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A NORM BOUND CONDITIONS

Lemma A.1. Let the largeit singular values ongf%q be %), then the norm of H®) = Rik%,TRik%,
satisfies | H® | = | RIS BRI || = 00 /(5% 4 8) € (0,1),

Proof. Let R‘(f)T UXV " be the singular value decomposition of R T (Superscripts of U (¥
»®) and V¥ are neglected in this proof to avoid cumbersome notations). This together w1th

Rc(u ’)TT = R(k) (Rijk%«Ri, )T + BI)~! from (@) yields
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Asaresult, [H®|| = [RUL REL| = |27 (327 4 81) 7' 2| = s®° /(s 4 ) €@

Lemma A.2. Let Y1.1 be an time series and my .1 be the associated mask. Assume Y1.7 © mq.p #
Yi.1, then ||[Yi.r ©my.r|| < ||Yi.7|. Equivalently, we have | Y1.7 @ my.r|| = £||Y1.7|| with€ < 1.
- || denotes the 02 norm (Euclidean norm) and ® denotes the Hadamard product (elementwise
product) of two vectors.

Proof. Clearly, we have ||Y1.0 @ mq.p|| = Z yimy < Z y? = ||Y1.7|| with the equality holds if
t=
and only if Y1.7 © my.r = Yi.r or Yi.1r = 0 (th1s case is excluded by default). [

B LirSCHITZ CONDITIONS OF RESERVOIR MAPS

Proposition B.1. An RCN with the reservoir map given by ¥ (r,u) = Y(Ar + Bu) has ESP if
1 is Lipschitz continuous and || A|| < L™, where L is the Lipschitz constant of 1 and || - || is the
spectral norm of matrices, that is, the largest singular values.

Proof. Pick any r,s € RY and u € RP, the Lipschitz continuity of 1 gives ||Wx(r,u) —
Ua(s,u)|| = [[(Ar + Bu) - ¢(As + Bu)|| < L|A(r — s)|| < L||A|||r — s < [|r — s]|. This
implies that ¥ is a contraction mapping, and hence the RCN satisfies ESP. O

Lemma B.2. Let o € (0,1] and o(-) be a Lipschitz continuous activation function with Lipschitz
constant L. Then, an RCN with the reservoir map given by (1)), i.e., 7y = (1 —a)ri_1 + ac(Ar_1 +
Buy), has ESP if |A|| < L1,

Proof. Pick an arbitrary input sequence u; € RP and consider any two distinct initial reservoir
state g, 8o € RY, then ||, — 8¢|| < (1 — a)||ri—1 — s¢—1]| + al|o(Ari—1 + Buy) — 0(As;—1 +

Bu,)|| < [(1 —a)+ ozL||A||} ||7t—1 — S¢t—1||. Further defining k4 := (1 — ) + aL||A|| leads to

llrs — s¢]| < kallre—1 — s¢—1||, which implies by choosing ||A|| < L~!, the sequence r; converges
to the sequence s; as desired. O

C CONVERGENCE GUARANTEE OF DL-DRCN

Theorem C.1 (Convergence of DL-DRCN). Given a multivariate time series D = {Uy.r, Yi.r}
and a projection error tolerance € > 0. Let Yi.7 be the groundtruth of Y1.1, then the sequence
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(k)

of time series Y. imputing Y.T generated by Algorithmlz, using a deep reservoir computing

network composed of multiple ESN layers with the reservoir dimensions greater than or equal to N, Y,
converges to a time series Y,y as k — oo satisfying ||Yy'p — Yi.7|| < & for some & depending on .

Proof. Let
e® =y® _ v, )

denote the error between the imputed time series YI(T and the ground truth Y7.7 after the completion
of layer k of the DL-DRCN, then we will show that ||e(®)|| is bounded by d. as k — occ.

