.7 82.9±2.2 67.5±0.6 68.0±1.9 − − − − −
AFR 90.4±1.1 82.0±0.5 68.7±0.6 73.4±0.6 − − − − −
ERM* + DPE 94.1±0.2 84.6±0.8 68.9±0.6 70.9±0.8 83.6±0.9 76.8±0.1 88.1±0.7 50.0±0.0 63.0±1.7

baselines and current state-of-the-art methods for subpopula-
tion shift robustness, including Empirical Risk Minimization
(ERM), Classifier Re-train (CRT, ReweightCRT) (Kang
et al., 2020), Deep Feature Reweighting (DFR) (Kirichenko
et al., 2022), Just Train Twice (JTT) (Liu et al., 2021)
and Correct-n-Contrast (CnC) (Zhang et al., 2022),
RWY (Idrissi et al., 2022), Automatic Feature Reweight-
ing (AFR) (Qiu et al., 2023), and Group-Aware Priors
(GAP) (Rudner et al., 2024). See more details in Ap-
pendix A.3.

4.4. Implementation

We prepared each dataset in alignment with established
benchmarks on subpopulation shift, as outlined in Yang
et al. (2023). We adopted pretrained ResNet-50 for image
data and BERT for textual data to facilitate a direct com-
parison with state-of-the-art benchmarks on subpopulation
shift robustness. Hyperparameters related to DPE (e.g., τ
and α) are tuned using a held-out subset of the validation
set, which is split into training and validation folds for tun-
ing. For consistency and rigor, both hyperparameter tuning
and model selection are based on the worst-group accuracy
within the validation fold. After hyperparameter selection,
we retrain the prototypical ensemble on the full validation
set using the selected hyperparameters.

Each two-stage training cycle is repeated three times with
three different seeds to ensure the stability of the method.
Compared to the initial training stage implemented in Yang
et al. (2023) (reported as ERM), our initial training stage
involves stronger augmentation (random-crop/resize, hori-
zontal flip) for visual datasets and longer training time for
all datasets (similar to Idrissi et al. (2022), reported as
ERM*). In the second training stage, we trained 15 proto-
types sequentially for all datasets. The full implementation
is detailed in Appendix B and our code base.

5. Results and Discussion
5.1. DPE Achieves Strong Subpopulation Shift

Robustness Without Subgroup Annotations

When attributes are unknown during both the training and
validation phases, the performance of most methods de-
grades significantly under subpopulation shift. Table 1
presents the worst-group accuracy (WGA) across multi-
ple datasets, illustrating the challenges that various methods
face in adapting to subpopulation shift without subgroup
annotations. ERM and ERM* represent naı̈ve baselines of
performance in that they implement no mechanism of ex-
plicitly accommodating subpopulation shift. Specifically,
ERM achieves a WGA of only 69.1% on the WATERBIRDS
dataset and 63.2% on CIVILCOMMENTS. Additionally,
reweighting approaches like CRT and ReWeightCRT strug-
gle to adapt in these scenarios, as they depend on access to
accurate attribute information.

The proposed method, DPE, significantly outperforms all
baseline models in handling unknown attributes. As shown
in Table 1, DPE consistently achieves higher WGA across
various datasets, with an average of 73.9%. This is a sub-
stantial improvement compared to ERM’s average of 57.7%,
and it also surpasses other robust methods such as DFR and
RWY, which achieve 65.2% and 67.5%, respectively. On
difficult datasets like CHEXPERT, DPE achieves a WGA
of 76.8%, exceeding the performance of CRT (74.6%) and
DFR (75.8%). Similarly, on the CELEBA dataset, which
includes imbalances in hair color and gender, DPE attains a
WGA of 84.6%, outperforming other baselines. Overall, the
results demonstrate DPE’s capability to implicitly discover
subpopulations and capture different aspects of the data.

5.2. Subgroup Annotations Further Enhance DPE’s
Performance in Addressing Subpopulation Shift

When subgroup annotations are available in the validation
set, models can leverage this information to improve their
robustness, either by using group-balanced subsampling or
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Figure 3. Worst-group improvement over ERM* when using DPE with and without subgroup annotations.

Table 2. Worst-group accuracy (WGA) on the test set with access to attribute annotations. The top half presents SubpopBench-style
baselines and our method on a standard ERM backbone. The bottom half includes recent state-of-the-art methods and our method applied
to a stronger ERM* backbone. DPE refers to our diversified prototypical ensemble. Group Info (Train/Val) indicates whether group labels
are required: ✗ = no group info required, ✓ = group info required for hyperparameter tuning, ✓✓ = validation data required for both
training and hyperparameter tuning. Best and second-best values within each half are underlined and bolded and bold, respectively. “-”
indicates results not reported.

