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A APPENDIX

A.1 SAFE POLICY UPDATE UNDER THE LYAPUNOV CONSTRAINT

Let the safe initial (baseline) policy be given by πB and the Lyapunov function be defined as follows:

LπB (s0, d0) = {L : S → R≥0 : BπB ,c[L](s) ≤ L(s),∀s ∈ S;L(s0) ≤ d0} (16)

where c is the immediate cost function. Lyapunov functions depends on the safe baseline policy, an
initial state and the cost constraint, and have the property that a one-step Bellman operator produces
a value that is less that the value of the function at each state. We also know that the cost value
function belongs to the set and hence the set is non-empty. Consider any Lyapunov function LπB ∈
LπB (s0, d0) and define:

ILπB = {π(.|s) ∈ P : Bπ,c[LπB ](s) ≤ LπB (s)∀s} (17)

to be set of policies consistent with the Lyapunov function LπB , called LπB -induced policies. These
are the set of policies (π ∈ ILπB ) for which a Bellman Operator Bπ,c on a state s produces a value
that is less than the value of function at that state LπB (s)

Note that Bπ,c is a contraction mapping, so we have

V cπ (s) = lim
k→∞

Bkπ,c[LπB ](s) ≤ LπB (s) ∀s ∈ S (18)

From the definition of Lyapunov function, we also have that LπB (s0) ≤ d0. This implies that any
policy induced by the Lyapunov function, i.e. policies in the LπB -induced policy set, are “safe”
i.e V cπ (s0) = Dπ(s0) < d0. The method for safe reinforcement learning then searches for the
highest performing policy within the safe policies defined by the set of LπB -induced policies. The
objective here then is to design a Lyapunov function which contains the optimal policy, i.e optimal
policy belongs to the set of LπB -induced policies so that the optimization restricted in this set indeed
results in the solution of Eq. 2.

In general, the optimal policy π∗ does not belong the policies induced by the Lyapunov func-
tions. Chow et al. (2018) show that without loss of optimality, the Lyapunov function that
contains the optimal policy in its LπB -induced policy set can be expressed as LπB ,ε(s) =
E[
∑∞
t=0 γ

t(c(st) + ε(st))|πB , s], where ε(st) ≥ 0. The function LπB ,ε(s) can be thought of as
a cost-value function for policy πB augmented by an additional per-step cost ε(st). First, it can be
verified that πB is indeed, in the set of Lε-induced policies:

LπB ,ε(x) = BπB ,c+ε[LπB ,ε](s) ≥ BπB ,c[LπB ,ε](s) (ε(st) > 0 ∀st). (19)

It was shown in Chow et al. (2018) that finding a state dependent function ε such that the the
optimal policy is inside the corresponding LπB ,ε-induced set is generally not possible and requires
knowing the optimal policy. As an approximation, they suggest to create the Lyapunov function
with the largest auxiliary cost ε̂, such that LπB ,ε̂(s) ≥ BπB ,c[LπB ,ε̂](s) and LπB ,ε̂(s0) ≤ d0. The
first condition is satisfied as shown in Eq. 19 when ε̂(s) ≥ 0 ∀s and the second condition can
be satisfied by the following derivation. Bold letters are used to denote vectors and PπB

s,s′ is the
transition probability matrix from state s to s′ under policy πB . The vectors contain the function
value at each state.

LπB,ε̂ = d+ ε̂+ γPπB

s,s′LπB,ε̂ (20)

LπB,ε̂ = (I − γPπB

s,s′)
−1d+ (I − γPπB

s,s′)
−1ε̂ (21)

1(s)TLπB ,ε̂ = 1(s)TDπB + 1(s)T (I − γPπB

s,s′)
−1ε̂ (22)

where 1(s)T is a one-hot vector in which the non-zero unit element is present at s. To ensure that
the cumulative cost at the starting state is less than the constraint threshold, using Eq 22 we have:

LπB ,ε̂(s0) ≤ d0
DπB (s0) + 1(s0)

T (I − γPπB

s,s′)
−1ε̂ ≤ d0
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Notice that 1(s0)
T (I − γPπB

s,s′)
−11(s) represents the total discounted visiting probability

E[
∑∞
t=0 γ

t1(st = s)|s0, πB ] of any state s from the initial state s0. Restricting ε̂ to be a constant
function w.r.t state for simplicity, the value of ε̂ can be upper-bounded as:

ε̂(s) ≤ (d0 −DπB (s0))/E

[ ∞∑

t=0

γt

]
= (1− γ)(d0 −DπB (s0)) (23)

In summary, a Lyapunov function is obtained such that optimizing policies in the LπB ,ε̂-induced
set of policies, safety in ensured. For any policy π to lie in the LπB ,ε̂-induced set the following
condition needs to hold ∀ s ∈ S:

LπB ,ε(s) ≥ Tπ,d[LπB ,ε(s)]
d(s) + ε̂(s) + γ

∑

a

πB(a|s)(
∑

s′

P (s′|s, a)LπB ,ε(s′)) ≥ d(s) + γ
∑

a

π(a|s)(
∑

s′

P (s′|s, a)LπB ,ε(s′))

