
A Related Works318

Private inference has been a promising solution to protect both data and model privacy during deep319

learning inference. In recent years, there has been an increasing amount of literature on efficient320

private inference. According to the optimization technique, these works can be categorized into three321

types, i.e., 1) protocol optimization; 2) network optimization; and 3) joint optimization.322

In protocol optimization, ABY [7] provides a highly efficient conversion between arithmetic sharing,323

boolean sharing and Yao’s sharing, and construct mixed protocols. As an extension, ABY3 [34]324

switches back and forth between three secret sharing schemes using three-party computation (3PC).325

CypTFlow2 [39] proposes a new protocol for secure and comparison and division which enables326

effecient non-linear operations such as ReLU. SiRNN [38] further proposes 2PC protocols for327

bitwidth extension, mixed-precision linear and non-linear operations. CrypTen [27] proposes a328

software framework that provides a flexible machine learning focused API. More recently, SecFloat329

[37] proposes the crypto-friendly precise functionalities to build a library for 32-bit single-precision330

floating-point operations and math functions. These works lack consideration for neural network331

architecture and has limited communication reduction.332

In network optimization, DeepReDuce [24] proposes to manually remove ReLUs with a three-step333

optimization pipline. SNL [6] proposes ReLU-aware optimization that leverages gradient-based334

NAS to selectively linearize a subset of ReLUs. CryptoNAS [18] uses ReLU budget as a proxy335

and leverages NAS to tailor ReLUs. PolyMPCNet[36] and SAFENet [33] replace ReLUs with336

MPC-friendly polynomial, while Sphynx [5] proposes an MPC-friendly ReLU-efficient micro-search337

space. SENet [30] innovatively measures the ReLU importance via layer pruning sensitivity and338

automatically optimize the network to meet the target ReLU budget. DeepReShape [24] finds that339

wider networks are more ReLU-efficient than the deeper ones and designs ReLU-efficient baseline340

networks with with FLOPs-ReLU-Accuracy balance. Network optimization mainly focuses on ReLU341

reduction which dominates the online communication, but total communication including convolution342

and truncation cannot be optimized.343

Unluckily, only using either protocol or network optimization just leads to limited efficiency improve-344

ment. Delphi [44] jointly optimizes cryptographic protocols and network by gradually replacing345

ReLU with quadratic approximation. COINN [23] simultaneously optimizes quantized network and346

protocols with ciphertext-aware quantization and automated bitwidth configuration. Recently, [16]347

proposes to use Winograd convolution for reducing the number of multiplications and design the348

efficient convolution operation to reduce the communication cost. However, it does not take private349

inference into consideration for Winograd algorithm, and still suffers tremendous communication350

overhead. In this work, we jointly optimize the network and protocol and fully consider their coupling351

properties.352

B Details of Experiment Setup353

Private inference framework CoPriv adopts CypTFlow2 [39] protocol for private inference. We354

leverage the Athos [39] tool chain to convert both input and weight into fixed-point with the bit-width355

41 and scale 12. We measure the communication and latency under a LAN setting [39] with 377356

MBps bandwidth and 80ms echo latency. All of our experiments are evaluated on the Intel Xeon357

Gold 5220R CPU @ 2.20GHz.358

Implementation of Winograd-based convolution protocol The convolution protocol with Wino-359

grad transformation and optimization is implemented in C++ with Eigen and Armadillo matrix360

calculation library [41] in the CrypTFlow2 [39] framework. We implement F (2 × 2, 3 × 3) and361

F (4× 4, 3× 3) transformation for convolution with stride of 1 and F (2× 2, 3× 3) transformation362

when stride is 2. For CIFAR-100 dataset, we use F (2× 2, 3× 3) transformation as the image resolu-363

tion is small and for ImageNet dataset, we use F (4× 4, 3× 3). We only apply F (2× 2, 3× 3) for364

stride of 2 on ImageNet dataset. When evaluating CoPriv, we determine the optimal sender according365

to the analysis in Table 3 before inference. Winograd implementation enables us to measure the366

communication cost and latency of each convolution module.367

Networks and datasets We apply our proposed CoPriv to the widely used lightweight mobile368

network MobileNetV2 [42] with different width multipliers, e.g., 0.75, 1.0 and 1.4 to trade off the369

