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A DATASET

We evaluate the performance of TFPS on eight widely used datasets, including four ETT datasets
(ETTh1, ETTh2, ETTm1 and ETTm2), Exchange, Weather, Electricity, and ILI. This subsection
provides a summary of the datasets:

• ETT 1 (Zhou et al., 2021) (Electricity Transformer Temperature) dataset contains two elec-
tric transformers, ETT1 and ETT2, collected from two separate counties. Each of them
has two versions of sampling resolutions (15min & 1h). Thus, there are four ETT datasets:
ETTm1, ETTm2, ETTh1, and ETTh2.

• Exchange-Rate 2 (Lai et al., 2018) the exchange-rate dataset contains the daily exchange
rates of eight foreign countries including Australia, British, Canada, Switzerland, China,
Japan, New Zealand, and Singapore ranging from 1990 to 2016.

• Weather 3 (Wu et al., 2021) dataset contains 21 meteorological indicators in Germany,
such as humidity and air temperature.

• Electricity 4 (Wu et al., 2021) is a dataset that describes 321 customers’ hourly electricity
consumption.

• ILI 5 (Wu et al., 2021) dataset collects the number of patients and influenza-like illness
ratio in a weekly frequency.

For the data split, we follow Zeng et al. (2023) and split the data into training, validation, and testing
by a ratio of 6:2:2 for the ETT datasets and 7:1:2 for the others. Details are shown in Table 5. The
best parameters are selected based on the lowest validation loss and then applied to the test set for
performance evaluation.

Table 5: The statistics of the datasets.

Datasets Variates Prediction Length Timesteps Granularity Average MMD*

(Time Domain)
Average MMD*

(Frequency Domain)
ETTh1 7 {96, 192, 336, 720} 17,420 1 hour 0.938 0.340
ETTh2 7 {96, 192, 336, 720} 17,420 1 hour 0.582 0.635
ETTm1 7 {96, 192, 336, 720} 69,680 15 min 1.371 0.328
ETTm2 7 {96, 192, 336, 720} 69,680 15 min 1.213 0.815

Exchange-Rate 8 {96, 192, 336, 720} 7,588 1 day 0.805 0.485
Weather 21 {96, 192, 336, 720} 52,696 10 min 0.129 0.236

Electricity 321 {96, 192, 336, 720} 26,304 1 hour 0.026 0.005
ILI 7 {24, 36, 48, 60} 966 1 week 0.125 0.234

* A large MMD indicates a more severe drift.

B MAXIMUM MEAN DISCREPANCY

Maximum mean discrepancy (MMD) is a kernel-based statistical test used to determine whether
given two distribution are the same. Given an X , the feature map ϕ transforms X to an another
space H such that ϕ(X) ∈ H. H is Reproducing Kernel Hilbert Space (RKHS) and we can leverage
the kernel trick to compute inner products in H:

X,Y such that k(X,Y ) = ⟨ϕ(X), ϕ(Y )⟩H. (13)

Feature means. The mean embeddings of a probability distribution P is a feature map that trans-
forms ϕ(X) into the mean of each coordinate of ϕ(X):

µP (ϕ(X)) = [E[ϕ(X1)], · · · ,E[ϕ(Xm)]]T . (14)

1https://github.com/zhouhaoyi/ETDataset
2https://github.com/laiguokun/multivariate-time-series-data
3https://www.bgc-jena.mpg.de/wetter/
4https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
5https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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The inner product of the mean embeddings of X ∼ P and Y ∼ Q can be written in terms of kernel
function:

⟨µP (ϕ(X)), µQ(ϕ(Y ))⟩H = EP,Q[⟨ϕ(X), ϕ(Y )⟩H] = EP,Q[k(X,Y )]. (15)

Maximum mean discrepancy. The MMD measures the distance between the mean embeddings of
two samples, X and Y , in the RKHS:

MMD2(P,Q) = ∥µP − µQ∥2H , (16)

For convenience we omit the ϕ(·) terms. If we use the norm induced by the inner product such that
∥x∥ =

√
⟨x, x⟩, the Eq. 16 becomes:

MMD2(P,Q) = ⟨µp − µQ, µp − µQ⟩ = ⟨µp, µp⟩ − 2⟨µp, µQ⟩+ ⟨µQ, µQ⟩. (17)

Using the Eq. 15, finally above expression becomes:

MMD2(P,Q) = EP [k(X,X)]− 2EP,Q[k(X,Y )] + EQ[k(Y, Y )]. (18)

Empirical estimation of MMD. In real-world applications, the underlying distribution are usually
unknown. Thus, an empirical estimate of Eq. 18 can be used:

MMD2(X,Y ) =
1

m(m− 1)

∑
i̸=j

k (xi, xj)−
2

mn

∑
i,j

k (xi, xj) +
1

n(n− 1)

∑
i ̸=j

k (yi, yj) , (19)

where xi and xj are samples from P , yi and yj are samples from Q, and k(x, y) is the kernel
function, often the Gaussian (RBF) kernel.