Algorithm Group Info (Train/Val) WATERBIRDS CELEBA CIVILCOMMENTS MULTINLI METASHIFT CHEXPERT

ERM ✗/✗ 69.1±4.7 57.6±0.8 63.2±1.2 66.4±2.3 82.1±0.8 41.7±3.4

CRT ✗/✓ 76.3±0.8 70.4±0.4 68.5±0.0 65.4±0.1 83.1±0.0 74.0±0.2

ReWeightCRT ✗/✓ 76.3±0.2 71.1±0.5 68.2±0.4 65.3±0.1 85.1±0.4 73.9±0.2

DFR ✗/✓✓ 89.0±0.2 86.3±0.3 66.5±0.2 63.8±0.0 81.5±0.0 75.4±0.6

ERM + DPE ✗/✓✓ 91.0±0.4 87.7±0.6 71.5±0.6 74.8±0.3 87.9±0.7 −
ERM* ✗/✗ 77.9±3.0 66.5±2.6 69.4±1.2 66.5±0.7 80.0±0.0 75.6±0.4

Group DRO ✓/✓ 91.4±1.1 88.9±2.3 70.0±2.0 77.7±1.4 − −
RWG ✓/✓ 87.6±1.6 84.3±1.8 72.0±1.9 69.6±1.0 − −
JTT ✗/✓ 86.7 81.1 69.3 72.6 − −
CnC ✗/✓ 88.5±0.3 88.8±0.9 68.9±2.1 − − −
SSA ✗/✓✓ 89.0±0.6 89.8±1.3 69.9±2.0 76.6±0.7 − −
DFR* ✗/✓✓ 92.9±0.2 88.3±1.1 70.1±0.8 74.7±0.7 − −
GAP (Last Layer) ✗/✓✓ 93.2±0.2 90.2±0.3 − 74.3±0.2 − −
GAP (All Layer) ✗/✓✓ 93.8±0.1 90.2±0.3 − 77.8±0.6 − −
ERM* + DPE ✗/✓✓ 94.1±0.4 90.3±0.7 70.8±0.8 75.3±0.5 91.7±1.3 76.0±0.3

reweighting, particularly against underrepresented or chal-
lenging subpopulations. Table 2 presents a comparison of
WGA for several methods across datasets where subgroup
annotations are known. Compared to the scenario where
attributes are unknown, all models show improved perfor-
mance in this setting. For instance, CRT achieves a WGA
of 70.4% on CELEBA and 68.5% on CIVILCOMMENTS,
demonstrating a clear advantage over its performance when
attributes are unknown. DFR and JTT demonstrate superior
performance, achieving a WGA of 86.3% and 81.1% on
CELEBA, respectively. DPE delivers the most substantial
improvements across almost all datasets. As seen in Ta-
ble 2, DPE achieves the highest average WGA at 83.0%,
consistently outperforming other methods. On METASHIFT,
DPE reaches a WGA of 91.7%, surpassing ReWeightCRT
(85.1%) and DFR (81.5%). For WATERBIRDS, DPE attains
a WGA of 94.1%, which is higher than GAP (93.8%) and
DFR (89.0%). Furthermore, in CIVILCOMMENTS, a dataset

characterized by significant identity-based imbalances, DPE
achieves a WGA of 70.8%, outperforming CRT and DFR.

5.3. DPE Mitigates Challenging Subpopulation Shift

One of the most critical challenges for machine learning
models in subpopulation shift is the ability to handle at-
tribute imbalance (AI) and attribute generalization (AG). As
shown in the Yang et al. (2023), most existing methods—
including well-known algorithms like GroupDRO and JTT—
show limited improvement in scenarios involving AI and
AG. Yang et al. (2023) highlights that none of the existing
methods significantly outperform ERM in AG settings, in-
dicating their inability to cope with the imbalanced/unseen
attributes in the test data. In contrast, DPE consistently
achieves the highest WGA in both AI (e.g. CHEXPERT,
CIVILCOMMENTS) and AG (e.g. NICO++, LIVING17
(Fig. 3, Table 1). DPE’s use of a prototypical ensemble
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allows each prototype to explore substructures in the la-
tent space without requiring knowledge about the number
of subpopulations or the detection of instances in vulnera-
ble subpopulations. The diverse prototypes ensure that the
model does not rely on the most frequent attributes alone
but instead learns a broader representation of the underlying
data, resulting in better performance across all subgroups.

5.4. ERM vs. ERM*: Disentangling Backbone Effects

To isolate the impact of our prototypical ensemble from
the underlying feature extractor, we compare four variants:
ERM, ERM* (with stronger augmentation and longer train-
ing), and both combined with DPE. As shown in Tables 2a
and 2b, DPE improves worst-group accuracy (WGA) con-
sistently regardless of the backbone. For example, on WA-
TERBIRDS, WGA increases from 69.1% (ERM) and 77.9%
(ERM*) to 91.0% and 94.1% with DPE, respectively. Sim-
ilar trends hold across datasets like CELEBA (57.6% →
81.9% with ERM+DPE; 66.5% → 84.6% with ERM*+DPE)
and MULTINLI (66.4% → 69.3%; 66.5% → 70.9%). These
consistent gains both with and without subgroup availability
indicate that DPE’s robustness stems from prototype diver-
sification rather than representation quality alone, and that it
serves as an effective, modular improvement atop standard
training pipelines.

6. Ablation study
6.1. Prototype Diversification is Critical for Capturing

Diverse Subpopulations

In this section, we investigate the impact of prototype di-
versity strategies on the performance of the prototypical
ensemble, when subgroup annotation is available, specifi-
cally comparing three scenarios: (1) using a fixed subset of
data for each prototype, (2) training with a random subset for
each prototype, and (3) incorporating both random subset
selection and inter-prototype similarity loss to maximize di-
versity across the ensemble members. Fig. 4 highlights the
WGA across different datasets as we increase the number
of prototypes under these scenarios.

In the first scenario, where a fixed subset is used for each
prototype, the performance initially improves as we increase
the number of prototypes. However, this improvement
quickly plateaus, suggesting that the prototypes learn re-
dundant features when trained on the same subset. Without
introducing diversity, adding more prototypes beyond a cer-
tain point fails to significantly boost WGA.

