A  DATASET

We evaluate the performance of TFPS on eight widely used datasets, including four ETT datasets
(ETThl1, ETTh2, ETTml and ETTm?2), Exchange, Weather, Electricity, and ILI. This subsection
provides a summary of the datasets:

. ETT(Zhou et al.,2021) (Electricity Transformer Temperature) dataset contains two elec-
tric transformers, ETT1 and ETT2, collected from two separate counties. Each of them
has two versions of sampling resolutions (15min & 1h). Thus, there are four ETT datasets:
ETTml1, ETTm2, ETThl1, and ETTh2.

* Exchange-Rate E] (Lai et al., [2018) the exchange-rate dataset contains the daily exchange
rates of eight foreign countries including Australia, British, Canada, Switzerland, China,
Japan, New Zealand, and Singapore ranging from 1990 to 2016.

* Weather [’| (Wu et al., [2021) dataset contains 21 meteorological indicators in Germany,
such as humidity and air temperature.

. ElectricityE](Wu et al.,|2021) is a dataset that describes 321 customers’ hourly electricity
consumption.

o JLI E] (Wu et al} 2021)) dataset collects the number of patients and influenza-like illness
ratio in a weekly frequency.

For the data split, we follow Zeng et al.|(2023) and split the data into training, validation, and testing
by a ratio of 6:2:2 for the ETT datasets and 7:1:2 for the others. Details are shown in Table[5] The
best parameters are selected based on the lowest validation loss and then applied to the test set for
performance evaluation.

Table 5: The statistics of the datasets.

Average MMD™ Average MMD"

Datasets Variates ~ Prediction Length ~ Timesteps Granularity (Time Domain) (Frequency Domain)
ETThl 7 {96, 192, 336, 720} 17,420 1 hour 0.938 0.340
ETTh2 7 {96, 192, 336, 720} 17,420 1 hour 0.582 0.635
ETTml 7 {96, 192, 336, 720} 69,680 15 min 1.371 0.328
ETTm2 7 {96, 192, 336, 720} 69,680 15 min 1.213 0.815
Exchange-Rate 8 {96, 192, 336, 720} 7,588 1 day 0.805 0.485
Weather 21 {96, 192, 336, 720} 52,696 10 min 0.129 0.236
Electricity 321 {96, 192, 336, 720} 26,304 1 hour 0.026 0.005
ILI 7 {24, 36, 48, 60} 966 1 week 0.125 0.234

* A large MMD indicates a more severe drift.

B MAXIMUM MEAN DISCREPANCY

Maximum mean discrepancy (MMD) is a kernel-based statistical test used to determine whether
given two distribution are the same. Given an X, the feature map ¢ transforms X to an another
space H such that ¢(X) € H. H is Reproducing Kernel Hilbert Space (RKHS) and we can leverage
the kernel trick to compute inner products in H:

X,Y suchthat k(X,Y) = (¢(X),o(Y))n. (13)

Feature means. The mean embeddings of a probability distribution P is a feature map that trans-
forms ¢(X) into the mean of each coordinate of ¢(X):

1p($(X)) = [E[p(X1)],- - E[p(Xm)]]” (14)

'nttps://github.com/zhouhaoyi/ETDataset
https://github.com/laiguokun/multivariate-time-series—data
*https://www.bgc-jena.mpg.de/wetter/
Ynttps://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
Shttps://gis.cdc.gov/grasp/fluview/fluportaldashboard. html
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The inner product of the mean embeddings of X ~ P and Y ~ () can be written in terms of kernel
function:

(1p(6(X)), 1@ (@(Y)))n = Epol{d(X), ¢(Y))u] = Ep o[k(X,Y)]. (15)

Maximum mean discrepancy. The MMD measures the distance between the mean embeddings of
two samples, X and Y, in the RKHS:

MMD?(P, Q) = |lup — ugll3, . (16)

For convenience we omit the ¢(-) terms. If we use the norm induced by the inner product such that

|z|| = v/ {z, x), the Eq.becomes:

MMD?(P, Q) = (11, — 1@+ b — 1Q) = (s tp) — 2{tip, Q) + (BQ: Q) (17)

Using the Eq. finally above expression becomes:
MMD?(P, Q) = Ep[k(X, X)] = 2Ep o[k(X,Y)] + Eq[k(Y,Y)]. (18)

Empirical estimation of MMD. In real-world applications, the underlying distribution are usually
unknown. Thus, an empirical estimate of Eq.[I8]can be used:

2
MMD?*(X,Y) = P > k(@i ;) ngk i, ;) e > kwiy), (19)
z;éj Z#J
where x; and x; are samples from P, y; and y; are samples from @), and k(x,y) is the kernel
function, often the Gaussian (RBF) kernel.

C DISTRIBUTION SHIFTS IN BOTH TIME AND FREQUENCY DOMAINS

The time series X’ is segmented into N patches, where each patch P, = {zn1,Zn2,...,Znp}
consists of P consecutive timesteps for n = 1,2,--- | N. For the frequency domain, we apply

a Fourier transform F to each patch P, obtaining its frequency-domain representation as P,
F(Pn).
Each patch’s probability distribution in the time domain is denoted as p;(P,,), representing the

statistical properties of P,,, while its frequency domain distribution, denoted as py (ﬁn) captures its
spectral characteristics.