C DISTRIBUTION SHIFTS IN BOTH TIME AND FREQUENCY DOMAINS

The time series X is segmented into N patches, where each patch Pn = {xn1, xn2, . . . , xnP }
consists of P consecutive timesteps for n = 1, 2, · · · , N . For the frequency domain, we apply
a Fourier transform F to each patch Pn, obtaining its frequency-domain representation as P̂n =
F(Pn).

Each patch’s probability distribution in the time domain is denoted as pt(Pn), representing the
statistical properties of Pn, while its frequency domain distribution, denoted as pf (P̂n), captures its
spectral characteristics.

The distribution shifts between two patches Pi and Pj are characterized by the comparing their
probability distributions in both time and frequency domains. These shifts are defined as:

Dt(Pi,Pj) = |d(pt(Pi), pt(Pj))| > θ, (20)

Df (P̂i, P̂j) = |d(pf (P̂i), pf (P̂j))| > θ, (21)

where d is a distance metric, such as MMD values or Kullback-Leibler divergence, and θ is a thresh-
old indicating a significant distribution shift. If Dt(Pi,Pj) or Df (P̂i, P̂j) exceeds θ, this implies a
significant distribution shift between the two patches in either domain.

D RELATED WORK

Mixture-of-Experts. Mixture-of-Experts (MoE) models have gained attention for their ability to
scale efficiently by activating only a subset of experts for each input, as first introduced by Shazeer
et al. (2017). Despite their success, challenges such as training instability, expert redundancy, and
limited expert specialization have been identified (Puigcerver et al., 2023; Dai et al., 2024). These
issues hinder the full potential of MoE models in real-world tasks.

Recent advances have integrated MoE with Transformers to improve scalability and efficiency. For
example, GLaM (Du et al., 2022) and Switch Transformer (Fedus et al., 2022) interleave MoE lay-
ers with Transformer blocks, reducing computational costs. Other models like state space models
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Figure 7: Results of expert number experiments for ETTh1 and ETTh2.

(SSMs) (Pióro et al., 2024; Anthony et al., 2024), (Alkilane et al., 2024) combines MoE with alter-
native architectures for enhanced scalability and inference speed.

In contrast, our approach introduces MoE into time series forecasting by assigning experts to specific
time-frequency patterns, enabling more effective, patch-level adaptation. This approach represents a
significant innovation in time series forecasting, offering a more targeted and effective way to handle
varying patterns across both time and frequency domains.

E MORE MODEL ANALYSIS

E.1 ANALYSIS OF EXPERTS

Detailed Results on the Number of Experts.

We provide the full results on the number of experts for the ETTh1 and ETTh2 dataset in Figure 7.

In Figure 6, we set the learning rate to 0.0001 and conducted four sets of experiments on the ETTh1
and ETTh2 datasets, Kt = 1, Kf = {1, 2, 4, 8}, to explore the effect of the number of frequency
experts on the results. For example, Kt1Kf4 means that the TFPS contains 1 time experts and 4
frequency experts. We observed that Kt1Kf2 outperformed Kt1Kf4 in both cases, suggesting that
increasing the number of experts does not always lead to better performance.

In addition, we conducted three experiments based on the optimal number of frequency experts to
verify the impact of varying the number of time experts on the results. As shown in Figure 7, the best
results for ETTh1 were obtained with Kt4Kf2, Kt8Kf4, Kt4Kf4, Kt4Kf4, while for ETTh2, the
optimal results were achieved with Kt2Kf2, Kt2Kf4, Kt4Kf2 and Kt4Kf2. Combined with the
average MMD in Table 5, we attribute this to the fact that, in cases where concept drift is more
severe, such as ETTh1 in the time domain, more experts are needed, whereas fewer experts are
sufficient when the drift is less severe.

Comparing Inter- and Intra-Cluster Differences via MMD.

We present the heatmaps of inter-cluster and intra-cluster MMD values obtained using linear layers
and PI in Figure 8. The diagonal elements represent the average MMD values of patches within
the same clusters. If these values are small, it indicates that the difference of patches within the
same cluster is relatively similar. The off-diagonal elements represent the average MMD values
between patches from different clusters, where larger values mean significant differences between
the clusters. We observe that when using PI, the intra-cluster drift is smaller, while the inter-cluster
shift is more pronounced compared to the linear layer. This indicates that our identifier effectively
classifies and distinguishes between different patterns.
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(a) Linear layer (b) Pattern Identifier

Figure 8: Heatmap showing the MMD values of inter- and intra-cluster patches on ETTh1.

Table 6: Detailed results of the comparison between TFPS and normalization methods. The best
results are highlighted in bold and the second best are underlined.