The second scenario, involving random subset selection,
introduces some level of diversity by ensuring each proto-
type is trained on a different random subset of data. This
strategy leads to noticeable improvements (Fig. 4) as the
number of prototypes increases, with each prototype focus-

Figure 4. Effect of different ensemble diversification methods on
performance with different numbers of ensemble members.

ing on different parts of the data distribution.

In the third scenario, we apply both random subset selec-
tion and inter-prototype similarity loss (IPS), which ex-
plicitly minimizes the overlap between prototypes in latent
space. This yields the best overall performance across all
datasets, with substantial gains in WGA as the ensemble size
increases. IPS ensures that each prototype independently
contributes to the overall performance, reducing redundancy
and enhancing the ensemble’s ability to cover a broader
range of data distributions with more prototypes.

6.2. Prototypical Ensembles Outperform Linear
Ensembles

We compare the WGA of the prototypical ensemble with
that of a linear ensemble, focusing on scenarios where both
models have the same number of ensemble members and
were trained on random subgroup-balanced subsets. Fig.
5 highlights the performance differences across multiple
datasets, demonstrating the clear advantage of the prototyp-
ical ensemble over the linear ensemble when dealing with
subpopulation shift. The linear ensemble, which consists
of multiple independently trained linear classifiers, shows
similar performance to the original DFR, which only trained
three classifiers as the ensembles. On the other hand, from
both Fig. 4 and Fig. 5, the prototypical ensemble shows
steady improvement when increasing the ensemble size
and consistently outperforms the linear ensemble across
all datasets regardless of the attribute availability. More-
over, prototype ensemble markedly improves over linear
ensemble on attribute imbalance (MULTINLI) and attribute
generalization (IMAGENETBG, LIVING17), the two most
challenging types of subpopulation shift.

6.3. Effect of Ensemble Size

We analyze the impact of the number of prototypes per
class, denoted by N , on worst-group accuracy (WGA). To
quantify the performance gain, we define the percentage

8
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Figure 5. Linear ensemble versus prototypical ensemble with known and unknown attributes. NICO++ is not included in the plot since in
our experiments, the worst-group accuracy of the linear ensemble on this dataset is zero.

improvement as ∆N = WGAN−WGA1

WGA1
× 100, where WGAN

denotes the worst-group accuracy when using N prototypes
per class. We conduct this ablation on four representa-
tive datasets: WATERBIRDS, CELEBA, METASHIFT, and
CHEXPERT, evaluated under both known and unknown at-
tribute settings.

Our results show that increasing N leads to diminishing re-
turns beyond a certain point. Specifically, we observe the fol-
lowing average improvements: ∆5 = 2.4%, ∆10 = 3.3%,
∆15 = 3.7%, ∆25 = 3.7%, and ∆40 = 3.7%. These results
indicate that WGA saturates around N = 15, and further
increases in ensemble size result in minimal additional gain
due to overlapping prototypes in latent space. These find-
ings empirically support that our use of N = 15 balances
robustness and computational efficiency.

6.4. Sensitivity to Hyperparameters

We assess the sensitivity of DPE to two core hyperparam-
eters: the temperature τ and the inter-prototype similar-
ity loss weight α. Across τ ∈ {10, 20, 30, 40} and α ∈
{104, 5×104, 105, 5×105} on WATERBIRDS, METASHIFT,
and LIVING17, performance varies within 1–2%, confirm-
ing DPE’s robustness to hyperparameter tuning. The only
exception is LIVING17, which shows greater variability
due to its fine-grained subpopulation structure. See Ap-
pendix C.5 for the full analysis.

6.5. Runtime and Memory Overhead

To quantify computational efficiency, we benchmarked run-
time and GPU memory usage on an RTX6000 with a
ResNet-50 backbone and batch size 1. The results show that
increasing the number of prototypes from 15 to 100 leads
to a modest increase in per-batch latency (from 0.0031s to
0.0045s) and memory (from 0.20 GB to 0.85 GB). These
results confirm that DPE is scalable and incurs minimal
overhead even with large ensemble sizes.

6.6. Standard Accuracy and Robustness Trade-off

To evaluate whether robustness gains trade off with overall
performance, we report average accuracy in Appendix C.6.
DPE maintains competitive or improved accuracy compared
to ERM and ERM*, in both known and unknown attribute
settings. For example, on METASHIFT, ERM* + DPE im-
proves WGA from 80.0% to 83.6% and average accuracy
from 93.2% to 93.8%. These results support that DPE en-
hances fairness without sacrificing accuracy.

7. Limitations
A limitation of our approach is some additional complex-
ity introduced by using an ensemble and some additional
hyperparameters introduced by the method; however, this
limitation is outweighed by improved performance and
greater flexibility, as it does not require identification of
sub-populations like JTT (Liu et al., 2021) and CnC (Zhang
et al., 2022). The method remains computationally efficient
as the ensemble is trained only on pre-extracted features,
adding approximately two minutes per prototype on most
datasets. Another limitation is the lack of a formal theoreti-
cal explanation for why prototype diversification improves
worst-group accuracy. To partially address this, we con-
ducted an exploratory analysis on WATERBIRDS dataset in
which a third-party annotator (ChatGPT) examined samples
closest to each prototype and found consistent semantic pat-
terns such as habitat type and pose, suggesting that DPE
may implicitly recover meaningful subgroups despite not
using group labels (Appendix C.7). While promising, these
findings are qualitative, and developing a theoretical under-
standing remains an open direction. Finally, similar to prior
works, our method relies on ERM for feature extraction,
which may underperform in low-data or weak-label settings;
future work could explore integrating self-supervised learn-
ing to improve generalization in such regimes.
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A. Subpopulation Shift Benchmark
A.1. Datasets

WATERBIRDS (Wah et al., 2011) is a popular dataset for
studying spurious correlations, where the background (wa-
ter vs. land) is often confounded with the target label (water-
birds vs. landbirds). The key challenge in this dataset is that
waterbirds are predominantly seen in water backgrounds,
and landbirds are seen in land backgrounds. This creates a
spurious correlation, making it difficult for models trained
on such data to generalize to cases where birds appear in un-
usual backgrounds (e.g., landbirds in water environments).
Models are evaluated on their ability to classify these atypi-
cal instances correctly.