The distribution shifts between two patches P; and P; are characterized by the comparing their
probability distributions in both time and frequency domains. These shifts are defined as:

Du(Pi, Py) = ld(pe(Pi), pe(P3))] > 6, (20)
Dy(Pi, Pj) = ldlps (i), s (Pi)] > 6, @21

where d is a distance metric, such as MMD values or Kullback-Leibler divergence, and 6 is a thresh-
old indicating a significant distribution shift. If D;(P;, P;) or D;(P;, P;) exceeds 0, this implies a
significant distribution shift between the two patches in either domain.

D RELATED WORK

Mixture-of-Experts. Mixture-of-Experts (MoE) models have gained attention for their ability to
scale efficiently by activating only a subset of experts for each input, as first introduced by |Shazeer
et al.[(2017). Despite their success, challenges such as training instability, expert redundancy, and
limited expert specialization have been identified (Puigcerver et al.l [2023; Dai et al.l 2024). These
issues hinder the full potential of MoE models in real-world tasks.

Recent advances have integrated MoE with Transformers to improve scalability and efficiency. For
example, GLaM (Du et al., [2022)) and Switch Transformer (Fedus et al.| [2022) interleave MoE lay-
ers with Transformer blocks, reducing computational costs. Other models like state space models
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Figure 7: Results of expert number experiments for ETTh1 and ETTh2.

(SSMs) (Pidro et al., [2024; |/Anthony et al., [2024), (Alkilane et al.,|2024) combines MoE with alter-
native architectures for enhanced scalability and inference speed.

In contrast, our approach introduces MoE into time series forecasting by assigning experts to specific
time-frequency patterns, enabling more effective, patch-level adaptation. This approach represents a
significant innovation in time series forecasting, offering a more targeted and effective way to handle
varying patterns across both time and frequency domains.

E MORE MODEL ANALYSIS

E.1 ANALYSIS OF EXPERTS

Detailed Results on the Number of Experts.
We provide the full results on the number of experts for the ETTh1 and ETTh2 dataset in Figure

In Figure[6] we set the learning rate to 0.0001 and conducted four sets of experiments on the ETTh1
and ETTh2 datasets, K; = 1, Ky = {1,2,4, 8}, to explore the effect of the number of frequency
experts on the results. For example, K;1K ;4 means that the TFPS contains 1 time experts and 4
frequency experts. We observed that K;1K ;2 outperformed K;1K ¢4 in both cases, suggesting that
increasing the number of experts does not always lead to better performance.

In addition, we conducted three experiments based on the optimal number of frequency experts to
verify the impact of varying the number of time experts on the results. As shown in Figure[7] the best
results for ETTh1 were obtained with K4 K2, K;8K 4, K;4K ¢4, K;4K ¢4, while for ETTh2, the
optimal results were achieved with K;2K 2, K;2K 4, K;4K 2 and K;4K ;2. Combined with the
average MMD in Table [5] we attribute this to the fact that, in cases where concept drift is more
severe, such as ETThl in the time domain, more experts are needed, whereas fewer experts are
sufficient when the drift is less severe.

Comparing Inter- and Intra-Cluster Differences via MMD.

We present the heatmaps of inter-cluster and intra-cluster MMD values obtained using linear layers
and PI in Figure [8| The diagonal elements represent the average MMD values of patches within
the same clusters. If these values are small, it indicates that the difference of patches within the
same cluster is relatively similar. The off-diagonal elements represent the average MMD values
between patches from different clusters, where larger values mean significant differences between
the clusters. We observe that when using PI, the intra-cluster drift is smaller, while the inter-cluster
shift is more pronounced compared to the linear layer. This indicates that our identifier effectively
classifies and distinguishes between different patterns.
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Figure 8: Heatmap showing the MMD values of inter- and intra-cluster patches on ETThI.

Table 6: Detailed results of the comparison between TFPS and normalization methods. The best
results are highlighted in bold and the second best are underlined.