FEDformerTFPS + SIN + SAN + Dish-TS + NST + RevINModel IMP.
(Our) (2024a) (2023b) (2023) (2022) (2021)

Metric MSE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96 -1.0% 0.398 0.413 0.413 0.372 0.383 0.409 0.390 0.424 0.394 0.414 0.392 0.413

192 3.8% 0.423 0.423 0.443 0.417 0.431 0.438 0.441 0.458 0.441 0.442 0.443 0.444
336 -0.3% 0.484 0.461 0.465 0.448 0.471 0.456 0.495 0.486 0.485 0.466 0.495 0.467E

T
T

h1

720 4.5% 0.488 0.476 0.509 0.490 0.504 0.488 0.519 0.509 0.505 0.496 0.520 0.498
96 31.3% 0.313 0.355 0.412 0.357 0.300 0.355 0.806 0.589 0.381 0.403 0.380 0.402

192 26.0% 0.405 0.410 0.472 0.453 0.392 0.413 0.936 0.659 0.478 0.453 0.457 0.443
336 36.7% 0.392 0.415 0.527 0.527 0.459 0.462 1.039 0.702 0.561 0.499 0.515 0.479E

T
T

h2

720 37.9% 0.410 0.433 0.593 0.639 0.462 0.472 1.237 0.759 0.502 0.481 0.507 0.487
96 4.1% 0.327 0.367 0.373 0.320 0.311 0.355 0.348 0.397 0.336 0.382 0.340 0.385

192 2.9% 0.374 0.395 0.394 0.366 0.351 0.383 0.406 0.428 0.386 0.409 0.390 0.411
336 5.3% 0.401 0.408 0.418 0.405 0.390 0.407 0.438 0.450 0.438 0.441 0.432 0.436E

T
T

m
1

720 -0.5% 0.479 0.456 0.451 0.475 0.456 0.444 0.497 0.481 0.483 0.460 0.497 0.466
96 33.5% 0.170 0.255 0.326 0.211 0.175 0.266 0.394 0.395 0.191 0.272 0.192 0.272

192 32.3% 0.235 0.296 0.402 0.316 0.246 0.315 0.552 0.472 0.270 0.321 0.270 0.320
336 35.0% 0.297 0.335 0.465 0.399 0.315 0.362 0.808 0.601 0.353 0.371 0.348 0.367E

T
T

m
2

720 35.9% 0.401 0.397 0.555 0.547 0.412 0.422 1.282 0.771 0.445 0.422 0.430 0.415
96 28.4% 0.154 0.202 0.280 0.215 0.179 0.239 0.244 0.317 0.187 0.234 0.187 0.234

192 23.3% 0.205 0.249 0.314 0.264 0.234 0.296 0.320 0.380 0.235 0.272 0.235 0.272
336 19.8% 0.262 0.289 0.329 0.293 0.304 0.348 0.424 0.452 0.289 0.308 0.287 0.307

W
ea

th
er

720 18.4% 0.344 0.342 0.382 0.370 0.400 0.404 0.604 0.553 0.359 0.352 0.361 0.353
1st (2nd) Count 24 (8) 9 (4) 7 (24) 0 (1) 0 (1) 0 (2)

E.2 RESULTS OF THE COMPARISON BETWEEN TFPS AND NORMALIZATION METHODS

In this section, we provide the detailed experimental results of the comparison between TFPS and
five state-of-the-art normalization methods for non-stationary time series forecasting: SIN (Han
et al., 2024a), SAN (Liu et al., 2023b), Dish-TS (Fan et al., 2023), Non-Stationary Transformers
(NST) (Liu et al., 2022), and RevIN (Kim et al., 2021). The results of SIN are from Han et al.
(2024a), other results are from Liu et al. (2023b). We report the evaluation of FEDformer over all
the forecasting lengths for each dataset and the relative improvements in Table 6. It can be concluded
that TFPS achieves the best performance among existing methods in most cases. The improvement is
significant with an average MSE decrease of 18.9%. We attribute this improvement to the accurate
identification of pattern groups and the provision of specialized experts for each group, thereby
avoiding the over-stationarization problem often associated with normalization methods.
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F METRIC ILLUSTRATION

We use mean square error (MSE) and mean absolute error (MAE) as our metrics for evaluation of
all forecasting models. Then calculation of MSE and MAE can be described as:

MSE =
1

H

L+H∑
i=L+1

(Ŷi − Yi)
2, (22)

MAE =
1

H

L+H∑
i=L+1

∣∣∣Ŷi − Yi

∣∣∣ , (23)

where Ŷ is predicted vector with H future values, while Y is the ground truth.

G ALGORITHM OF TFPS

We provide the pseudo-code of TFPS in Algorithm 1.

H BROADER IMPACT

Real-world applications. TFPS addresses the crucial challenge of time series forecasting, which
is a valuable and urgent demand in extensive applications. Our method achieves consistent state-
of-the-art performance in four real-world applications: electricity, weather, exchange rate, illness.
Researchers in these fields stand to benefit significantly from the enhanced forecasting capabilities
of TFPS. We believe that improved time series forecasting holds the potential to empower decision-
making and proactively manage risks in a wide array of societal domains.