Table 1. Summary of the WATERBIRDS dataset.
Dataset # Attr. # Cls. # Tr. # Val. # Test

WATERBIRDS 2 2 4795 1199 5794

Figure 1. Class/Attribute distribution in WATERBIRDS dataset.

CELEBA (Liu et al., 2015) is a large-scale facial attribute
dataset, widely used to explore the impact of attribute im-
balance. The target task is to classify images based on hair
color (blond vs. non-blond) with the confounding attribute
being gender. Since blond hair is predominantly seen in
females, models tend to overfit to this correlation, leading to
poor performance on subgroups such as blond males or non-
blond females. This dataset is used to test whether models
can generalize across imbalanced attribute distributions and
not rely solely on spurious associations.

Table 2. Summary of the CELEBA dataset.
Dataset # Attr. # Cls. # Tr. # Val. # Test

CELEBA 2 2 162770 19867 19962

Figure 2. Class/Attribute distribution in CELEBA dataset.

CHEXPERT (Irvin et al., 2019) is a large-scale medical
dataset consisting of chest radiographs. The dataset presents
a significant class imbalance problem, with certain rare
medical conditions being underrepresented in the training
data. In this setting, models must be robust to imbalanced
subpopulation distributions to perform well across both com-
mon and rare conditions. Evaluating models on this dataset
demonstrates their ability to handle real-world medical tasks
where some conditions may appear infrequently but are crit-
ical to correctly diagnose.

Table 3. Summary of the CHEXPERT dataset.
Dataset # Attr. # Cls. # Tr. # Val. # Test

CHEXPERT 6 2 167093 22280 33419

CIVILCOMMENTS (Borkan et al., 2019) is a dataset col-
lected from an online comment moderation platform, where
the task is to predict toxicity in comments. This dataset is
used to test robustness to identity-based subgroup shifts, as
certain demographic groups (such as race or gender) are
underrepresented in the data, and there is a strong risk of
models developing biased predictions. The ability to cor-
rectly classify toxic comments across all identity groups is
a key challenge in this dataset, and it provides a benchmark
for testing fairness in machine learning models.
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Figure 3. Class/Attribute distribution in CHEXPERT dataset. a)
Each color represents one subgroup; b) Example images from the
corresponding subgroups.

Table 4. Summary of the CIVILCOMMENTS dataset.
Dataset # Attr. # Cls. # Tr. # Val. # Test

CIVILCOMMENTS 6 2 148304 24278 71854

MULTINLI (Schuhmann et al., 2022) is a natural language
inference dataset where models must predict the relation-
ship between pairs of sentences (entailment, contradiction,
or neutral). The presence of linguistic artifacts, such as
negation words (e.g., ”no” or ”never”), is often correlated
with the contradiction label, creating a spurious association.
This dataset is used to test whether models can avoid relying
on such artifacts and instead generalize across more diverse
sentence pairs.

Table 5. Summary of the MULTINLI dataset.
Dataset # Attr. # Cls. # Tr. # Val. # Test

MULTINLI 6 2 206175 82462 123712

METASHIFT (Liang & Zou, 2022) is a dataset that intro-
duces the concept of contextual distribution shifts. It con-
tains various object classes (e.g., cats and dogs) in different
contexts (e.g., indoor and outdoor environments). The task
is to classify objects while being robust to changes in the
context in which these objects are seen. This dataset is par-
ticularly useful for testing whether models can generalize to
unseen combinations of objects and contexts during testing.

Table 6. Summary of the METASHIFT dataset.
Dataset # Attr. # Cls. # Tr. # Val. # Test

METASHIFT 2 2 2276 349 874

Figure 4. Class/Attribute distribution in METASHIFT dataset.

IMAGENETBG (Xiao et al., 2021) is a modified version of
ImageNet that emphasizes background noise as a source of
variation in object recognition tasks. The challenge here
lies in generalizing to new images where the background
differs from what was seen during training. This dataset
tests models’ ability to disentangle foreground objects from
background information, ensuring robustness to background
shifts.

Table 7. Summary of the IMAGENETBG dataset.
Dataset # Attr. # Cls. # Tr. # Val. # Test

IMAGENETBG N/A 9 183006 7200 4050

NICO++ (Zhang et al., 2023) is another domain generaliza-
tion dataset that contains various object categories with a
focus on unseen attributes during testing. The key challenge
in this dataset is that models must generalize to unseen com-
binations of object categories and attributes (e.g., “cat in
autumn” or “dog on water”). It is an important benchmark
for evaluating models’ ability to handle attribute generaliza-
tion and unseen variations in test data.