TEPS FEDformer

Model | IMP. + SIN + SAN + Dish-TS + NST + RevIN
(Our) (1202421} (]2023b} (12023} (12022} (2021 }
Metric | MSE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 | -1.0% | 0.398 0.413 | 0.413 0.372 | 0.383 0.409 | 0.390 0.424 | 0.394 0.414 | 0.392 0.413
192 | 3.8% | 0.423 0423 | 0.443 0.417 | 0431 0.438 | 0.441 0.458 | 0.441 0.442 | 0.443 0.444
336 | -0.3% | 0.484 0.461 | 0.465 0.448 | 0.471 0.456 | 0.495 0.486 | 0.485 0.466 | 0.495 0.467
720 | 4.5% | 0.488 0.476 | 0.509 0.490 | 0.504 0.488 | 0.519 0.509 | 0.505 0.496 | 0.520 0.498
96 | 31.3% | 0.313 0.355 | 0.412 0.357 | 0.300 0.355 | 0.806 0.589 | 0.381 0.403 | 0.380 0.402
192 | 26.0% | 0.405 0.410 | 0.472 0.453 | 0.392 0.413 | 0.936 0.659 | 0.478 0.453 | 0.457 0.443
336 | 36.7% | 0.392 0.415 | 0.527 0.527 | 0.459 0.462 | 1.039 0.702 | 0.561 0.499 | 0.515 0.479
720 | 37.9% | 0.410 0.433 | 0.593 0.639 | 0.462 0.472 | 1.237 0.759 | 0.502 0.481 | 0.507 0.487
96 | 4.1% | 0.327 0.367 | 0.373 0.320 | 0.311 0.355 | 0.348 0.397 | 0.336 0.382 | 0.340 0.385
192 | 29% | 0374 0.395 | 0.394 0.366 | 0.351 0.383 | 0.406 0.428 | 0.386 0.409 | 0.390 0.411
336 | 53% | 0.401 0.408 | 0.418 0.405 | 0.390 0.407 | 0.438 0.450 | 0.438 0.441 | 0.432 0.436
720 | -0.5% | 0.479 0.456 | 0.451 0.475 | 0.456 0.444 | 0.497 0.481 | 0.483 0.460 | 0.497 0.466
96 | 33.5% | 0.170 0.255 | 0.326 0.211 | 0.175 0.266 | 0.394 0.395 | 0.191 0.272 | 0.192 0.272
192 1 32.3% | 0.235 0.296 | 0.402 0.316 | 0.246 0.315 | 0.552 0.472 | 0.270 0.321 | 0.270 0.320
336 | 35.0% | 0.297 0.335 | 0.465 0.399 | 0.315 0.362 | 0.808 0.601 | 0.353 0.371 | 0.348 0.367
720 | 359% | 0.401 0.397 | 0.555 0.547 | 0412 0.422 | 1.282 0.771 | 0.445 0.422 | 0430 0415
96 | 28.4% | 0.154 0.202 | 0.280 0.215 | 0.179 0.239 | 0.244 0.317 | 0.187 0.234 | 0.187 0.234
192 1 23.3% | 0.205 0.249 | 0.314 0.264 | 0.234 0.296 | 0.320 0.380 | 0.235 0.272 | 0.235 0.272
336 | 19.8% | 0.262 0.289 | 0.329 0.293 | 0.304 0.348 | 0.424 0.452 | 0.289 0.308 | 0.287 0.307
720 | 18.4% | 0.344 0.342 | 0.382 0.370 | 0.400 0.404 | 0.604 0.553 | 0.359 0.352 | 0.361 0.353
1% (2") Count 24 (8) 94) 7 (24) 0 (1) 0(l) 0(2)

ETThl

ETTh2

ETTml

ETTm2

‘Weather

E.2 RESULTS OF THE COMPARISON BETWEEN TFPS AND NORMALIZATION METHODS

In this section, we provide the detailed experimental results of the comparison between TFPS and
five state-of-the-art normalization methods for non-stationary time series forecasting: SIN

et al.l 2024a), SAN (Liu et al, 2023b), Dish-TS (Fan et al., [2023), Non-Stationary Transformers
(NST) (Liu et all, [2022), and RevIN (Kim et all [2021). The results of SIN are from
(2024d), other results are from (2023b). We report the evaluation of FEDformer over all
the forecasting lengths for each dataset and the relative improvements in Table[6] It can be concluded
that TFPS achieves the best performance among existing methods in most cases. The improvement is
significant with an average MSE decrease of 18.9%. We attribute this improvement to the accurate
identification of pattern groups and the provision of specialized experts for each group, thereby
avoiding the over-stationarization problem often associated with normalization methods.
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F METRIC ILLUSTRATION

We use mean square error (MSE) and mean absolute error (MAE) as our metrics for evaluation of
all forecasting models. Then calculation of MSE and MAE can be described as:

1 L+H
= . — V)2
MSE = > (Vi-Y)?, (22)
1=L+1
1 L+H
MAE =5 > |Vi-Yi, (23)
i=L+1

where Y is predicted vector with H future values, while Y is the ground truth.

G ALGORITHM OF TFPS

We provide the pseudo-code of TFPS in Algorithm [T}

H BROADER IMPACT

Real-world applications. TFPS addresses the crucial challenge of time series forecasting, which
is a valuable and urgent demand in extensive applications. Our method achieves consistent state-
of-the-art performance in four real-world applications: electricity, weather, exchange rate, illness.
Researchers in these fields stand to benefit significantly from the enhanced forecasting capabilities
of TFPS. We believe that improved time series forecasting holds the potential to empower decision-
making and proactively manage risks in a wide array of societal domains.

Academic research. TFPS draws inspiration from classical time series analysis and stochastic
process theory, contributing to the field by introducing a novel framework with the assistance pat-
tern recognition. This innovative architecture and its associated methodologies represent significant
advancements in the field of time series forecasting, enhancing the model’s ability to address distri-
bution shifts and complex patterns effectively.