11

model accuracy and efficiency. We evaluate the top-1 accuracy and online and total communication370

on both CIFAR-100 and ImageNet dataset.371

Differentiable pruning and finetuning setups We first search and prune redundant ReLUs for 90372

epochs and then finetune the pruned network for 180 epochs with SGD optimizer, cosine learning373

scheduler and 0.1 initial learning rate. We train our proposed CoPriv with self-distillation.374

C Network Re-Parameterization Algorithm375

Network/Structural re-parameterization is a useful technique proposed by RepVGG [13], and is376

extended to [10, 9, 12, 15, 11]. The core idea of re-parameterization is to decouple the training-time377

architecture (with high performance and low efficiency) and inference-time network architecture378

(with high efficiency). Re-parameterization is realized by converting one architecture to another via379

equivalently merging parameters together. Therefore, during inference time, the network architecture380

is not only efficient but also has the same high performance as the training-time architecture.381

In this work, we can also leverage this technique to merge adjacent convolutions together after382

ReLU removal. For the network re-parameterization mentioned in Section 4.2, here we provide the383

following detailed algorithm 1 to equivalently merge the inverted residual block into a single dense384

convolution as shown in Figure 3. With the help of network re-parameterization, we further optimize385

the total communication including convolution and truncation.386

Algorithm 1: Network Re-parameterization for Inverted Residual Block
Input :An inverted residual block with weights W1×1, W3×3, and W ′

1×1. The number of input and
output channels Nin, Nout. The size of re-parameterized weights r.

Output :Regular convolution with re-parameterized weights Wr .

1 Wr = torch.eye(Nin);
2 Wr = Wr.unsqueeze(2).unsqueeze(2);
3 Wr = torch.nn.functional.pad(Wr , pad=(r−1

2
, r−1

2
, r−1

2
, r−1

2
));

4 Wr = torch.nn.functional.conv2d(Wr,W1×1);
5 Wr = torch.nn.functional.conv2d(Wr,W3×3, padding= r−1

2
);

6 Wr = torch.nn.functional.conv2d(Wr,W
′
1×1);

7 Wres = torch.zeros(Nout, Nin, r, r);
8 for i ∈ [0, . . . , Nout − 1] do
9 Wres[i, i, ⌊r/2⌋, ⌊r/2⌋] = 1;

10 Wr = Wr +Wres;
11 return Wr;

D Details of Winograd Convolution387

D.1 Comparison between Regular Convolution and Winograd Convolution388

To help readers better understand the multiplication reduction of Winograd convolution, we demon-389

strate regular convolution and Winograd convolution in Figure 10. Given an input I ∈ R4×4 and390

a filter F ∈ R3×3, regular convolution requires 9 × 4 = 36 times multiplications (implemented391

using GEMM with im2col algorithm [4]) while F (2 × 2, 3 × 3) Winograd transformation only392

requires 16× 1 = 16 times multiplications (EWMM), which achieves 2.25× reduction. Moreover,393

F (4× 4, 3× 3) with a larger tile size, i.e., 6 can further achieve 4× multiplication reduction. The394

improvement gets benefit from the Winograd’s ability to convert im2col to EWMM and calculate the395

whole tile in Winograd domain at once.396

D.2 Details of Input Tiling and Padding397

Given a large 2D input I ∈ Rl×l, where l > m + r − 1, the core technique for ensuring the398

equivalence of regular convolution and Winograd convolution is input tiling and padding. The output399

size l′ = l − r + 1, the input tile size n = m + r − 1 and the total tile number T per channel is400

12

Sliding
Window

9 Elements
Per Window

*Convolution

Input of Layer i

Filter of Layer i

(a) Regular convolution with 9x4=36 #MUL.

Filter of Layer i

Input of Layer i

STEP 1

STEP 2

EWMM STEP 4

Output Tile
of Layer i

Output Tile
of Layer i

4 Windows
in Total

(b) Winograd convolution with 16x1=16 #MUL in F(2x2, 3x3).