Academic research. TFPS draws inspiration from classical time series analysis and stochastic
process theory, contributing to the field by introducing a novel framework with the assistance pat-
tern recognition. This innovative architecture and its associated methodologies represent significant
advancements in the field of time series forecasting, enhancing the model’s ability to address distri-
bution shifts and complex patterns effectively.

Model Robustness. Extensive experimentation with TFPS reveals robust performance without
exceptional failure cases. Notably, TFPS exhibits impressive results and maintains robustness in
datasets with distribution shifts. The pattern identifier structure within TFPS groups the time series
into distinct patterns and adopts a mixture of pattern experts for further prediction, thereby allevi-
ating prediction difficulties. However, it is essential to note that, like any model, TFPS may face
challenges when dealing with unpredictable patterns, where predictability is inherently limited. Un-
derstanding these nuances is crucial for appropriately applying and interpreting TFPS’s outcomes.

Our work only focuses on the scientific problem, so there is no potential ethical risk.

I LIMITATIONS

Though TFPS demonstrates promising performance on the benchmark dataset, there are still some
limitations of this method. First, the patch length is primarily chosen heuristically, and the cur-
rent design struggles with handling indivisible lengths or multi-period characteristics in time series.
While this approach works well in experiments, it lacks generalizability for real-world applications.
Second, the real-world time series data undergo expansion, implying that the new patterns contin-
ually emerge over time, such as an epidemic or outbreak that had not occurred before. Therefore,
future work will focus on developing a more flexible and automatic patch length selection mecha-
nism, as well as an extensible solution to address these evolving distribution shifts.
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Algorithm 1 Time-Frequency Pattern-Specific architecture - Overall Architecture.
Input: Input lookback time series X ∈ RL×C ; input length L; predicted length H; variables number

C; patch length P ; feature dimension D; encoder layers number n; random Gaussian distribution-

initialized subspace D = [D(1),D(2), · · · ,D(K)], each D(j) ∈ Rq×d, where q = C × D and

d = q/K. Technically, we set D as 512, n as 2.

Output: The prediction result Ŷ .

1: X = X.transpose ▷ X ∈ RC×L

2: XPE = Patch (X) + Position Embedding ▷ X0
t ∈ RC×N×D

3: ▷ Time Encoder.

4: X0
t = XPE

5: for l in {1, . . . , n}:

6: forX l−1
t = LayerNorm (X l−1

t + Self-Attn (X l−1
t )). ▷ X l−1

t ∈ RC×N×D

7: forX l
t = LayerNorm (X l−1

t + Feed-Forward (X l−1
t )). ▷ X l

t ∈ RC×N×D

8: End for

9: zt = X l
t ▷ zlt ∈ RC×N×D

10: ▷ Pattern Identifier for Time Domain.

11: st = Subspace affinity (zt, D) ▷ Eq. 6 of the paper st ∈ RC×N×D

12: s̃t = Subspace refinement (st) ▷ Eq. 7 of the paper s̃t ∈ RC×N×D

13: ▷ Mixture of Temporal Pattern Experts.

14: G(s) = Softmax (TopK (st))

15: ht =
∑K

k=1 G(s)MLPk(zt) ▷ Eq. 10 and Eq. 11 of the paper ht ∈ RC×N×D

16: ▷ Frequency Encoder.

17: X0
f = XPE ▷ Eq. 2 of the paper X0

f ∈ RC×N×P

18: for l in {1, . . . , n}:

19: forX l−1
f = LayerNorm (X l−1

f + Fourier (X l−1
f )). ▷ X l−1

f ∈ RC×N×D

20: forX l
f = LayerNorm (X l−1

f + Feed-Forward (X l−1
f )). ▷ X l

f ∈ RC×N×D

21: End for

22: zf = X l
f ▷ znf ∈ RC×N×D

23: ▷ Pattern Identifier for Frequency Domain.

24: sf = Subspace affinity (zf , D) ▷ Eq. 6 of the paper sf ∈ RC×N×D

25: s̃f = Subspace refinement (sf ) ▷ Eq. 7 of the paper s̃f ∈ RC×N×D

26: ▷ Mixture of Frequency Pattern Experts.

27: G(s) = Softmax (TopK (sf ))

28: hf =
∑K

k=1 G(s)MLPk(zf ) ▷ Eq. 10 and Eq. 11 of the paper hf ∈ RC×N×D

29: h = Concat(ht, hf ) ▷ h ∈ RC×N×2∗D

30: for c in {1, . . . , C}:

31: forŶ = Linear (Flatten (h)). ▷ Project tokens back to predicted series Ŷ ∈ RC×H

32: End for

33: Ŷ = Ŷ .transpose ▷ Ŷ ∈ RH×C

34: Return Ŷ ▷ Output the final prediction Ŷ ∈ RH×C
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Table 7: Multivariate long-term forecasting results for Traffic. The input lengths is L = 96. The
best results are highlighted in bold and the second best are underlined.