Model Robustness. Extensive experimentation with TFPS reveals robust performance without
exceptional failure cases. Notably, TFPS exhibits impressive results and maintains robustness in
datasets with distribution shifts. The pattern identifier structure within TFPS groups the time series
into distinct patterns and adopts a mixture of pattern experts for further prediction, thereby allevi-
ating prediction difficulties. However, it is essential to note that, like any model, TFPS may face
challenges when dealing with unpredictable patterns, where predictability is inherently limited. Un-
derstanding these nuances is crucial for appropriately applying and interpreting TFPS’s outcomes.

Our work only focuses on the scientific problem, so there is no potential ethical risk.

I LIMITATIONS

Though TFPS demonstrates promising performance on the benchmark dataset, there are still some
limitations of this method. First, the patch length is primarily chosen heuristically, and the cur-
rent design struggles with handling indivisible lengths or multi-period characteristics in time series.
While this approach works well in experiments, it lacks generalizability for real-world applications.
Second, the real-world time series data undergo expansion, implying that the new patterns contin-
ually emerge over time, such as an epidemic or outbreak that had not occurred before. Therefore,
future work will focus on developing a more flexible and automatic patch length selection mecha-
nism, as well as an extensible solution to address these evolving distribution shifts.
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Algorithm 1 Time-Frequency Pattern-Specific architecture - Overall Architecture.

Input: Input lookback time series X € RZ*C; input length L; predicted length H; variables number
C; patch length P; feature dimension D; encoder layers number n; random Gaussian distribution-
initialized subspace D = [DM) D®) ... D) each DU) € R where ¢ = C' x D and
d = q/ K. Technically, we set D as 512, n as 2.

Output: The prediction result Y.

1: X = X.transpose > X € ROXL
2: Xpgp =Patch(X)+Position Embedding > XD € ROXNXD
3: > Time Encoder.

4 XY= Xpp

5: for lin {1,...,n}:

6:  X7'=TayerNorm (X' +self-Attn (X} 1)) > Xt € ROXNXD
7. X! =layerNorm (X|™' + Feed-Forward (X;™1). > X! e ROXN*D
8: End for

9: 2 = X! b 2L € ROXNXD
10: > Pattern Identifier for Time Domain.
11: s; = Subspace affinity (z,D) > Eq.|§|ofthe paper s, € REXNxD
12: 5; = Subspace refinement (sy) > Eq.ofthe paper 5; € ROXNxD
13: > Mixture of Temporal Pattern Experts.

14: G(s) = Softmax (TopK (s¢))

15: hy = SO0 G(s)MLPg(2) > Eq. and Eq. of the paper hy € REXN*D
16: > Frequency Encoder.

17: X} = Xpg DEq.ofthepaperXJQ € REXNxFP
18: for lin {1,...,n}:

19: X}_l =LayerNorm (ch_1 +Fourier (X}_l)). > X}_l € REXNxD
20: X} = LayerNorm (Xjfl + Feed-Forward (X;fl)). > X} € REXNxD
21: End for

22: zf:X} DZ?GRCXNXD
23: » Pattern Identifier for Frequency Domain.

24: sy = Subspace affinity (25, D) > Eq.|§|0f the paper sy € REXNxD
25: 55 = Subspace refinement (sy) > Eq.[7] of the paper 5 € RE*XNxD
26: > Mixture of Frequency Pattern Experts.

27: G(s) = Softmax (TopK (sy))

28: hy =S, G(s)MLP4(25) > Eq.and Eq.of the paper hy € REXN*P
29: h = Concat(h¢, hy) > h € REXNx2+D
30: forcin {1,...,C}:

31: Y =Linear (Flatten (h)). > Project tokens back to predicted series Y € RC*H
32: End for

33: )A/:Y.transpose >Y € REXC
34: Return Y > Output the final prediction Y € RHXC
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Table 7: Multivariate long-term forecasting results for Traffic. The input lengths is L = 96. The
best results are highlighted in bold and the second best are underlined.

Model IMP. TFPS TSLANet FITS iTransformer | TFDNet-IK PatchTST TimesNet DLinear FEDformer
) (Our) 42024| 2024! 42024?1' m 42023 112023a| 42023 | d2022|
Metric MSE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE AE | MSE MAE | MSE MAE | MSE MAE
96 | 21.1% | 0.427 0.296 | 0.475 0.307 | 0.651 0.388 | 0.428 0.295 | 0.519 0.314 | 0.446 0.284 | 0.586 0.316 | 0.650 0.397 | 0.575 0.357
192 | 17.7% | 0.445 0.298 | 0.478 0.306 | 0.603 0.364 | 0.448 0.302 | 0.513 0.314 | 0.453 0.285 | 0.618 0.323 | 0.600 0.372 | 0.613 0.381
336 | 17.0% | 0.459 0.307 | 0.494 0.312 | 0.610 0.366 | 0.465 0.311 | 0.525 0.319 | 0.467 0.291 | 0.634 0.337 | 0.606 0.374 | 0.622 0.380
720 | 15.1% | 0.496 0.313 | 0.528 0.331 | 0.648 0.387 | 0.501 0.333 | 0.561 0.336 | 0.501 0.492 | 0.659 0.349 | 0.646 0.396 | 0.630 0.383

1 Count 7 0 0 1 0 0 0 0 0

Traffic

Table 8: Experiment results under hyperparameter searching for the long-term forecasting task. The
best results are highlighted in bold and the second best are underlined.