16 Elements Per Tile

Winograd Domain

16 #MUL

Transform
Input

Transform
Filter

Transform
Output

1 Tile
in Total

STEP 3

9 #MUL

Figure 10: Comparison between (a) regular convolution and (b) Winograd convolution.

computed as401

T = ⌈ l
′

n
⌉2 = ⌈ l − r + 1

m+ r − 1
⌉2,

where ⌈·⌉ denotes taking the upper bound value. For each tile, Winograd convolution is individually402

performed and results an output tile with m×m size. After all the tiles are computed with Winograd403

convolution, the output tiles are concatenated together to form the final output.404

For some input size, the input cannot be covered by tiles. For instance, when leveraging F (2×2, 3×3)405

on the input I ∈ R7×7, the rightmost and bottom pixels cannot be divided into a complete tile. To406

solve this problem, we pad these positions with 0 to enable the tiles totally cover the whole input.407

The correctness and equivalence can be proved with Eq. 1. Also, [16] shows the overhead caused by408

padding is negligible.409

D.3 Support for Stride of 2 Winograd Convolution410

Conventional Winograd convolution only supports stride s = 1 convolution filter. However, in recent411

efficient neural networks, e.g., MobileNetV2, EfficientNet has several stride of 2 layers to reduce412

the feature map size by half. To enable extreme optimization for efficient networks, we introduce413

F (2× 2, 3× 3) for stride of 2 Winograd convolution for private inference.414

There are various methods to construct stride of 2 Winograd kernel such as dividing input and415

convolution filter into different groups [46]. However, it is not a simple way to implement stride of 2416

Winograd kernel. [21] is an extremely convenient method using unified transformation matrices.417

Based on [21], even positions of input and filter are computed by F (2, 2) while odd positions418

are computed by regular convolution. Transformation matrices are derived as follows and can be419

computed using Eq. 1:420

B⊤ =


1 0 −1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 −1 0 1

 , G =


1 0 0
0 1 0
1 0 1
0 1 0
0 0 1

 , A⊤ =

[
1 1 1 0 0
0 0 1 1 1

]
.

Correctness analysis. Here, we take a 1D algorithm as an example to prove the correctness421

Winograd convolution for stride of 2. The algorithm can be nested with itself to obtain a 2D algorithm422

[31].423

Given input X and filter F as424

X =


x0

x1

x2

x3

x4

 , F =

[
y0
y1
y2

]
, Y = X ⊛ F =

[
z0
z1

]
.

13

First, we calculate regular convolution with stride of 2 using im2col algorithm [4] as425

Y1 =

[
x0 x1 x2

x2 x3 x4

]
·

[
y0
y1
y2

]
=

[
x0y0 + x1y1 + x2y2
x2y0 + x3y1 + x4y2

]
,

thus, z0 = x0y0 + x1y1 + x2y2 and z1 = x2y0 + x3y1 + x4y2.426

Then, we calculate Winograd convolution for stride of 2 as427

Y = A⊤ · [(GF)⊙ (B⊤X)],

and then428

Y2 =

[
1 1 1 0 0
0 0 1 1 1

]
· [(


1 0 0
0 1 0
1 0 1
0 1 0
0 0 1

 ·

[
y0
y1
y2

]
)⊙ (


1 0 −1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 −1 0 1

 ·


x0

x1

x2

x3

x4

)],
and further simplify the calculation as429

Y2 =

[
1 1 1 0 0
0 0 1 1 1

]
· [(


y0
y1

y0 + y2
y1
y2

)⊙ (


x0 − x2

x1

x2

x3

x4 − x2

)] =
[
1 1 1 0 0
0 0 1 1 1

]
·


x0y0 − x2y0

x1y1
x2y0 + x2y2

x3y1
x4y2 − x2y2

 ,

therefore, the convolution result is430

Y2 =

[
x0y0 + x1y1 + x2y2
x2y0 + x3y1 + x4y2

]
= Y1.