We can simplify further to get:

ε̂(s) ≥ (
∑

a

(π(a|s)− πB(a|s))
[
γ
∑

s′

P (s′|s, a)LπB ,ε(s′)
]

ε̂(s) ≥ (
∑

a

(π(a|s)− πB(a|s))
[
γ
∑

s′

P (s′|s, a)LπB ,ε(s′) + d(s) + ε̂(s)

]

ε̂(s) ≥
[∑

a

(π(a|s)− πB(a|s))QLπB,ε(s, a)
]

where

QLπB,ε(s, a) = d(s) + ε̂(s) + γ
∑

s′

P (s′|s, a)LπB ,εε̂ (s′) (24)

This can be extended to continuous action spaces to get the following objective:

π+(.|s) = max
π∈P

Jπ(s0), s.t

∫

a∈A
(π(a|s)− πB(a|s))QLπB,ε̂(s, a) ≤ ε̂(s) (25)

Using the Lyapunov function, the trajectory-based constraints of CMDP are converted to a per-state
constraint (Eq.25), which are often much easier to deal with.

In the case of deterministic policy, the policy update becomes:

π+(.|s) = max
π∈P

Jπ(s0), s.t QLπB,ε̂(s, π(s))−QLπB ,ε̂(s, πB(s)) ≤ ε̂(s) (26)

An intuitive way to understand the constraint in deterministic policies is to see that at every timestep
we are willing to tolerate an additional constant cost of ε compared to the baseline safe policy. At
the start state, the maximum increase in expected cost will be

∑∞
t=0 γ

tε = ε
1−γ . We want that the

new expected cost by less than the threshold, i.e Dπ(s0) +
ε

1−γ ≤ d0 which gives us the Lyapunov
constraint equation.
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A.1.1 FROM LYAPUNOV FUNCTIONS TO COST Q FUNCTIONS

Using the definition of QLπB,ε̂(s, a) from Eq. 5 and when ε̂(s) is a constant function (denote by ε̂),
we can replace QLπB,ε̂ by QCπB ,

QLπB,ε̂(s, a) = c(s) + ε̂+ γ
∑

s′

P (s′|s, a)LπB ,ε̂(s′)

= c(s) + ε̂+

[
γ
∑

s′

P (s′|s, a)[c(s′) + ε̂+
∑

s′′

PπB(s′′|s′)(LπB ,ε̂(s
′′))]

]

=

∞∑

t=0

γtε̂+ E

[ ∞∑

t=0

γtc(st)|πB , a0 = a, s0 = s

]

=
∞∑

t=0

γtε̂+QCπB (s, a)

which is the cost Q function, since the Lyapunov function QLπB ,ε̂(s, a) and the cost-Q function
QCπB (s, a) only differ by a constant (

∑∞
t=0 γ

tε̂).

A.2 ADDITIONAL RESULTS

A.2.1 BENCHMARKS ON OPENAI SAFETY GYM

In this section, we present the training curves for all the OpenAI safety gym environments with Point
and Car robot. Figure A.2.1 shows the Average Cost and Average return for these environments. The
dotted red line indicates the constraint threshold which is kept to be 25 across all environments. We
observe that LBPO rarely violates constraint during training. Table 3 shows the raw cumulative
returns of the converged policy for different methods on the safety environments. We average all
results over 3 random seeds.

We observe that in tasks with Doggo robot, none of the methods are able to obtain good performing
policy. We attribute this to be the difficulty of Doggo environments, involving an inherent tradeoff
of reward with cost. In the environment PointGoal2, we are unable to obtain safe policies even when
training an RL agent solely on the cost objective. LBPO still outperforms baselines for constraint
satisfaction on this environment.

Method PPO PPO-lagrangian CPO SDDPG BACKTRACK LBPO

PointGoal1 22.99 19.00 10.26 10.45 15.54 11.06
PointGoal2 23.04 4.60 -0.37 -0.08 1.04 0.61
PointPush1 4.61 3.04 1.73 2.71 2.43 3.15
PointPush2 2.15 1.04 0.46 0.48 0.89 0.77
CarGoal1 34.62 15.55 2.76 3.38 17.22 13.03
CarGoal2 26.70 1.78 4.60 5.74 4.35 5.62
CarPush1 3.89 2.72 -3.13 1.69 3.38 1.89
CarPush2 2.03 0.72 0.82 0.75 0.81 0.94

DoggoGoal1 38.76 -0.65 0.14 0.10 0.15 0.28
DoggoGoal2 18.38 0.31 0.04 0.06 0.06 0.06
DoggoPush1 0.82 0.07 0.01 0.00 0.06 0.01
DoggoPush2 1.10 0.08 -0.00 -0.00 0.07 -0.01

Table 3: Cumulative unnormalized return of the converged policy for each safety algorithm. LBPO
tradeoffs return for better constraint satisfaction. Bold numbers show the best performance obtained
by a safety algorithm (thus excluding PPO).
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Figure 6: Training curved for LBPO in comparison to baselines: PPO, PPO-lagrangian, CPO, SD-
DPG. We also compare against our simple baseline BACKTRACK here. For each environment, the
top row shows the Average undiscounted cumulative cost during training, and bottom row shows the
Average undiscounted return. PPO often has large constraint violations and is clipped from some
plots, when its constraint violations are high. Red dashed line in Average Cost plots shows the
constraint limit which is 25 in all environments.