Model | IMP TFPS TSLANet FITS iTransformer | TFDNet-IK PatchTST TimesNet Dlinear FEDformer
i (Our) 12024} 112024' 12024a| m 42023 d2023a| 42023} 12022|

Metric | MSE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE  MAE | MSE AE | MSE MAE | MSE MAE | MSE MAE
96 | 1.5% |0.372 0.404 | 0.368 0.394 | 0.374 0.395 | 0.387 0.405 | 0.360 0.387 | 0.375 0.400 | 0.389 0.412 | 0.384 0.405 | 0.385 0.425
192 | 57% | 0.401 0.410 | 0.413 0.418 | 0407 0.414 | 0441 0.436 | 0403 0.412 | 0414 0.421 | 0.441 0.442 | 0.443 0.450 | 0.441 0.461
336 | 9.8% | 0.409 0.402 | 0412 0.416 | 0429 0.428 | 0.491 0.463 | 0.434 0.429 | 0.432 0.436 | 0.491 0.467 | 0.447 0.448 | 0.491 0.473
720 | 11.2% | 0.423 0.433 | 0473 0.477 | 0425 0.446 | 0.509 0.494 | 0.437 0.452 | 0.450 0.466 | 0.512 0.491 | 0.504 0.515 | 0.501 0.499
96 | 9.3% |0.268 0.325]0.283 0.344 | 0.274 0.337 | 0.301 0.350 | 0.271 0.329 | 0.278 0.336 | 0.324 0.368 | 0.290 0.353 | 0.342 0.383
192 | 10.4% | 0.329 0.376 | 0.331 0.378 | 0.337 0.377 | 0.380 0.399 | 0.333 0.372 | 0.339 0.380 | 0.393 0.410 | 0.388 0.422 | 0.434 0.440
336 | 17.7% | 0.329 0.401 | 0.319 0.377 | 0.360 0.398 | 0.424 0.432 | 0.361 0.396 | 0.336 0.380 | 0.429 0.437 | 0.463 0.473 | 0.512 0.497
720 | 9.0% | 0412 0.441 | 0407 0.449 | 0.386 0.423 | 0.430 0.447 | 0.382 0.418 | 0.382 0.421 | 0.433 0.448 | 0.733 0.606 | 0.467 0.476
96 |10.2% | 0.281 0.329 | 0.291 0.353 | 0.303 0.345 [ 0.342 0.377 [ 0.283 0.330 | 0.288 0.342 | 0.337 0.377 | 0.301 0.345 | 0.360 0.406
192 | 8.5% | 0.324 0.354 | 0.329 0.372 | 0.337 0.365 | 0.383 0.396 | 0.327 0.356 | 0.334 0.372 | 0.395 0.406 | 0.336 0.366 | 0.395 0.427
336 | 8.2% |0.359 0.404 | 0.357 0.392 | 0.372 0.385 | 0.418 0.418 | 0.361 0.375 | 0.367 0.393 | 0.433 0.432 | 0.372 0.389 | 0.448 0.458
720 | 8.2% | 0.409 0.408 | 0.423 0.425 | 0428 0.416 | 0.487 0.457 | 0411 0409 | 0.417 0.422 | 0.484 0458 | 0.427 0423 | 0491 0.479
96 | 8.9% |0.158 0.243 | 0.167 0.256 | 0.165 0.255 | 0.186 0.272 | 0.158 0.244 | 0.164 0.253 | 0.182 0.262 | 0.172 0.267 | 0.193 0.285
192 | 57% | 0222 0.302 | 0221 0.294 | 0220 0.291 | 0.254 0.314 | 0.219 0.282 | 0.221 0.292 | 0.252 0.307 | 0.237 0.314 | 0.256 0.324
336 | 8.5% |0.268 0.316 | 0.277 0.329 | 0.274 0.326 | 0.316 0.351 | 0.273 0.317 | 0.277 0.329 | 0.312 0.346 | 0.295 0.359 | 0.321 0.364
720 | 12.0% | 0.344 0.373 | 0.356 0.382 | 0.367 0.383 | 0.414 0.407 | 0.346 0.374 | 0.365 0.384 | 0.417 0.404 | 0427 0.439 | 0434 0.426
96 | 17.8% | 0.370 0.257 | 0.375 0.260 | 0.398 0.285 | 0.428 0.295 | 0.377 0.253 0.586 0.316 | 0.413 0.287 | 0.575 0.357
192 | 17.0% | 0.391 0.269 | 0.395 0.272 | 0.408 0.288 | 0.448 0.302 | 0.391 0.260 0OM 0.618 0.323 | 0.424 0.290 | 0.613 0.381
336 | 17.2% | 0.401 0.271 | 0402 0.272 | 0420 0.292 | 0.465 0.311 | 0.408 0.266 0.634 0.337 | 0.438 0.299 | 0.622 0.380
720 | 15.7% | 0432 0.294 | 0.431 0.288 | 0.448 0.310 | 0.501 0.333 | 0.451 0.291 0.659 0.349 | 0.466 0.316 | 0.630 0.383
96 |103% | 0.134 0.225]0.137 0.229 | 0.135 0.231 | 0.148 0.239 | 0.130 0.222 | 0.130 0.223 [ 0.168 0.272 | 0.140 0.237 | 0.188 0.303
192 | 11.9% | 0.145 0.238 | 0.153 0.242 | 0.149 0.244 | 0.167 0.258 | 0.146 0.237 | 0.149 0.240 | 0.186 0.289 | 0.154 0.250 | 0.197 0.311
336 | 6.8% |0.166 0.258 | 0.165 0.263 | 0.165 0.260 | 0.178 0.271 | 0.162 0.254 | 0.168 0.262 | 0.196 0.297 | 0.169 0.268 | 0.212 0.327
720 | 6.9% | 0.200 0.291 | 0.206 0.294 | 0.204 0.293 | 0.211 0.300 | 0.201 0.287 | 0.204 0.289 | 0.235 0.329 | 0.204 0.300 | 0.243 0.352
1% Count 26 5 0 0 16 1 0 0 0