D.4 Transformation Matrices for Winograd Convolution431

We provide the transformation matrices A,B,G for F (2× 2, 3× 3) and F (4× 4, 3× 3) Winograd432

transformation based on polynomial Chinese remainder theorem (CRT) or Lagrange interpolation433

[31].434

For F (2× 2, 3× 3), we have435

B⊤ =

1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

 , G =

 1 0 0
1/2 1/2 1/2
1/2 −1/2 1/2
0 0 1

 , A⊤ =

[
1 1 1 0
0 1 −1 −1

]
.

For F (4× 4, 3× 3), we have436

B⊤ =


4 0 −5 0 1 0
0 −4 −4 1 1 0
0 4 −4 −1 1 0
0 −2 −1 2 1 0
0 2 −1 −2 1 0
0 4 0 −5 0 1

 , G =


1/4 0 0
−1/6 −1/6 −1/6
−1/6 1/6 −1/6
1/24 1/12 1/6
1/24 −1/12 1/6
0 0 1

 ,

437

A⊤ =

1 1 1 1 1 0
0 1 −1 2 −2 0
0 1 1 4 4 0
0 1 −1 8 −8 1

 .

The correctness analysis is the same with Section D.3.438

14

References439

[1] Syed Asad Alam, Andrew Anderson, Barbara Barabasz, and David Gregg. Winograd convo-440

lution for deep neural networks: Efficient point selection. ACM Transactions on Embedded441

Computing Systems, 21(6):1–28, 2022.442

[2] Barbara Barabasz, Andrew Anderson, Kirk M Soodhalter, and David Gregg. Error analysis and443

improving the accuracy of winograd convolution for deep neural networks. ACM Transactions444

on Mathematical Software (TOMS), 46(4):1–33, 2020.445

[3] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients446

through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.447

[4] Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolutional neural448

networks for document processing. In Tenth international workshop on frontiers in handwriting449

recognition. Suvisoft, 2006.450

[5] Minsu Cho, Zahra Ghodsi, Brandon Reagen, Siddharth Garg, and Chinmay Hegde. Sphynx: A451

deep neural network design for private inference. IEEE Security & Privacy, 20(5):22–34, 2022.452

[6] Minsu Cho, Ameya Joshi, Brandon Reagen, Siddharth Garg, and Chinmay Hegde. Selective453

network linearization for efficient private inference. In International Conference on Machine454

Learning, pages 3947–3961. PMLR, 2022.455

[7] Daniel Demmler, Thomas Schneider, and Michael Zohner. Aby-a framework for efficient456

mixed-protocol secure two-party computation. In NDSS, 2015.457

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-458

scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern459

recognition, pages 248–255. Ieee, 2009.460

[9] Xiaohan Ding, Honghao Chen, Xiangyu Zhang, Jungong Han, and Guiguang Ding. Repmlpnet:461

Hierarchical vision mlp with re-parameterized locality. In Proceedings of the IEEE/CVF462

Conference on Computer Vision and Pattern Recognition, pages 578–587, 2022.463

[10] Xiaohan Ding, Yuchen Guo, Guiguang Ding, and Jungong Han. Acnet: Strengthening the464

kernel skeletons for powerful cnn via asymmetric convolution blocks. In Proceedings of the465

IEEE/CVF international conference on computer vision, pages 1911–1920, 2019.466

[11] Xiaohan Ding, Tianxiang Hao, Jianchao Tan, Ji Liu, Jungong Han, Yuchen Guo, and Guiguang467

Ding. Resrep: Lossless cnn pruning via decoupling remembering and forgetting. In Proceedings468

of the IEEE/CVF International Conference on Computer Vision, pages 4510–4520, 2021.469

[12] Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang Ding. Diverse branch block:470

Building a convolution as an inception-like unit. In Proceedings of the IEEE/CVF Conference471

on Computer Vision and Pattern Recognition, pages 10886–10895, 2021.472

[13] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and Jian Sun.473

Repvgg: Making vgg-style convnets great again. In Proceedings of the IEEE/CVF conference474

on computer vision and pattern recognition, pages 13733–13742, 2021.475

[14] Javier Fernandez-Marques, Paul Whatmough, Andrew Mundy, and Matthew Mattina. Searching476

for winograd-aware quantized networks. Proceedings of Machine Learning and Systems,477