Model IMP. TFPS TSLANet FITS iTransformer TFDNet-IK PatchTST TimesNet DLinear FEDformer
(Our) (2024) (2024) (2024a) (2023) (2023) (2023a) (2023) (2022)

Metric MSE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Traffic

96 21.1% 0.427 0.296 0.475 0.307 0.651 0.388 0.428 0.295 0.519 0.314 0.446 0.284 0.586 0.316 0.650 0.397 0.575 0.357
192 17.7% 0.445 0.298 0.478 0.306 0.603 0.364 0.448 0.302 0.513 0.314 0.453 0.285 0.618 0.323 0.600 0.372 0.613 0.381
336 17.0% 0.459 0.307 0.494 0.312 0.610 0.366 0.465 0.311 0.525 0.319 0.467 0.291 0.634 0.337 0.606 0.374 0.622 0.380
720 15.1% 0.496 0.313 0.528 0.331 0.648 0.387 0.501 0.333 0.561 0.336 0.501 0.492 0.659 0.349 0.646 0.396 0.630 0.383

1st Count 7 0 0 1 0 0 0 0 0

Table 8: Experiment results under hyperparameter searching for the long-term forecasting task. The
best results are highlighted in bold and the second best are underlined.

Model IMP. TFPS TSLANet FITS iTransformer TFDNet-IK PatchTST TimesNet Dlinear FEDformer
(Our) (2024) (2024) (2024a) (2023) (2023) (2023a) (2023) (2022)

Metric MSE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 1.5% 0.372 0.404 0.368 0.394 0.374 0.395 0.387 0.405 0.360 0.387 0.375 0.400 0.389 0.412 0.384 0.405 0.385 0.425
192 5.7% 0.401 0.410 0.413 0.418 0.407 0.414 0.441 0.436 0.403 0.412 0.414 0.421 0.441 0.442 0.443 0.450 0.441 0.461
336 9.8% 0.409 0.402 0.412 0.416 0.429 0.428 0.491 0.463 0.434 0.429 0.432 0.436 0.491 0.467 0.447 0.448 0.491 0.473
720 11.2% 0.423 0.433 0.473 0.477 0.425 0.446 0.509 0.494 0.437 0.452 0.450 0.466 0.512 0.491 0.504 0.515 0.501 0.499

E
T

T
h2

96 9.3% 0.268 0.325 0.283 0.344 0.274 0.337 0.301 0.350 0.271 0.329 0.278 0.336 0.324 0.368 0.290 0.353 0.342 0.383
192 10.4% 0.329 0.376 0.331 0.378 0.337 0.377 0.380 0.399 0.333 0.372 0.339 0.380 0.393 0.410 0.388 0.422 0.434 0.440
336 17.7% 0.329 0.401 0.319 0.377 0.360 0.398 0.424 0.432 0.361 0.396 0.336 0.380 0.429 0.437 0.463 0.473 0.512 0.497
720 9.0% 0.412 0.441 0.407 0.449 0.386 0.423 0.430 0.447 0.382 0.418 0.382 0.421 0.433 0.448 0.733 0.606 0.467 0.476

E
T

T
m

1 96 10.2% 0.281 0.329 0.291 0.353 0.303 0.345 0.342 0.377 0.283 0.330 0.288 0.342 0.337 0.377 0.301 0.345 0.360 0.406
192 8.5% 0.324 0.354 0.329 0.372 0.337 0.365 0.383 0.396 0.327 0.356 0.334 0.372 0.395 0.406 0.336 0.366 0.395 0.427
336 8.2% 0.359 0.404 0.357 0.392 0.372 0.385 0.418 0.418 0.361 0.375 0.367 0.393 0.433 0.432 0.372 0.389 0.448 0.458
720 8.2% 0.409 0.408 0.423 0.425 0.428 0.416 0.487 0.457 0.411 0.409 0.417 0.422 0.484 0.458 0.427 0.423 0.491 0.479

E
T

T
m

2 96 8.9% 0.158 0.243 0.167 0.256 0.165 0.255 0.186 0.272 0.158 0.244 0.164 0.253 0.182 0.262 0.172 0.267 0.193 0.285
192 5.7% 0.222 0.302 0.221 0.294 0.220 0.291 0.254 0.314 0.219 0.282 0.221 0.292 0.252 0.307 0.237 0.314 0.256 0.324
336 8.5% 0.268 0.316 0.277 0.329 0.274 0.326 0.316 0.351 0.273 0.317 0.277 0.329 0.312 0.346 0.295 0.359 0.321 0.364
720 12.0% 0.344 0.373 0.356 0.382 0.367 0.383 0.414 0.407 0.346 0.374 0.365 0.384 0.417 0.404 0.427 0.439 0.434 0.426