ETThl

ETTh2

ETTml

ETTm2

Electricity| Traffic

J TRAFFIC RESULTS

We conducted addition experiments on high-dimensional Traffic dataset to further evaluate the per-
formance and generalizability of TFPS, as shown in Table[7]

K HYPERPARAMETER-SEARCH RESULTS

To ensure a fair comparison between models, we conducted experiments using unified parameters
L = 96 and reported results in the main text.

In addition, considering that the reported results in different papers are mostly obtained through
hyperparameter search, we provide the experiment results with the full version of the parameter
search. We searched for input length among 96, 192, 336, and 512. The results are included in
Table[8] All baselines are reproduced by their official code.

We can find that the relative promotion of TFPS over TFDNet is smaller under comprehensive
hyperparameter search than the unified hyperparameter setting. It is worth noticing that TFPS runs
much faster than TFDNet according to the efficiency comparison in Table[TT} Therefore, considering
performance, hyperparameter-search cost and efficiency, we believe TFPS is a practical model in
real-world applications and is valuable to deep time series forecasting community.

L VISUALIZATION OF CLUSTERING

Figure [ presents the t-SNE visualization of the learned embedded representation on the ETTh1. In
the Figure 0] (a), where the pattern identifier is replaced with a linear layer, the representation lacks
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Figure 9: Visualization of the embedded representations with t-SNE on ETThl. The left figure
shows the visualization when the Patch Identifier is replaced with a Linear Layer for comparison,
while the right figure shows the visualization of the proposed method.

Table 9: Comparison between TFPS and MoE-based methods. The best results are highlighted in
bold and the second best are underlined.

Model P TFPS MoLE MoU KANATSF
i (Our) [2024] [2024] 2024b

Metric MSE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 | 43% | 0398 0413 | 0.383 0.392 | 0.381 0.403 | 0.382 0.400
192 | 1.7% | 0.423 0.423 | 0434 0.426 | 0429 0.430 | 0.430 0.426
336 | 1.6% | 0.484 0.461 | 0.489 0478 | 0.488 0.463 | 0.498 0.467
720 | 8.2% | 0.488 0.476 | 0.602 0.545 | 0.499 0.484 | 0494 0.479
96 | 10.4% | 0313 0355 | 0.413 0360 | 0317 0.358 | 0.318 0.358
192 | 10.3% | 0.405 0.410 | 0.525 0416 | 0409 0414 | 0419 0414
336 | 7.1% | 0.392 0415|0423 0434 | 0397 0420 | 0447 0452
720 | 84% | 0.410 0.433 | 0.453 0.458 | 0412 0.434 | 0.477 0476
96 | 13.5% | 0327 0.367 | 0.338 0.380 | 0.465 0.442 | 0.333 0.371
192 | 10.6% | 0.374 0.395 | 0.388 0.403 | 0.483 0.455 | 0.384 0.399
336 | 11.8% | 0.401 0.408 | 0.417 0431 | 0.540 0488 | 0407 0413
720 | 7.3% | 0479 0.456 | 0.486 0.472 | 0.583 0.509 | 0.483 0.469
96 | 13.9% | 0.170 0.255 | 0.238 0.271 | 0.179 0.263 | 0.175 0.260
192 | 3.8% | 0.235 0.296 | 0.247 0305 | 0.243 0.303 | 0.244 0.305
336 | 33% |0.297 0.335| 0308 0343 | 0.306 0.343 | 0.308 0.347
720 | 13.7% | 0.401 0.397 | 0.583 0.419 | 0.405 0.404 | 0.405 0.404
1% Count 30 1 1 0

ETTh1

ETTh2

ETTml

ETTm2

clear clustering structures, resulting in scattered and indistinct groupings. In contrast, Figure [9] (b)
shows the visualization of the representation learned by the proposed method, which effectively
captures discriminative features and reveals significantly clearer clustering patterns.

