
Hyperparameter Value
MAE Pretraining

optimizer AdamW [38]
base learning rate 1e-4
weight decay 0.05
optimizer momentum �1,�2 = 0.9, 0.95
batch size 4096
learning rate schedule cosine decay
total batches or iterations 249600
warmup iterations 1/8 ⇥ total iterations
augmentation RandomResizedCrop
#GPU 64 V100 (32 gb)
Wall-clock time ⇠36 hours

Encoder ViT Architecture

#layers 12
#MHSA heads 12
hidden dim 768
class token yes
positional encoding sin cos

Decoder ViT Architecture

#layers 8
#MHSA heads 16
hidden dim 512
class token used yes
positional encoding sin cos

Table 3: Training and architectural hyperparameters for MAE pretraining.

A MAE Hyperparameters444

We list key hyperparameters for the MAE training loop in Table 3. Note that these parameters445

were employed directly from original MAE paper [8] and are actually shared by relevant robotics446

baselines [13, 18]. Consistent with the terminology in [8], the employed learning rate is the base447

learning rate scaled by (total batch size / 256). For a head-on comparison with prior work [8,448

13], we train the ViT for iterations equivalent of 800 epochs over ImageNet dataset. This rigorous449

benchmarking took # GPUs⇥wall clock time⇥# data ablations = 64⇥1.5⇥12 = 1152 GPU days.450

B BC Hyperparameters451

The following section describes the hyperparameters used in our behavior cloning loop. As dis-452

cussed in Sec. 3, the BC policy begins by taking in the image and passing it through the pre-trained453

encoder to get a representation, E(it). That representation is then concatenated to the joint in-454

formation to get a policy input, xt = [E(it), jt]. The policy input is fed through a 2-layer mlp455

network, with a batchnorm preceding the first layer, ReLU activations [3], and hidden dimensions456

of [512, 512]. Additionally, we add dropout [19] to the two mlp layers w/ probability p = 0.2 after457

the ReLU activations. The result of the top layer is then passed to 2 linear layers, that predict the458

mean (µ), mixing parameters (�), and standard deviation (�) of a Gaussian Mixture Model (GMM)459

distribution w/ m modes:460

p(x) = ⌃m
i=1�iN(x|µi,�i)

The choice of GMM was based on prior work [36, 37] that showed it could dramatically improve461

performance. After some tuning, we used m = 5 on the RoboSuite tasks (note their benchmark [36]462

used m = 5) and the real world tasks, since it worked best. However, for Franka Kitchen and463

MetaWorld, we found no significant difference. As a result, we used m = 1 (i.e. standard Gaussian464

distribution) for those tasks to maximize comparability with prior benchmarks [13, 40].465

12

https://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html


The policy was optimized for 50000 iterations using the ADAM optimizer [38], with a learning rate466

of 0.0001 and a L2 weight decay of 0.0001. In addition, we applied data augmentation (random467

crops and random blur) to the input image it, before passing it E. This was based on recommenda-468

tions for best practices from Hansen et. al. [42]. The full code for this setup is open-sourced on our469

website: https://sites.google.com/view/robotics-datasets-analysis.470

C Task Hyperparameters471

This section describes the hyperparameters made while setting up both sim and real world tasks. All472

code (for robot/sim environments and BC training) is open sourced.473

Simulation The simulation tasks were taken from standard benchmarks (MetaWord [39], Franka474

Kitchen [40], RoboSuite [41]) in the robotics field. The training demonstrations were collected by475

previous work (CortexBench [13], Relay Policy Learning [40], RoboMimic [36] respectively), and476

were directly used in our tasks. We fine-tune on n = 25 demos for MetaWorld/Franka Kitchen, and477

n = 200 demos on RoboSuite (again to stay consistent with older papers). Task success is measured478

by the environments themselves, and we get numbers by estimating success rates empirically using479

50 test trajectories. Note that we only evaluate the policy at the end of training (unlike some prior480

work that evaluated multiple times over the course of training). This was done to ensure the sim481

evaluation setup matched the real world (i.e. we can’t evaluate real policies multiple times during482

training).483

Real World As discussed in Sec. 3, our real world tasks were built using a Franka Panda robot,484

and we collected 50 demonstrations for each task using a VR tele-op setup. We heavily encourage485

the reader to get a feel for the training data and tasks by viewing the supplemental video on our486

website: https://sites.google.com/view/robotics-datasets-analysis.487

The following section expands on our real world task descriptions from Sec. 3, and provides some488

additional details:489

• Block stacking requires the robot to pick up the red block and place it on the green block.490

This is the simplest task, since the robot only has to adapt to new object configurations491

during test time, but it still requires the robot to precisely localize and grasp the (small) red492

block.493

We evaluated agents on this task using 25 test positions for the red/green block. These test494

positions were kept fixed for all policies to ensure maximum reproducibility.495

• Pouring requires the robot to lift the cup and pour almonds in the target bowl. During496

test time the cup and target bowls are both novel objects (unseen during training), and are497

placed in random locations. Thus, this task forces the robot to generalize to new visual498

inputs.499

We evaluated 3 separate cup/target bowl pairs in 5 positions each (so 15 trials total). Note500

that none of these objects or positions were seen during test time. Again, the object and501

position combinations were kept fixed across every model tested.502

• Toasting is the final task, and it requires the robot to pick up the object, place it in the503

toaster, and then shut the toaster. During test time, we use a novel object and randomize504

both the object’s initial pose and the toaster’s initial orientation. This is the most difficult505

task, since it requires the robot to execute a multi-stage manipulation strategy, while also506

generalizing to new visual scenarios.507

We evaluated 2 target objects pairs and randomized the toaster orientation into 5 separate508

poses (so 10 trials total). Note that none of these objects or toaster orientations were seen509

during test time. As before, all the test conditions were shared across all policies.510

13

https://sites.google.com/view/robotics-datasets-analysis
https://sites.google.com/view/robotics-datasets-analysis