A.2.2 BACKTRACKS IN CPO AND SDDPG

CPO BACKTRACK SDDPG

Figure 7: We compare the cumulative number of backtracking steps taken by CPO and SDDPG to
BACKTRACK method for the first 400 epochs/policy updates.
Figure 7 shows the cumulative number of backtracks performed by each method CPO, SDDPG,
BACKTRACK during the first 400 policy update steps. We see the CPO and SDDPG performs a
high number of backtracks, often comparable to the method BACKTRACK which relies explicitly
on backtracking for safety.
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A.3 IMPLEMENTATION DETAILS

In LBPO, Q-functions (both reward and cost) have network architecture comprising of two hidden
layers of 64-hidden size each. The policy is also a multilayer neural network comprising of three
hidden layers of 256 units each. LBPO policies are deterministic and have a fixed exploration
noise in the action space given by N (0, 0.05). Our trust region update for the policy takes into
account the exploration noise which makes our behavior deployment policy stochastic. We use
N = 30 trajectories each of 1000 horizon length for generating our on-policy samples. These
samples are used for estimation of ε̂ and evaluating the Q functions. We update the policy under
a trust region followed by a line search with exponential decay which ensures that the resulting
update is indeed satisfying the KL constraint as well the safety Lyapunov constraint. We do a
hyperparameter search for β in the set [0.005, 0.008, 0.01, 0.02] to find the best tradeoff between
cost and reward and observe that a value of 0.005 works well across most environments. PointGoal1,
PointPush1, PointPush2, CarGoal1, CarPush1, CarPush2, DoggoGoal1, DoggoPush1, DoggoPush2
use beta value of 0.005. CarGoal2 and DoggoGoal2 uses value of 0.008 and Pointgoal2 uses beta
value of 0.01. We ignore the barrier loss if β is sufficiently low. We call this parameter β-thres and
it is set to 0.05 across all environments.

Algorithm 1: LBPO

1 Initialize parameterized actor πφ with a safe initial policy, reward Q-function QRθ and a cost Q
function QCθ

2 for i← 1 to Iter do
3 Step 1: Collect N trajectories {τ}Nj=1 using the safe policy πφ,i−1 from previous iteration

i− 1.
4 Step 2: Using the on-policy trajectories, evaluate the reward Q-function and the

cost-function, by minimizing the respective bellman residual of the TD-(λ) estimate.
5 Step 3: Update the policy parameters by minimizing the objective in Eq 12.

minφ Es∼R
[
−QRπφ,i−1

(s, πφ(s)) + ψ(QCπφ,i−1
(s, πφ(s)))

]

s.t DKL(πφ +N (0, δ)‖πφ,i−1 +N (0, δ)) < µ

Step 4: Set πφ,i to be the safe policy resulting from the update in Step 3 πφ.
6 end

We obtain safe initial policies for benchmarking by pretraining the policy using standard RL methods
to minimize the cumulative cost. Although this strategy is usually not suitable for deployment in
real-world as the pretraining might itself violate safety constraints, we can use simple hand-designed
safe policy for initializing the method in real-world experiments.

To ensure fair comparison across methods, we use the same safe initial policy for each of the safety
methods. Note that, our results for CPO (Achiam et al., 2017) significantly differ from the bench-
marks shown in (Ray et al., 2019) due to the fact that we initialize CPO from safe policy contrary to
their approach. We also keep the same policy architecture across methods although CPO, PPO and
PPO-lagrangian uses policies with learned variance so as to replicate the original behavior of these
methods.

Table 4: LBPO Hyperparameters

Hyperparamater Value
N 30
β 0.0051

β-thres 0.05
Policy learning rate 3e-4
Q-function learning rate 1e-3
Trust region (µ) 0.012
λ 0.97
δ 0.05
Horizon 1000
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We implement our version of SDDPG which uses the α-projection technique as shown in (Chow
et al., 2019). A brief discussion of practical issue faced in the implementation is present in Sec-
tion 4. We use behavior cloning to distill the policy with the projection layer into a parameterized
multilayer perceptron policy. We run 100 iterations of behavior cloning with learning rate of 0.001.
We implement a line search with exponential decay in parameter space to ensure that the result-
ing update do not violate the Lyapunov constraints to incorporate additional safety. We use similar
policy architecture as LBPO for α-SDDPG.

1β is set to 0.005 for most environments. Appendix A.3 describes specific value of β for each environment.
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