Table 8. Summary of the NICO++ dataset.
Dataset # Attr. # Cls. # Tr. # Val. # Test

NICO++ 6 60 62657 8726 17483

LIVING17 (Santurkar et al., 2021) is part of the BREEDS
benchmark, a dataset constructed to test hierarchical clas-
sification and domain generalization. In this dataset, the
task is to classify living organisms into subcategories, and
the challenge comes from unseen subclasses at the same
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Figure 5. Example images from each class of IMAGENETBG
dataset. Attributes are not available for this dataset.

hierarchical level during testing. This dataset assesses mod-
els’ robustness in generalizing across hierarchical structures,
where unseen subcategories must be correctly identified.

Table 9. Summary of the LIVING17 dataset.
Dataset # Attr. # Cls. # Tr. # Val. # Test

LIVING17 N/A 17 39780 4420 1700

A.2. Evaluation metrics

WORST-GROUP ACCURACY (WGA)

Worst-group accuracy measures the performance of a model
on the subgroup of data where it performs the worst. For-
mally, let G denote the set of all groups, and let Dg represent
the subset of data belonging to group g ∈ G. Define the
accuracy on group g as:

Accg =
1

|Dg|
∑

(x,y)∈Dg

I(f(x) = y),

where f(x) is the model’s prediction and I(·) is the indicator
function. The worst-group accuracy is then given by:

WGA = min
g∈G

Accg.

This metric evaluates the robustness of the model to under-
represented or challenging groups in the dataset.

Figure 6. Attribute distribution in NICO++ dataset. a) Each color
represents one subgroup; b) Example images from the correspond-
ing subgroups.

BALANCED ACCURACY (BA)

Balanced accuracy is designed to mitigate the effects of
class imbalance by averaging the accuracy across all classes.
Let C denote the set of all classes, and Dc the subset of data
belonging to class c ∈ C. The per-class accuracy is defined
as:

Accc =
1

|Dc|
∑

(x,y)∈Dc

I(f(x) = y).

The balanced accuracy is computed as:

BA =
1

|C|
∑
c∈C

Accc.

Balanced accuracy ensures that each class contributes
equally to the overall evaluation, regardless of its frequency
in the dataset.

A.3. Baselines

Empirical Risk Minimization (ERM) serves as the stan-
dard training approach without any modifications for robust-
ness. ERM optimizes for overall accuracy, often leading
to suboptimal performance on underrepresented subpopu-
lations, as it tends to prioritize the majority groups during
training. While ERM is effective in balanced datasets, it
has well-documented limitations in cases of spurious corre-
lations or significant subpopulation shifts, making it a key
point of comparison.

Classifier Re-train (CRT, ReWeightCRT) (Kang et al.,
2020) focuses on first learning generalizable representa-
tions with standard sampling techniques. Then, in the sec-
ond stage, the classifier is re-trained separately with class-
balanced sampling or using non-parametric methods like
Nearest Class Mean (NCM) or τ -normalization to adjust
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decision boundaries for better performance across underrep-
resented classes

Deep Feature Reweighting (DFR) (Kirichenko et al., 2022)
aims to mitigate the impact of spurious correlations by de-
coupling feature learning from classifier training. DFR
specifically retrains the classification layer on a balanced
subset of the validation data, ensuring that learned features
are leveraged in a more robust manner. These approaches
offer improved performance on subpopulations but rely
heavily on having access to validation data with known
subgroups.

Just Train Twice (JTT) (Liu et al., 2021) proposes a two-
stage approach to improve worst-group accuracy without
requiring group annotations during training. In the first
stage, JTT trains a standard ERM model and identifies the
training examples it misclassifies, which often belong to
groups affected by spurious correlations. In the second stage,
JTT retrains the model by upweighting these misclassified
examples to enhance the model’s performance on the worst-
performing groups. Despite not using group annotations
during training, JTT significantly improves worst-group
accuracy, achieving performance close to methods that do
rely on group annotations, while maintaining competitive
average accuracy across various datasets.

Correct-n-Contrast (CnC) (Zhang et al., 2022) designs a
two-stage contrastive learning method to improve robust-
ness against spurious correlations without requiring group
labels during training. In the first stage, an ERM model
is trained to infer spurious attribute labels by predicting
groups that may correspond to spurious correlations. In the
second stage, CnC uses contrastive learning to align the rep-
resentations of same-class samples while ignoring spurious
attributes. By sampling same-class instances with different
spurious attribute predictions as positives, and different-
class instances with the same spurious attribute predictions
as negatives, CnC ensures that the learned representations
focus on meaningful, class-specific features rather than spu-
rious correlations.

RWY (Idrissi et al., 2022) presents a simple yet effec-
tive approach to improving worst-group accuracy through
basic data balancing techniques such as subsampling and
reweighting without requiring subgroup annotations. The
method focuses on addressing group and class imbalances
in datasets by either subsampling large groups/classes or
reweighting samples to ensure balanced mini-batches during
training. The results show that these simple data balancing
techniques achieve competitive worst-group accuracy com-
pared to more complex state-of-the-art methods. Addition-
ally, the study emphasizes that while attribute information
is crucial for model selection during validation, it is less
important during training.

Automatic Feature Reweighting (AFR) (Qiu et al., 2023)
enhances group robustness without requiring access to group
labels during training. AFR operates in two stages: first, a
standard ERM model is trained on the full dataset. Then,
AFR retrains only the last layer of the model on a reweight-
ing set, automatically giving higher weight to examples
where the ERM model underperforms, which typically be-
long to minority groups.