Tr
af

fic

96 17.8% 0.370 0.257 0.375 0.260 0.398 0.285 0.428 0.295 0.377 0.253

OOM

0.586 0.316 0.413 0.287 0.575 0.357
192 17.0% 0.391 0.269 0.395 0.272 0.408 0.288 0.448 0.302 0.391 0.260 0.618 0.323 0.424 0.290 0.613 0.381
336 17.2% 0.401 0.271 0.402 0.272 0.420 0.292 0.465 0.311 0.408 0.266 0.634 0.337 0.438 0.299 0.622 0.380
720 15.7% 0.432 0.294 0.431 0.288 0.448 0.310 0.501 0.333 0.451 0.291 0.659 0.349 0.466 0.316 0.630 0.383

E
le

ct
ri

ci
ty 96 10.3% 0.134 0.225 0.137 0.229 0.135 0.231 0.148 0.239 0.130 0.222 0.130 0.223 0.168 0.272 0.140 0.237 0.188 0.303

192 11.9% 0.145 0.238 0.153 0.242 0.149 0.244 0.167 0.258 0.146 0.237 0.149 0.240 0.186 0.289 0.154 0.250 0.197 0.311
336 6.8% 0.166 0.258 0.165 0.263 0.165 0.260 0.178 0.271 0.162 0.254 0.168 0.262 0.196 0.297 0.169 0.268 0.212 0.327
720 6.9% 0.200 0.291 0.206 0.294 0.204 0.293 0.211 0.300 0.201 0.287 0.204 0.289 0.235 0.329 0.204 0.300 0.243 0.352
1st Count 26 5 0 0 16 1 0 0 0

J TRAFFIC RESULTS

We conducted addition experiments on high-dimensional Traffic dataset to further evaluate the per-
formance and generalizability of TFPS, as shown in Table 7.

K HYPERPARAMETER-SEARCH RESULTS

To ensure a fair comparison between models, we conducted experiments using unified parameters
L = 96 and reported results in the main text.

In addition, considering that the reported results in different papers are mostly obtained through
hyperparameter search, we provide the experiment results with the full version of the parameter
search. We searched for input length among 96, 192, 336, and 512. The results are included in
Table 8. All baselines are reproduced by their official code.

We can find that the relative promotion of TFPS over TFDNet is smaller under comprehensive
hyperparameter search than the unified hyperparameter setting. It is worth noticing that TFPS runs
much faster than TFDNet according to the efficiency comparison in Table 11. Therefore, considering
performance, hyperparameter-search cost and efficiency, we believe TFPS is a practical model in
real-world applications and is valuable to deep time series forecasting community.

L VISUALIZATION OF CLUSTERING

Figure 9 presents the t-SNE visualization of the learned embedded representation on the ETTh1. In
the Figure 9 (a), where the pattern identifier is replaced with a linear layer, the representation lacks
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(a) Linear (b) Pattern Identifier

Figure 9: Visualization of the embedded representations with t-SNE on ETTh1. The left figure
shows the visualization when the Patch Identifier is replaced with a Linear Layer for comparison,
while the right figure shows the visualization of the proposed method.

Table 9: Comparison between TFPS and MoE-based methods. The best results are highlighted in
bold and the second best are underlined.

Model IMP. TFPS MoLE MoU KAN4TSF
(Our) 2024 2024 2024b

Metric MSE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 -4.3% 0.398 0.413 0.383 0.392 0.381 0.403 0.382 0.400
192 1.7% 0.423 0.423 0.434 0.426 0.429 0.430 0.430 0.426
336 1.6% 0.484 0.461 0.489 0.478 0.488 0.463 0.498 0.467
720 8.2% 0.488 0.476 0.602 0.545 0.499 0.484 0.494 0.479

ETTh2

96 10.4% 0.313 0.355 0.413 0.360 0.317 0.358 0.318 0.358
192 10.3% 0.405 0.410 0.525 0.416 0.409 0.414 0.419 0.414
336 7.1% 0.392 0.415 0.423 0.434 0.397 0.420 0.447 0.452
720 8.4% 0.410 0.433 0.453 0.458 0.412 0.434 0.477 0.476

ETTm1

96 13.5% 0.327 0.367 0.338 0.380 0.465 0.442 0.333 0.371
192 10.6% 0.374 0.395 0.388 0.403 0.483 0.455 0.384 0.399
336 11.8% 0.401 0.408 0.417 0.431 0.540 0.488 0.407 0.413
720 7.3% 0.479 0.456 0.486 0.472 0.583 0.509 0.483 0.469

ETTm2

96 13.9% 0.170 0.255 0.238 0.271 0.179 0.263 0.175 0.260
192 3.8% 0.235 0.296 0.247 0.305 0.243 0.303 0.244 0.305
336 3.3% 0.297 0.335 0.308 0.343 0.306 0.343 0.308 0.347
720 13.7% 0.401 0.397 0.583 0.419 0.405 0.404 0.405 0.404

1st Count 30 1 1 0

clear clustering structures, resulting in scattered and indistinct groupings. In contrast, Figure 9 (b)
shows the visualization of the representation learned by the proposed method, which effectively
captures discriminative features and reveals significantly clearer clustering patterns.