2:14–29, 2020.478

[15] Yonggan Fu, Haichuan Yang, Jiayi Yuan, Meng Li, Cheng Wan, Raghuraman Krishnamoorthi,479

Vikas Chandra, and Yingyan Lin. Depthshrinker: a new compression paradigm towards boosting480

real-hardware efficiency of compact neural networks. In International Conference on Machine481

Learning, pages 6849–6862. PMLR, 2022.482

[16] Vinod Ganesan, Anwesh Bhattacharya, Pratyush Kumar, Divya Gupta, Rahul Sharma, and483

Nishanth Chandran. Efficient ml models for practical secure inference. arXiv preprint484

arXiv:2209.00411, 2022.485

15

[17] Karthik Garimella, Zahra Ghodsi, Nandan Kumar Jha, Siddharth Garg, and Brandon Reagen.486

Characterizing and optimizing end-to-end systems for private inference. In ACM International487

Conference on Architectural Support for Programming Languages and Operating Systems488

(ASPLOS), ASPLOS 2023, page 89–104, New York, NY, USA, 2023. Association for Computing489

Machinery.490

[18] Zahra Ghodsi, Akshaj Kumar Veldanda, Brandon Reagen, and Siddharth Garg. Cryptonas:491

Private inference on a relu budget. Advances in Neural Information Processing Systems,492

33:16961–16971, 2020.493

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image494

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,495

pages 770–778, 2016.496

[20] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,497

Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3.498

In Proceedings of the IEEE/CVF international conference on computer vision, pages 1314–1324,499

2019.500

[21] Chengcheng Huang, Xiaoxiao Dong, Zhao Li, Tengteng Song, Zhenguo Liu, and Lele Dong.501

Efficient stride 2 winograd convolution method using unified transformation matrices on fpga.502

In 2021 International Conference on Field-Programmable Technology (ICFPT), pages 1–9.503

IEEE, 2021.504

[22] Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. Cheetah: Lean and fast secure505

{Two-Party} deep neural network inference. In 31st USENIX Security Symposium (USENIX506

Security 22), pages 809–826, 2022.507

[23] Siam Umar Hussain, Mojan Javaheripi, Mohammad Samragh, and Farinaz Koushanfar. Coinn:508

Crypto/ml codesign for oblivious inference via neural networks. In Proceedings of the 2021509

ACM SIGSAC Conference on Computer and Communications Security, pages 3266–3281, 2021.510

[24] Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon Reagen. Deepreduce: Relu511

reduction for fast private inference. In International Conference on Machine Learning, pages512

4839–4849. PMLR, 2021.513

[25] Nandan Kumar Jha and Brandon Reagen. Deepreshape: Redesigning neural networks for514

efficient private inference. arXiv preprint arXiv:2304.10593, 2023.515

[26] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE: A low516

latency framework for secure neural network inference. In 27th {USENIX} Security Symposium517

({USENIX} Security 18), pages 1651–1669, 2018.518

[27] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark Ibrahim, and519

Laurens van der Maaten. Crypten: Secure multi-party computation meets machine learning.520

Advances in Neural Information Processing Systems, 34:4961–4973, 2021.521

[28] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.522

2009.523

[29] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Rastogi, and Rahul524

Sharma. Cryptflow: Secure tensorflow inference. In IEEE Symposium on Security and Privacy525

(SP), pages 336–353. IEEE, 2020.526

[30] Souvik Kundu, Shunlin Lu, Yuke Zhang, Jacqueline Liu, and Peter A Beerel. Learning527

to linearize deep neural networks for secure and efficient private inference. arXiv preprint528

arXiv:2301.09254, 2023.529

[31] Andrew Lavin and Scott Gray. Fast algorithms for convolutional neural networks. In Proceedings530

of the IEEE conference on computer vision and pattern recognition, pages 4013–4021, 2016.531

[32] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and532

Jian Sun. Metapruning: Meta learning for automatic neural network channel pruning. In533

Proceedings of the IEEE/CVF international conference on computer vision, pages 3296–3305,534

2019.535

16

[33] Qian Lou, Yilin Shen, Hongxia Jin, and Lei Jiang. Safenet: A secure, accurate and fast neural536

network inference. In International Conference on Learning Representations, 2021.537