M COMPARED WITH MOE-BASED METHODS

As shown in Table 0] unlike MoE-based methods that rely on the Softmax function as a gating
mechanism, our approach constructs a pattern recognizer to assign different experts to handle distinct
patterns. This results in TFPS achieving relative improvements of 2.3%, 9.0%, 10.6%, and 9.1%
across the four datasets, respectively.

N COMPARED WITH DISTRIBUTION SHIFT METHODS

As shown in Table [T0] we compare with the methods for distribution shift. This results in TFPS
achieving relative improvements of 6.7%, 6.6%, 4.8%, and 5.9% across the four datasets, respec-
tively.

O EFFICIENCY ANALYSIS

To make this clearer, we present the results of ETTh1 for a prediction length of 192 from Table2]and
include additional results on runtime and computational complexity in Table[TT] Due to the sparsity
of MoPE, TFPS achieves a balance between performance and efficiency:
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Table 10: Comparison between TFPS and methods for Distribution Shift. The best results are
highlighted in bold and the second best are underlined.

TFPS Koopa SOLID
Model IMP. (Our) 2024b 2024a 2024

Metric MSE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 | 7.9% | 0.398 0413 | 0.385 0.407 | 0.440 0439 | 0.425 0.402
192 | 10.3% | 0.423 0.423 | 0.445 0.434 | 0492 0.466 | 0.452 0.443
336 | 4.9% | 0.484 0.461 | 0.489 0.460 | 0.525 0.481 | 0.492 0482
720 | 4.4% | 0.488 0.476 | 0497 0.480 | 0.517 0.496 | 0.504 0.496
96 | 10.6% | 0.313 0.355 | 0.318 0.360 | 0.318 0.350 | 0.382 0.362
192 | 47% | 0.405 0.410| 0.378 0.398 | 0414 0.418 | 0.435 0426
336 | 4.8% | 0392 0.415 | 0415 0430 | 0.398 0421 | 0426 0.419
720 | 6.8% | 0.410 0.433 | 0445 0.456 | 0.424 0441 | 0.456 0.437
96 | 6.8% | 0.327 0.367 | 0.329 0.359 | 0329 0370 | 0.374 0.392
192 | 2.0% | 0.374 0395 | 0380 0.393 | 0.379 0.400 | 0.385 0.435
336 | 8.7% | 0.401 0.408 | 0.401 0411 | 0.405 0412|0473 0458
720 | 2.0% | 0479 0.456 | 0.475 0.448 | 0.482 0.464 | 0.496 0.483
96 | 53% | 0.170 0.255 | 0.179 0.261 | 0.175 0.258 | 0.184 0.274
192 | 3.8% | 0.235 0.296| 0246 0.305 | 0.241 0.302 | 0.248 0.384
336 | 3.4% | 0.297 0.335| 0310 0348 | 0.303 0.342 | 0313 0374
720 | 9.0% | 0.401 0.397 | 0.405 0.402 | 0.456 0.436 | 0.425 0.438
1% Count 25 6 0 1

ETThl

ETTh2

ETTml

ETTm2

Table 11: The GPU memory (MB) and speed (inference time) of each model.

TFPS TSLANet FITS iTransformer TFDNet-IK PatchTST TimesNet DLinear FEDformer
MSE 0.423 0448 0445 0.441 0.458 0.460 0.441 0.434 0.441
GPU Memory (MB) 9.643 0.481 0.019 3.304 0.246 0.205 2.345 0.142 62.191
Average Inference Time (ms) | 6.457 2.100 1.202 2.949 407.853 17.851 72.196 0.789 259.001

Performance Superiority: TFPS achieves an MSE of 0.423, outperforming TSLANet (0.448),
FITS (0.445), PatchTST (0.460), and FEDformer (0.441). This represents a 5.6% improvement
over TSLANet and a 8.0% improvement over PatchTST, highlighting its significant accuracy gains.
While DLinear achieves an MSE of 0.434, TFPS still demonstrates a 2.5% relative improvement,
making it the most accurate model among all baselines.

Efficiency Gains: TFPS maintains competitive runtime and memory efficiency.

* Runtime: TFPS runs in 6.457 ms, making it 2.8x faster than PatchTST (17.851 ms) and
11.2x faster than TimesNet (72.196 ms).

* Memory Usage: TFPS uses 9.643 MB of GPU memory, significantly less than FEDformer
(62.191 MB) and comparable to iTransformer (3.304 MB). This makes TFPS suitable for
resource-constrained applications while maintaining superior performance.

Balancing Trade-offs: While lightweight models like DLinear (0.434 MSE, 0.789 ms runtime)
are slightly more efficient, TFPS delivers a performance improvement of 2.5%, providing a well-
rounded solution that balances accuracy and efficiency effectively.