M COMPARED WITH MOE-BASED METHODS

As shown in Table 9, unlike MoE-based methods that rely on the Softmax function as a gating
mechanism, our approach constructs a pattern recognizer to assign different experts to handle distinct
patterns. This results in TFPS achieving relative improvements of 2.3%, 9.0%, 10.6%, and 9.1%
across the four datasets, respectively.

N COMPARED WITH DISTRIBUTION SHIFT METHODS

As shown in Table 10, we compare with the methods for distribution shift. This results in TFPS
achieving relative improvements of 6.7%, 6.6%, 4.8%, and 5.9% across the four datasets, respec-
tively.

O EFFICIENCY ANALYSIS

To make this clearer, we present the results of ETTh1 for a prediction length of 192 from Table 2 and
include additional results on runtime and computational complexity in Table 11. Due to the sparsity
of MoPE, TFPS achieves a balance between performance and efficiency:
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Table 10: Comparison between TFPS and methods for Distribution Shift. The best results are
highlighted in bold and the second best are underlined.

Model IMP. TFPS Koopa SOLID OneNet
(Our) 2024b 2024a 2024

Metric MSE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 7.9% 0.398 0.413 0.385 0.407 0.440 0.439 0.425 0.402
192 10.3% 0.423 0.423 0.445 0.434 0.492 0.466 0.452 0.443
336 4.9% 0.484 0.461 0.489 0.460 0.525 0.481 0.492 0.482
720 4.4% 0.488 0.476 0.497 0.480 0.517 0.496 0.504 0.496

ETTh2

96 10.6% 0.313 0.355 0.318 0.360 0.318 0.359 0.382 0.362
192 4.7% 0.405 0.410 0.378 0.398 0.414 0.418 0.435 0.426
336 4.8% 0.392 0.415 0.415 0.430 0.398 0.421 0.426 0.419
720 6.8% 0.410 0.433 0.445 0.456 0.424 0.441 0.456 0.437

ETTm1

96 6.8% 0.327 0.367 0.329 0.359 0.329 0.370 0.374 0.392
192 2.0% 0.374 0.395 0.380 0.393 0.379 0.400 0.385 0.435
336 8.7% 0.401 0.408 0.401 0.411 0.405 0.412 0.473 0.458
720 2.0% 0.479 0.456 0.475 0.448 0.482 0.464 0.496 0.483

ETTm2

96 5.3% 0.170 0.255 0.179 0.261 0.175 0.258 0.184 0.274
192 3.8% 0.235 0.296 0.246 0.305 0.241 0.302 0.248 0.384
336 3.4% 0.297 0.335 0.310 0.348 0.303 0.342 0.313 0.374
720 9.0% 0.401 0.397 0.405 0.402 0.456 0.436 0.425 0.438

1st Count 25 6 0 1

Table 11: The GPU memory (MB) and speed (inference time) of each model.

TFPS TSLANet FITS iTransformer TFDNet-IK PatchTST TimesNet DLinear FEDformer
MSE 0.423 0.448 0.445 0.441 0.458 0.460 0.441 0.434 0.441

GPU Memory (MB) 9.643 0.481 0.019 3.304 0.246 0.205 2.345 0.142 62.191
Average Inference Time (ms) 6.457 2.100 1.202 2.949 407.853 17.851 72.196 0.789 259.001

Performance Superiority: TFPS achieves an MSE of 0.423, outperforming TSLANet (0.448),
FITS (0.445), PatchTST (0.460), and FEDformer (0.441). This represents a 5.6% improvement
over TSLANet and a 8.0% improvement over PatchTST, highlighting its significant accuracy gains.
While DLinear achieves an MSE of 0.434, TFPS still demonstrates a 2.5% relative improvement,
making it the most accurate model among all baselines.

Efficiency Gains: TFPS maintains competitive runtime and memory efficiency.

• Runtime: TFPS runs in 6.457 ms, making it 2.8× faster than PatchTST (17.851 ms) and
11.2× faster than TimesNet (72.196 ms).

• Memory Usage: TFPS uses 9.643 MB of GPU memory, significantly less than FEDformer
(62.191 MB) and comparable to iTransformer (3.304 MB). This makes TFPS suitable for
resource-constrained applications while maintaining superior performance.

Balancing Trade-offs: While lightweight models like DLinear (0.434 MSE, 0.789 ms runtime)
are slightly more efficient, TFPS delivers a performance improvement of 2.5%, providing a well-
rounded solution that balances accuracy and efficiency effectively.

P HYPERPARAMETER SENSITIVITY

In this section, we analysis the impact of the hyperparameters α and β on the performance.

Specifically, we performed a grid search to optimize the hyperparameters αt =
{0.0001, 0.001, 0.01} and αf = {0.0001, 0.001, 0.01}, as shown in Figure 10 (a). After
extensive testing, we ultimately fixed at αt = αf = 10−3 in our experiments.