Group-Aware Priors (GAP) (Rudner et al., 2024) pro-
poses a novel method to improve robustness to subpopu-
lation shifts by introducing data-driven priors that favor
models capable of generalizing well across different sub-
groups. GAP requires only a small set of group-labeled data
and uses this to construct a probabilistic prior distribution
over model parameters. The method operates in two steps:
first, a neural network is trained using ERM; second, the
group-aware prior is used to finetune the model, either on
the entire network or by retraining just the last layer. By
incorporating this group-aware prior, the model places a
higher probability on parameters that achieve strong per-
formance on worst-case subgroups, significantly improving
group robustness.
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B. Implementation details
The training procedure for DPE framework consists of two stages and is implemented with dataset-specific hyperparameters
detailed in Tables 10 and 11. Hyperparameters were selected to optimize the WGA on the validation set, ensuring fair
evaluation across different datasets.

B.1. Representation Learning

In the first stage, a feature extractor is trained using ERM with dataset-specific configurations (Table 10). Image datasets
such as WATERBIRDS, METASHIFT, and IMAGENETBG use the SGD optimizer with a learning rate of 1e-2 and a batch
size of 128, while text-based datasets such as CIVILCOMMENTS and MULTINLI use BertAdam with a learning rate of 1e-4
and a batch size of 16. The number of training epochs varies by dataset, ranging from 4 for CIVILCOMMENTS to 300 for
WATERBIRDS.

Table 10. Hyperparameters of the representation learning.

Dataset # Epochs Optimizer LR Batch size

WATERBIRDS 300 SGD 1e-2 128
CELEBA 50 SGD 1e-2 128
CIVILCOMMENTS 4 BertAdam 1e-4 16
MULTINLI 5 BertAdam 1e-4 16
METASHIFT 100 SGD 1e-2 128
IMAGENETBG 20 SGD 1e-2 128
NICO++ 100 SGD 1e-2 128
CHEXPERT 30 SGD 1e-2 128
LIVING17 50 SGD 1e-2 128

B.2. Prototypical Ensemble Learning

In the second stage, class/group-balanced subsets of the validation set are used to train the prototype ensemble. Each
ensemble member is trained sequentially with inter-prototype similarity loss (LIPS) to encourage diversity among prototypes.
The coefficient λ for LIPS varies by dataset and is listed in Table 11, with values such as 5 × 105 for WATERBIRDS and
1 × 105 for CIVILCOMMENTS. Most datasets, including WATERBIRDS, CELEBA, and CHEXPERT, utilize the SGD
optimizer with a batch size of 256, while METASHIFT uses a smaller batch size of 64 due to its smaller dataset size.

Table 11. Hyperparameters of prototypical ensemble learning.

Dataset LR Optimizer Batch size λ

WATERBIRDS 1e-3 SGD 256 5e5
CELEBA 5e-4 SGD 256 5e5
CIVILCOMMENTS 1e-4 SGD 256 1e5
MULTINLI 1e-4 SGD 256 1e5
METASHIFT 1e-2 SGD 64 1e5
IMAGENETBG 1e-3 SGD 256 5e5
NICO++ 1e-2 SGD 256 1e5
CHEXPERT 1e-3 SGD 256 5e5
LIVING17 5e-5 SGD 256 1e5
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C. Additional Results
C.1. Effect of Diversification Strategies on Ensemble Performance

Figure 7 extends the results shown in Figure 5 of the main paper to four datasets, illustrating the effect of different ensemble
diversification strategies on both worst-group accuracy and balanced accuracy as the number of ensemble members increases.
Three methods are compared: (1) fixed subset training (no diversification), (2) random subset training, and (3) random subset
selection combined with inter-prototype similarity loss. The results show that the combined approach consistently achieves
the highest worst-group accuracy across datasets. This underscores the importance of using both explicit and implicit
diversification mechanisms to ensure that the ensemble captures a broad range of data distributions and subpopulation
dynamics.

Figure 7. Effect of different ensemble diversification methods on performance with different numbers of ensemble members.

C.2. Prototype Diversity Visualization
Figure 8 presents pairwise cosine similarity matrices
for the first five prototypes within the ensemble, visu-
alized separately for the “Landbird” and “Waterbird”
classes. These matrices quantify the similarity be-
tween prototype embeddings, where values closer to
0 indicate greater diversity. The visualization demon-
strates that our inter-prototype similarity loss effec-
tively encourages representation diversity by reduc-
ing prototype overlap, enabling different prototypes
to capture distinct subpopulation characteristics.

Figure 8. Pairwise cosine similarity matrices for the first 5
prototypes in the ensemble of the WATERBIRDS dataset.
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C.3. Runtime and Memory Efficiency

To assess the computational overhead introduced by our prototypical ensemble, we benchmarked DPE on an RTX6000
GPU using a ResNet-50 backbone and k=1000 classes, with a batch size of 1. Table 12 shows the runtime and memory
usage as a function of the number of prototypes per class. We observe that inference time increases only slightly as the
number of prototypes increases, from 0.0031s with 15 prototypes to 0.0045s with 100 prototypes. Memory usage grows
more noticeably, increasing from 0.2032 GB to 0.8517 GB. In comparison, a standard linear classifier requires 0.0032s per
batch and 0.104 GB of memory. These results suggest that DPE introduces minimal runtime overhead while remaining
memory-efficient, even when using up to 100 prototypes, making it practical for large-scale applications.

Table 12. Time and memory benchmarking on RTX6000 with k=1000 classes (ResNet-50, batch size = 1).