P HYPERPARAMETER SENSITIVITY

In this section, we analysis the impact of the hyperparameters « and 5 on the performance.

Specifically, we performed a grid search to optimize the hyperparameters o, =
{0.0001,0.001,0.01} and ay = {0.0001,0.001,0.01}, as shown in Figure (a). After
extensive testing, we ultimately fixed at a; = oy = 1072 in our experiments.

In addition, we conducted a grid search to optimize the balance factors §; = {0.01,0.05,0.1,0.5,1}
and 3¢ = {0.01,0.05,0.1,0.5,1}. The performance under different parameter values is displayed
in Figure[T0](b), from which we have the following observations:
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Figure 10: Parameter sensitivity of « and S of the proposed method on the ETTh1-96 dataset.

Table 12: In the table, w/ Imaginary indicates that we incorporate both the real and imaginary parts
into the network.

ETThl ETTh2
96 192 336 720 96 192 336 720
TFPS 0.398 0.423 0.484 0.488 | 0.313 0.405 0.392 0.410
w/ Imaginary | 0.397 0.424 0.487 0.486 | 0.312 0.406 0.391 0.399

* Firstly, the performance is affected when the value of /3 is too low, indicating that the
proposed clustering objective plays a crucial role in distinguishing patterns.

* Second, an excessive [ also has a negative on the performance. One plausible explanation
is that the excessive value influences the learning of the inherent structure of original data,
resulting in a perturbation of the embedding space.

* Overall, we recommend setting /3 around 0.1 for optimal performance.

Q FULL ABLATION

Q.1 IMPACTS OF REAL/IMAGINARY PARTS

To further validate the robustness of our approach, we adopted similar operations in FreTS to con-
duct experiments incorporating both the real and imaginary parts. The results in the Table [I2] show
that the performance of TFPS with the real part only is very similar to that when both parts are in-
cluded, while requiring fewer parameters. This further reinforces the conclusion that TFPS remains
highly effective even when focusing solely on the real part of the Fourier transform.

Q.2 ABLATION ON PI

The PI module plays a crucial role in identifying and characterizing distinct patterns within the time
series data, while the gating network dynamically selects the most relevant experts for each segment.
This collaborative mechanism allows the model to specialize in handling different patterns and adapt
effectively to distribution shifts, thus mitigating the overfitting risks that arise from treating all data
equally.

To validate the importance of PI empirically, we have conducted the ablation experiments comparing
the model’s performance by replacing the PI module with a linear layer in the Table [3]of main text.
In addition, we supplement some ablation experiments in Table[I3]to further verify the effectiveness
of PI.

Q.3 ABLATION ON R; AND Ry

We conducted ablation experiments to further verify the important roles of R; and R, as shown in
Table [d
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Table 13: Ablation study of PI components. The model variants in our ablation study include the
following configurations across both time and frequency branches: (a) inclusion of the Time PI; (b)
inclusion of the Frequency PI; (c) exclusion of both. The best results are in bold.

) ETThi ETTh2

Time PI Frequency Pl 50155336750 | 96 192 336 720
7 7 0.398 0.423 0.484 0.488 | 0.313 0.405 0392 0.410
7 X 0404 0454 0490 0503 | 0322 0413 0410 0425
X v 0405 0456 0493 0509 | 0324 0415 0412 0430
X P 0407 0458 0497 0513 | 0328 0418 0419 0435

Table 14: Ablation study of Loss Constraint. The model variants in our ablation study include
the following configurations across both time and frequency branches: (a) inclusion of the Ry; (b)
inclusion of the Rs; (c) exclusion of both. The best results are in bold.

R R, ETThl ETTh2

96 192 336 720 96 192 336 720
v v 10398 0423 0.484 0.488 | 0.313 0.405 0.392 0.410
v X | 0408 0449 0.500 0.498 | 0.320 0.418 0415 0.429
X v 10403 0434 0493 0491|0316 0.413 0.405 0.418
X X 0412 0456 0509 0.503 | 0.328 0.425 0.420 0.435

Table 15: Multi-output predictor and a stacked attention layer are used to replace MoPE in ETTh1

and ETTh2 datasets.

ETThl

ETTh2

96

192

336

720 96 192 336 720

TFPS
Multi-output Predictor
Attention Layers

0.398 0.423 0.484 0.488 | 0.313 0.405 0.392 0.410
0.403 0.435 0.492 0491 | 0.317 0.407 0399 0.425
0.399 0.452 0492 0.508 | 0.334 0.407 0.409 0.451

R REPLACE MOPE WITH ALTERNATIVE DESIGNS

Here we provide the complete results of alternative designs for TFPS.

As show in Table[T3] we have conducted addition experiments where we replaced the MoPE module
with weighted multi-output predictor and stacked self-attention layers, keeping all other components
and configurations identical. The results demonstrate that our proposed method significantly out-
performs them, which validates the importance of the Top-K selection and pattern-aware design in
enhancing the model’s representation capacity. In contrast, multi-output predictor and self-attention
typically treats all data points uniformly, which may limit its ability to capture subtle distribution
shifts or evolving patterns across patches.
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