[34] Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for machine learning.538

In ACM SIGSAC conference on computer and communications security, pages 35–52, 2018.539

[35] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving540

machine learning. In 2017 IEEE symposium on security and privacy (SP), pages 19–38. IEEE,541

2017.542

[36] Hongwu Peng, Shanglin Zhou, Yukui Luo, Shijin Duan, Nuo Xu, Ran Ran, Shaoyi Huang,543

Chenghong Wang, Tong Geng, Ang Li, et al. Polympcnet: Towards relu-free neural architecture544

search in two-party computation based private inference. arXiv preprint arXiv:2209.09424,545

2022.546

[37] Deevashwer Rathee, Anwesh Bhattacharya, Rahul Sharma, Divya Gupta, Nishanth Chandran,547

and Aseem Rastogi. Secfloat: Accurate floating-point meets secure 2-party computation. In548

2022 IEEE Symposium on Security and Privacy (SP), pages 576–595. IEEE, 2022.549

[38] Deevashwer Rathee, Mayank Rathee, Rahul Kranti Kiran Goli, Divya Gupta, Rahul Sharma,550

Nishanth Chandran, and Aseem Rastogi. Sirnn: A math library for secure rnn inference. In551

2021 IEEE Symposium on Security and Privacy (SP), pages 1003–1020. IEEE, 2021.552

[39] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya Gupta, Aseem553

Rastogi, and Rahul Sharma. Cryptflow2: Practical 2-party secure inference. In Proceedings of554

the 2020 ACM SIGSAC Conference on Computer and Communications Security, pages 325–342,555

2020.556

[40] Brandon Reagen, Woo-Seok Choi, Yeongil Ko, Vincent T Lee, Hsien-Hsin S Lee, Gu-Yeon Wei,557

and David Brooks. Cheetah: Optimizing and accelerating homomorphic encryption for private558

inference. In IEEE International Symposium on High-Performance Computer Architecture559

(HPCA), pages 26–39. IEEE, 2021.560

[41] Conrad Sanderson and Ryan Curtin. Armadillo: a template-based c++ library for linear algebra.561

Journal of Open Source Software, 1(2):26, 2016.562

[42] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.563

Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference564

on computer vision and pattern recognition, pages 4510–4520, 2018.565

[43] Liyan Shen, Ye Dong, Binxing Fang, Jinqiao Shi, Xuebin Wang, Shengli Pan, and Ruisheng566

Shi. Abnn2: secure two-party arbitrary-bitwidth quantized neural network predictions. In567

Proceedings of the 59th ACM/IEEE Design Automation Conference, pages 361–366, 2022.568

[44] Wenting Zheng Srinivasan, PMRL Akshayaram, and Popa Raluca Ada. Delphi: A cryptographic569

inference service for neural networks. In Proc. 29th USENIX Secur. Symp, pages 2505–2522,570

2019.571

[45] Kevin Vincent, Kevin Stephano, Michael Frumkin, Boris Ginsburg, and Julien Demouth. On572

improving the numerical stability of winograd convolutions. 2017.573

[46] Juan Yepez and Seok-Bum Ko. Stride 2 1-d, 2-d, and 3-d winograd for convolutional neural574

networks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(4):853–863,575

2020.576

17

	Introduction
	Preliminaries
	Threat Model
	Arithmetic Secret Sharing
	Winograd Convolution
	Related Works

	Motivation
	CoPriv: A New Paradigm Towards Efficient Private Inference
	Winograd Transformation for Protocol Optimization
	Differentiable ReLU Pruning and Network Re-Parameterization

	Experiment
	Experiment Setup
	Micro-Benchmark on the Convolution Protocol with Winograd Transformation
	Benchmark with ReLU-Optimized Networks on CIFAR-100
	Benchmark on ImageNet
	Ablation Study

	Conclusion
	Related Works
	Details of Experiment Setup
	Network Re-Parameterization Algorithm
	Details of Winograd Convolution
	Comparison between Regular Convolution and Winograd Convolution
	Details of Input Tiling and Padding
	Support for Stride of 2 Winograd Convolution
	Transformation Matrices for Winograd Convolution