Model Head # Prototypes Time per Batch (s) GPU Memory (GB)

DPE 15 0.0031 0.2032
DPE 20 0.0033 0.2413
DPE 30 0.0033 0.3176
DPE 100 0.0045 0.8517
Linear (Baseline) N/A 0.0032 0.1040

C.4. Different Types of Ensemble-based Techniques

In this ablation study, we compare the performance of three ensemble learning strategies—Voting, Bagging, and Stacking—to
the proposed ensemble approach, evaluating their efficacy in handling classification tasks under diverse conditions. The
Voting ensemble aggregates predictions from heterogeneous base models, including Logistic Regression, Decision Tree, and
Support Vector Machine (SVM), by employing both hard voting (majority rule) and soft voting (weighted probabilities).
The Bagging ensemble utilizes Decision Trees as base learners and trains multiple instances on bootstrapped subsets of the
training data, reducing variance and improving generalization. In contrast, the Stacking ensemble leverages a meta-learner
(Gaussian Naı̈ve Bayes) to integrate predictions from diverse classifiers (Logistic Regression, Decision Tree, and SVM),
optimizing the final decision boundary through hierarchical learning. All models were trained on the same input features
from the validation set used for training DPE. The group-balanced sampling strategy is used for WATERBIRDS and CELEBA,
while class-balanced sampling strategy is used for LIVING17. Predictions were extracted from both the ensemble models
and their individual base learners to analyze decision consistency and diversity. The results in this benchmark show that
DPE consistently outperforms existing ensemble-based approaches under subpopulation shifts.

Table 13. Performance comparison of ensemble methods.

Method CELEBA WATERBIRDS LIVING17

BAcc WGA BAcc WGA BAcc WGA

Voting 92.65 89.61 95.05 92.06 82.88 47.00
Bagging 90.87 81.11 94.01 92.06 75.71 34.00
Stacking 92.47 85.56 95.36 93.66 74.24 36.00

DPE 92.87 90.31 95.61 94.13 87.03 63.00

C.5. Sensitivity Analysis

We evaluate the robustness of our method to two critical hyperparameters: the inverse temperature parameter (1/τ ) used
in the entropic similarity function, and the IPS loss coefficient (α) that controls the strength of prototype diversification.
Table 14 presents the worst-group accuracy across multiple values of each hyperparameter, while Table 15 reports the
corresponding overall accuracy. We observe that performance is generally stable across a wide range of settings for both
hyperparameters. Notably, the method maintains high accuracy on WATERBIRDS and METASHIFT, with only moderate
sensitivity observed on the more challenging LIVING17 dataset. These results suggest that the method does not require
fine-tuning to achieve strong robustness and generalization across subpopulations.
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Table 14. Sensitivity analysis of worst-group accuracy (WGA) to the inverse temperature (1/τ ) and the IPS loss coefficient (α).

Dataset 1/τ Summary α Summary

10 20 30 40 Mean STD 1e4 5e4 1e5 5e5 Mean STD

Waterbirds 93.6 93.9 94.1 94.5 94.03 0.38 93.6 94.4 94.1 94.1 94.05 0.33
MetaShift 89.7 91.7 90.8 91.3 90.88 0.87 90.5 91.7 90.7 90.8 90.93 0.53
Living17 63.0 58.7 57.3 55.3 58.58 3.26 63.0 61.7 61.7 62.0 62.10 0.62

Table 15. Sensitivity analysis of overall accuracy to the inverse temperature (1/τ ) and the IPS loss coefficient (α).

Dataset 1/τ Summary α Summary

10 20 30 40 Mean STD 1e4 5e4 1e5 5e5 Mean STD

Waterbirds 96.4 96.2 96.0 95.9 96.13 0.22 96.3 95.9 96.0 95.9 96.03 0.19
MetaShift 93.8 93.7 93.9 93.9 93.83 0.10 93.9 93.9 93.7 93.7 93.80 0.12
Living17 87.0 87.2 87.1 86.9 87.05 0.13 87.2 87.0 87.0 87.1 87.08 0.10

C.6. Standard Accuracy

In addition to robustness metrics such as worst-group accuracy, we report the standard (average) accuracy of all evaluated
methods across six benchmark datasets in Table 16. These results provide a complementary view of model performance,
reflecting how well each method performs on the overall population rather than just on the most challenging subgroups.
While some methods show strong gains in worst-group accuracy, they may trade off slightly in overall accuracy, particularly
when subgroup reweighting is involved. Our proposed DPE method achieves competitive or superior average accuracy,
especially when combined with a stronger ERM* backbone, indicating that robustness improvements do not come at the
cost of general performance.

Table 16. Standard (average) accuracy for all methods across datasets. Group Info indicates whether group labels are used for training
and/or validation: ✗/✗: No group info required, ✗/✓: Group info used for hyperparameter tuning, ✗/✓✓: Validation group labels required
during training and tuning, ✓/✓: Full group labels required.