First, we denote the projection of Yj.7 onto the reservoir space in k" ESN layer as f’w(kT), meaning
- _ ok
Y} = Yor Ry R{. 5)

ith row of the error matrix e(*) satisfies

As aresult, in each iteration, the ¢
ez('k) = (Y;(Z)T - 7i,w:T> dlag(lT - ml)
k=1) pk—D)T Hk=1) .
[K(w T )Rw T ) Rz(u:T ) - E,w:T] dlag(]‘—r - ml)
= [V~ Vi | HO Ddiag(1T = my) + [V 45D — Vi |diag(1T = m;)
= egk b k- Ddiag(1" — m;) + s(i—l,c_l)diag(lT —m;)

where YZ(E)T, Y; .., and m; denote the i*" rows of Yuf]i}, Y,,.7, and m, respectively, and diag(1 " —
m;) is the diagonal matrix with the (j, j)t" entry given by the j*" component of the vector 1T — m;.
Note that diag(1T — m;) contains only 1 and 0, this together with || (=D || = s*—1?/(s(:=1D? 1.

1)

B) < 1 (see Appendix|A), where s(*~1) is the largest singular value of RSC; , we obtain

k k—1 k—1
el < [le! >H<k Ddiag(1T —my)| + [|e  Vdiag(1T —my)|

(k-1 k—1 k—1
= ¢lle VHE |+l < gllel T VIH® )+ glley .
Taking i = max{||[HO|,....[|H* |} < 1 and & = max{[|e||,..., ¢~ 1)||}ylelds

— (ER)F
L &= ()
1—¢h
This implies that letting § = £&/(1 — &h), then ||el(»k)|| <dask — oo.

e < le1eh + g2 < el (¢h)F

Furthermore, choosing all the ESN layers as perfect realization ESN yields £ = 0, meaning the error
sequence e(*) is a monotonically decreasing nonnegative sequence and hence necessarily converges
to 0, yielding e(®) — 0. O

D LoOWER BOUND ON DL-DRCN LAYER DEPTH FOR A GIVEN IMPUTATION
ERROR

Proposition D.1. Given an error tolerance € > 0, the projection error of the imputation time series
in (e—/g5) —In (v/alle!® |- /as)
i (¢)
output time series, and 0 is the error bound defined in Theorem and ¢ = ||Yri.7||/| Y17l =

|Y1.7 @ My.7||/||Y1.7|| with M. being the mask of Y1 ..

satisfies e*) < & whenever k > , where q is the dimension of the

Proof. Applying the bounded condition from Theorem[4.2] the bound of total number of layers K
can be derived as follows

q
K
1€ o = /1et]3 < /et = Z ™13

< Vallelllz < va|le” 1(©)* + do(1 - (©)")]

16



Under review as a conference paper at ICLR 2025

where [|e{"”|| = max?_ {[le{" ||}, and h = max{|H©|,..., |[H* V]||} < L. This leads to

€ — \/qd;
o < — V1
Valle; |l = v/ade

and therefore

In (e — v/Gde) — In (/e — y/gde)
In (f)

K >

E OTHER EXPERIMENTS

10% 30% 50% 70%
Models MSE time (sec) |  MSE time (sec) | MSE time (sec) | MSE time (sec.)
GRU-mean | 646541581 46548442263 | 536140509 55139454471 | 5039+£0278 42324431674 | 487940147  33.06920.644
GRU-D | 561141398  27.0024£7.246 | 494640444  27.598+£7.040 | 495040279 2566546147 | 4919£0.149  28.104:6.246

SAITS 4.988+1.123  218.11£15.785 | 4.941+1.076  206.61+11.340 5.799-+2.825 204.15+10.303 5.277+1.719 205.88+9.717
Transformer | 4.925£1.457  89.807+£27.512 | 4.337+0.562  84.324+26.836 4.37240.502 79.454-:28.388 4.558+0.558 78.369-£35.849
KNN 5.370+£0.892 0.610£0.014 5.288+0.250 0.643+0.008 5.89340.162 0.689+0.009 7.070+0.249 0.801+0.016
MICE 544741244 72419 (x107%) | 4.853+0.398  7.842.9 (x10~%) 4.859+0.237 8.9+2.7 (x107%) 4.835+0.117 8.0+2.8 (x107%)
CubicSpline | 81.7465.9  12.045.1 (x10™%) | 588.3£701.6  12.042.6 (x10™%) | 2.241.7 (x10%)  12.043.7 (x10™%) | 3.743.1 (x10%) 11.0+£1.8 (x10™%)
Linear 8.13842.965  9.242.0 (x107%) | 827743.513  9.0£1.7(x107%) | 843142913  94+32(x107%) | 9.710+£5749  7.3+1.8(x107%)