In addition, we conducted a grid search to optimize the balance factors βt = {0.01, 0.05, 0.1, 0.5, 1}
and βf = {0.01, 0.05, 0.1, 0.5, 1}. The performance under different parameter values is displayed
in Figure 10 (b), from which we have the following observations:
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(a) α (b) β

Figure 10: Parameter sensitivity of α and β of the proposed method on the ETTh1-96 dataset.

Table 12: In the table, w/ Imaginary indicates that we incorporate both the real and imaginary parts
into the network.

ETTh1 ETTh2
96 192 336 720 96 192 336 720

TFPS 0.398 0.423 0.484 0.488 0.313 0.405 0.392 0.410
w/ Imaginary 0.397 0.424 0.487 0.486 0.312 0.406 0.391 0.399

• Firstly, the performance is affected when the value of β is too low, indicating that the
proposed clustering objective plays a crucial role in distinguishing patterns.

• Second, an excessive β also has a negative on the performance. One plausible explanation
is that the excessive value influences the learning of the inherent structure of original data,
resulting in a perturbation of the embedding space.

• Overall, we recommend setting β around 0.1 for optimal performance.

Q FULL ABLATION

Q.1 IMPACTS OF REAL/IMAGINARY PARTS

To further validate the robustness of our approach, we adopted similar operations in FreTS to con-
duct experiments incorporating both the real and imaginary parts. The results in the Table 12 show
that the performance of TFPS with the real part only is very similar to that when both parts are in-
cluded, while requiring fewer parameters. This further reinforces the conclusion that TFPS remains
highly effective even when focusing solely on the real part of the Fourier transform.

Q.2 ABLATION ON PI

The PI module plays a crucial role in identifying and characterizing distinct patterns within the time
series data, while the gating network dynamically selects the most relevant experts for each segment.
This collaborative mechanism allows the model to specialize in handling different patterns and adapt
effectively to distribution shifts, thus mitigating the overfitting risks that arise from treating all data
equally.

To validate the importance of PI empirically, we have conducted the ablation experiments comparing
the model’s performance by replacing the PI module with a linear layer in the Table 3 of main text.
In addition, we supplement some ablation experiments in Table 13 to further verify the effectiveness
of PI.

Q.3 ABLATION ON R1 AND R2

We conducted ablation experiments to further verify the important roles of R1 and R2, as shown in
Table 14.
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Table 13: Ablation study of PI components. The model variants in our ablation study include the
following configurations across both time and frequency branches: (a) inclusion of the Time PI; (b)
inclusion of the Frequency PI; (c) exclusion of both. The best results are in bold.

Time PI Frequency PI ETTh1 ETTh2
96 192 336 720 96 192 336 720

✓ ✓ 0.398 0.423 0.484 0.488 0.313 0.405 0.392 0.410
✓ ✗ 0.404 0.454 0.490 0.503 0.322 0.413 0.410 0.425
✗ ✓ 0.405 0.456 0.493 0.509 0.324 0.415 0.412 0.430
✗ ✗ 0.407 0.458 0.497 0.513 0.328 0.418 0.419 0.435

Table 14: Ablation study of Loss Constraint. The model variants in our ablation study include
the following configurations across both time and frequency branches: (a) inclusion of the R1; (b)
inclusion of the R2; (c) exclusion of both. The best results are in bold.

R1 R2
ETTh1 ETTh2

96 192 336 720 96 192 336 720
✓ ✓ 0.398 0.423 0.484 0.488 0.313 0.405 0.392 0.410
✓ ✗ 0.408 0.449 0.500 0.498 0.320 0.418 0.415 0.429
✗ ✓ 0.403 0.434 0.493 0.491 0.316 0.413 0.405 0.418
✗ ✗ 0.412 0.456 0.509 0.503 0.328 0.425 0.420 0.435

Table 15: Multi-output predictor and a stacked attention layer are used to replace MoPE in ETTh1
and ETTh2 datasets.

ETTh1 ETTh2
96 192 336 720 96 192 336 720

TFPS 0.398 0.423 0.484 0.488 0.313 0.405 0.392 0.410
Multi-output Predictor 0.403 0.435 0.492 0.491 0.317 0.407 0.399 0.425

Attention Layers 0.399 0.452 0.492 0.508 0.334 0.407 0.409 0.451

R REPLACE MOPE WITH ALTERNATIVE DESIGNS

Here we provide the complete results of alternative designs for TFPS.

As show in Table 15, we have conducted addition experiments where we replaced the MoPE module
with weighted multi-output predictor and stacked self-attention layers, keeping all other components
and configurations identical. The results demonstrate that our proposed method significantly out-
performs them, which validates the importance of the Top-K selection and pattern-aware design in
enhancing the model’s representation capacity. In contrast, multi-output predictor and self-attention
typically treats all data points uniformly, which may limit its ability to capture subtle distribution
shifts or evolving patterns across patches.
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