Algorithm Group Info WATERBIRDS CELEBA CIVILCOMMENTS MULTINLI METASHIFT CHEXPERT

ERM ✗/✗ 84.1±1.7 95.0±0.1 85.4±0.2 80.9±0.3 91.5±0.2 88.6±0.7
CRT ✗/✓ 89.2±0.1 94.1±0.1 83.0±0.0 80.2±0.0 91.5±0.0 79.1±0.1
ReWeightCRT ✗/✓ 89.4±0.3 94.2±0.1 83.4±0.0 80.2±0.0 91.3±0.1 79.0±0.0
DFR ✗/✓✓ 92.2±0.2 91.2±0.1 81.3±0.0 80.2±0.0 90.5±0.4 78.9±0.2
ERM + DPE ✗/✓✓ 92.5±0.2 89.8±0.2 82.2±0.2 81.3±0.2 91.2±0.1 -
ERM* ✗/✗ 92.1±0.2 94.0±0.2 83.3±1.4 81.9±0.2 93.2±0.1 79.4±0.3
Group DRO ✓/✓ 93.5 92.9 88.9 81.4 - -
RWG ✓/✓ - - - - - -
JTT ✗/✓ 93.3 88.0 91.1 78.6 - -
CnC ✗/✓ 90.9±0.1 89.9±0.5 81.7±0.5 - - -
SSA ✗/✓✓ 92.2±0.9 92.8±0.1 88.2±2.0 79.9±0.87 - -
DFR* ✗/✓✓ 94.2±0.4 91.3±0.3 87.2±0.3 82.1±0.2 - -
GAP (Last Layer) ✗/✓✓ 94.6±0.2 91.7±0.2 - 81.9±0.0 - -
GAP (All Layer) ✗/✓✓ 95.6±0.1 91.5±0.1 - 82.5±0.1 - -
ERM* + DPE ✗/✓✓ 96.0±0.1 91.9±0.3 81.6±0.2 81.6±0.2 93.8±0.5 79.0±0.2

C.7. Exploratory Analysis of Prototype-Subgroup Alignment

To gain insight into the semantic structure captured by the Diversified Prototypical Ensemble (DPE), we performed an
exploratory analysis on the WATERBIRDS dataset. For each prototype, we retrieved the top-10 closest validation samples
and used ChatGPT to interpret the emerging patterns. As shown in Figures 9 and 10, the learned prototypes exhibit
consistent alignment with ecologically or visually meaningful subpopulations, even though no subgroup labels were used
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Figure 9. Waterbird Prototypes. Each row depicts the top-10 validation samples closest to one of the prototypes learned for the
WATERBIRDS class. Using ChatGPT for cluster interpretation, we observe that the prototypes induce structured prototype-subgroup
alignment that meaningfully reflects bird morphology, pose, and context: divers and floaters in aquatic settings, large-bodied birds in
dynamic flight poses, compact-bodied seabirds shown in terrestrial or bamboo-heavy scenes (an ecologically confounded but visually
coherent mode), and upright-standing gulls with consistent visual separation.

during training. In the WATERBIRDS class, prototypes capture distinctions such as aquatic divers, large-bodied birds in
dynamic flight, and seabirds in bamboo-heavy or terrestrial contexts. In the LANDBIRDS class, clusters emerge that reflect
postural cues, background settings, and potential spurious correlations, such as songbirds appearing in human-associated
environments. These findings suggest that DPE implicitly encourages subgroup discovery through diversification, which
may contribute to its strong worst-group performance.
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Figure 10. Landbird Prototypes. Each row shows the top-10 validation samples closest to one of the prototypes from our Diversified
Prototypical Ensemble (DPE) model on the LANDBIRDS class of the WATERBIRDS dataset. ChatGPT was used to analyze each prototype’s
semantic structure. The results reveal that learned prototypes align with coherent visual or ecological subpopulations, for example, small
yellow songbirds across diverse backgrounds, upright-postured forest-edge dwellers, forest birds appearing in beach or human-present
scenes (highlighting spurious correlations), and muted-tone songbirds in leafy, texture-poor vegetation.
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D. Algorithm
Our training pipeline (Algorithm 1) consists of two stages: feature extractor training and prototypical ensemble training.
In Stage 1, the feature extractor and classification head are trained using ERM on the training data to optimize feature
representations. In Stage 2, an ensemble of class-specific prototypes is initialized and trained on class-balanced subsets or
group-balanced subsets of the validation data, depending on the availability of the subgroup annotations. A distance-based
loss and an inter-prototype similarity loss are used to update each ensemble member. During inference, class probabilities
are computed using the joint decision of the members in the prototypical ensemble.

Algorithm 1 Subpopulation Prototypical Ensemble Diversification
Input :Training data Dtrain, Validation data Dval, Number of ensemble members N , Diversity weight α, Temperature τ

Output :Trained feature extractor f , Ensemble of prototypes {p(i)j }Nj=1, i = 1, . . . ,K

Stage 1: Train Feature Extractor
Initialize feature extractor f and classification head g for each minibatch (Xbatch, ybatch) ∈ Dtrain do

Compute logits z = g(f(Xbatch)) Compute loss LCE = −
∑

i y
(i)
batch log σ(z

(i)) Update f and g to minimize LCE

Stage 2: Train Prototypical Ensemble
Initialize ensemble of prototypes P = {}
for j = 1 to N do

Sample class-balanced subset D(j)
sub from Dval Initialize prototypes {p(i)j }Ki=1 with p

(i)
j ∼ N (0, 0.012)

for each minibatch (X, y) ∈ D
(j)
sub do

Compute features x = f(X) Compute distances D(x, p
(i)
j ) using Equation (5) Compute loss L using Equation (6)

if j > 1 then
Update ensemble P with prototypes {p(i)j }Ki=1 Compute inter-prototype similarity loss LIPS (Equation (8)) using P and

{p(i)j } Set Ltotal = L+ α · LIPS

else
Set Ltotal = L

Update prototypes {p(i)j }Ki=1 to minimize Ltotal

Update ensemble P with the newly trained prototypes {p(i)j }Ki=1

Inference
Given test input X Compute feature x = f(X) for i = 1 to K do

Compute ensemble probability:

P (y = i|X) =
1

N

N∑
j=1

exp
(
−D(x, p

(i)
j )

)∑K
k=1 exp

(
−D(x, p

(k)
j )

)
Predict label ŷ = argmaxi P (y = i|X)
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