DLRCN ‘0.057i0.020 30.138+1.140 ‘0.0SIi0.00S 29.570+0.694 ‘0.054i0.00304 30.162+1.398 ‘ 0.063+0.004 29.109+0.281

Table 4: Time Comparisons of DLDRCN and Other Imputation Methods for Block Missing Scenario:
Model performance is evaluated using MSE and total running time (mean = std) across 40 experi-
ments. It’s important to note that in all state-of-the-art models, increasing the dimension of the hidden
layers can improve imputation performance, but it also substantially increases computation time.

Models Physionet ECG
10% 50% 90% ‘ 20% 50%
Linear 0.615+0.056  1.32940.099  3.502+0.075 | 0.266+0.004  0.223+0.028
KNN 0.662+0.056  1.265+0.099  3.977£0.085 | 0.232+0.002  0.237+0.025
CSDI/SSSD | 0.21740.001*  0.301+0.002%  0.481£0.003* | 0.023+9e-4*  0.131+0.003*

DL-DRCN ‘ 0.103+0.001  0.128+0.002  0.285+0.011 ‘ 0.055+7e-3  0.623+£0.075

Table 5: MAE/RMSE (mean =+ std) of imputation results for PhysioNet/ECG datasets.

F EVALUATION METRICS

For a given ground truth data matrix Y € R9*7T and the reconstruct outcome Y € R from
different models, we evaluate the imputation performances using the mean square error (MSE) and
mean absolute error (MAE), given by

. 1 K&
MSE:= |[Y - Y|% = T ZZ(%; - yi,j)2§
ke
R
RMSE = [V ~ Ylr = | = > (i — vis)
e
1 L&
MAE i= SN b — vigl.

i=1 j=1
G TotaL FLop CouNTS OF DL-DRCN

The total floating point operations (flops) counts of our DL-DRCN algorithm at each step are
summarized in the following table, where IV, p, q, d are the dimensions of R (reservoir matrix), U
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(input), Y (output), X (dataset), respectively. 7" is the number of total timesteps and .S is the total
number of non-zero elements in the sparse matrix A.

Step flop count

Compute the evolution of

reservoir state ( \J\/]-/ +\]\/L+ \]\/[-/ + \25/ +EJ\\QZ)*T
(A=a)rie1 [HLED ama® Atp®) By,
: . 2 2 3
Compute the weight matrix 2I'Nq+2N*T +2N“T + 2N +2N
Y +[] R«[] RRT +BI ()7}
Compute update qI' + ¢TI’ + 4T
~ =~ —~—
Yom [J+[] [lo@-m)
Total flop counts AN?T +2N3 4+ 2dNT + 2ST + 3NT + 3qT + 2N

Table 6: Hyperparameters of DL-DRCN

H DL-DRCN HYPERPARAMETERS FOR EXPERIMENTS

As mentioned in Section the predetermined hyperparameters in RCN models include: o(*)
denotes the element-wise activation functions, which we choose the nonlinear hyperbolic tangent
function (tanh) for each iteration in our experiment; A®) € RN™*N™ genotes the weighted
adjacency matrix of the reservoir layer, which is obtained by first randomly generate a sparse matrix
A®) | then the adjacency matrix A®*) is derived as A®) = A®) /|s(*)|L(*) with s(*) being the
largest eigenvalue of A®) and L*) being the Lipschitz constant of the activation function o (%), The
purpose of this process is to guarantee the ESP for each ESN layer, or equivalently || A®)|| < 1/L®*)
for each layer. Note that the Lipschitz constant of the activation function is equal to 1, i.e., LK) =1,
due to the choice of the tanh function; B*) ¢ RV M xp delineates the input weight matrix, in which
each element in B is chosen randomly from a uniform distribution; o*) € (0, 1] denotes the
leakage rate, which is chosen to be close to 1. Table[7 summarizes all the hyperparameters used in
our DL-DRCN model. Additionally, the readout map in each ESN layer is chosen to be a linear map,
resulting in a simple linear relation between the output state and the reservoir state, of the following
form Y = CR. As described in section finding the optimal weight matrix is equivalent to
solving a least square problem, where a regularization term is further considered in this case to
prevent the overfitting problem.

Hyperparameters Values

A reservoir adjacency matrix pa = ||A]| =1

A B input weighted matrix b, ; € [-1,1]
Q@ leakage rate a=038
o activation function o = tanh
B regularization parameter B=10"8

Table 7: Hyperparameters of DL-DRCN

We fill in the missing values with linear interpolation method as initial values for ECG and Physionet
experiments. we chose The dimensions of ESN layers we chose for each experiment are listed in
following Table
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Experiments N®&) Total layer numbers
Rossler System 1000, 975, 950, ..., 500 21
Gesture 1600, 1570, 1540, . .., 1000 21
ECG 2000, 2000, 2000, . . ., 2000 20
Physionet 200, 200, 200, . .., 200 20
Table 8: Hyperparameters of DL-DRCN
I DATA DESCRIPTION AND PREPROCESSING
I.1 SYNTHETIC DYNAMICAL SYSTEM
In this synthetic data example, we generated a multivariate time t=0 t= 160 t= 320

series using the Rossler system, whose dynamics are given by,
j;t:—yt—zt, yt:xt+ayt7 Zt:b""zt(xt_c)v (6)

where (z¢,y:,2;) | € R? is the state variable at time ¢ and {a, b, ¢}

are constant parameters. Here, ()T denotes the transpose of the
vector. In particular, we choose a = 0.5, b = 2.0, and ¢ = 4.0
and solve this system of differential equations by using a 4th-order
Runge-Kutta based ODE solver (ode45) in Matlab. The system is

4

solved from the initial condition (z¢,yo,20)" = (0,0,1)7 over
the time interval [0, 320] with the sampling rate 0.04, yielding a Figure 5: State trajectories ¢,

multivariate time series with the spatial and temporal dimensions 3

and 8000, respectively.

1.2 PHYSIONET DATASET

In this experiment, we collected the health-care clinical
dataset from PhysioNet Challenge 2012, which is a pub-
licly available dataset containing multivariate clinical time
series extracted from the Multiparameter Intelligent Mon-
itoring in Intensive Care II (MIMIC II) database. In total
12000 patient ICU records were selected randomly from
the data pool and were divided equally into three groups,
training set A, testing set B, and testing set C, with each
containing 4000 patients’ records. Since testing set C is
blinded and unavailable to the public, we only collected
the remaining 8000 records for this study. Each patient
record contains up to 41 clinical variables which were mea-
sured irregularly from the first 48 hours after the patient’s
admission to ICU. Since not all variables were recorded

Y, 2¢ of the Rossler system.

Clinical variables
n

(5 B AP RE B pan g s TR

Time

Figure 6: An example mask showing 30%
data removal for imputation on the Physionet
dataset, with light blue highlighting the re-
moved data points.

for each patient and each variable was measured at different time points, we followed the preprocess-
ing steps in (Tashiro et al., 2021} |Che et al.|[2018)) by selecting 35 out of 41 variables as features and
rounded up the time stamps to 1 hour, resulting in a multivariate time series of 35 features and 48

points per feature.

1.3 GESTURE DATASET

The gesture phase segmentation dataset is collected from (Madeo et al., 2014), where the dataset
comprises features extracted from 7 video recordings with people gesticulating. There are in total
14 (.csv) files included, with 1 raw file and 1 processed file for each video recording. The files are
categorized by three test users (A,B,C) and the stories (1,2,3) each subject is being asked to read and
present in front of the sensors. Specifically, these files include A1, A2, A3, B1, B3, C1 and C3, with
each containing around 1000-1800 frames. We study the processed video dataset in Al (alva3.csv),

which contains 32 features and 1743 datapoints per feature.
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