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Appendix

The appendix is organized as follows: We will first give an extended discussion of related work (A2
Related Work). We then give a small extension to our taxonomy to deal with sample-based decision
makers (A2 Formal Setup). We will then give the proofs of Section 4 (A4 Can there be a generic
fair representation?). We then give an extended version of Section 5, which includes definitions
of the assumptions made in Theorem 2 and the proofs of the section (AS Fairness of a feature
set vs fairness of a feature). Following this we give the proofs of Section 6 (A6 Impossibility of
adversarially fair representations with respect to predictive rate parity). Lastly, we give some
characterizations in terms of the underlying distribution of the representation fairness notions defined
in our setup section(A7 Characterizations of different notions of fair representation).

A2 Related Work

There is an apparent discrepancy between our impossibility results and the long list of papers claiming
to achieve fair representations ([16, 11, 15, 7, 4, 12]) . What is the source of that discrepancy? Note
that there is a difference in the setup of the problem; in most of the papers that claim positive
results about fair representations, the designer of the fair representation has access to the data
distribution w.r.t. which the fairness is being evaluated (to the unlabeled marginal distribution for
demographic/statistical parity, and to the full labeled distribution for obtaining Odds Equality fairness).
However, in this paper, we address the possibility of having a fixed data representation that can be
used by learning agents down the road for different classification tasks.

In many cases the assumptions about the connection between the data available at the times of
designing the representation and the tasks it will be used for remains implicit, though. For example
[16] define their notion of fairness by saying: "We formulate this using the notion of statistical parity,
which requires that the probability that a random element from X+ maps to a particular prototype is
equal to the probability that a random element from X ~ maps to the same prototype” (where X T
and X ~ are the two groups w.r.t. which one aims to respect fairness). However, they do not specify
what is the meaning of "a random element". The natural interpretation of these terms is that "random"
refers to the uniform distribution over the finite set of individuals over which the algorithm selects. In
that case, that information varies with each concrete tasks and is not available to the task-independent
representation designer. Alternatively, one could interpret those "random" selections as picking
uniformly at random from some predetermined large training set (or data repository) that s fixed for
all downstream tasks. Such randomness may well be available to the representation designer, but it
misses the intention of statistical parity fairness; For example, the fixed training set there are 10,000
individuals from one group and 20,000 from the other group, but when a bank comes to allocate
loans they have 30 applicants from the first group and 100 applicants from the other. For the fairness
of these loan allocation decisions, the relevant ratio between the groups is 30/100 rather than the
10,000/20,000 ratio available to the representation designer.

Below we refer in some more detail to several well cited papers discussion the design of fair data
representations for the use of classification learning by agents using that data.

Zemel et al 2013 [16] "our intermediate representation can be used for other classification tasks (i.e.,
transfer learning is possible)". "We further posit that such an intermediate representation is
fundamental to progress in faimess in classification, since it is composable and not ad hoc;
once such a representation is established, it can be used in a blackbox fashion to turn any
classification algorithm into a fair classifier, by simply applying the classifier to the sanitized
representation of the data.". " Hence the mutual information between Z and S is small, and
we have accomplished the goal of obfuscating information about the protected group." Here
Z is the representation and S is the group membership.

There are two significant issues with this approach. First, as mentioned above, the algorithm
generating the representation can have access only to some fixed data distribution. A
distribution that is likely to be irrelevant for specific "blackbox fashion" usage by agents
addressing specific classification problems down the road. A second issue has to do with
the adherence to statistical parity faimess. Any classification based on statistically fairness
respecting representation will be inaccurate to the extent that the ground truth and the group
membership are correlated.
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489 Madras et al 2018 [11] Address the second concern above by saying: "However, assuring that

490 prediction vendors learn only fair predictors complicates the data owner’s choice of repre-
491 sentation, which must yield predictors that are never unfair but nevertheless have relatively
492 high utility." "We connect common group fairness metrics (demographic parity, equalize
493 odds, and equal opportunity) to adversarial learning by providing appropriate adversarial
494 objective functions for each metric that upper bounds the unfairness of arbitrary downstream
495 classifiers" (center of right columns on page 1). This is exactly what our paper shows
496 to be impossible. How do they overcome this impossibility? In section 4.2 "Learning"
497 - the algorithm requires the labels (the value of Y there) of the training examples. Thus
498 the representation will change from one "downstream" classifier to another and cannot be
499 constructed in an a priory fashion, in contrast to what the paper’s introduction seems to
500 imply.

so1  Song et al 2019 [15] The focus of this work is algorithmic efficiency of contracting some type of
502 fair representation. The representation building algorithms optimize several objectives that
503 vary with the type of fairness they are set to guarantee and well as with the ‘expressiveness’
504 of the representation. To achieve their fairness goal, the algorithms require access to the
505 target problem data distribution (the marginal for demographic parity and the full labeled
506 distribution for other notions of group fairness). The notion of expressiveness is related
507 to the specific task (or objective) that the algorithms using then representation is aimed to
508 solve. Consequently, the resulting representations are not useful down the road tasks that
509 the representation designer has no samples from.

st0  Edwards et al 2017 [7] Propose an algorithm for constructing fair data representation ALFR "The
511 advantage of the latter (ALFR)approach is that the representations can potentially be reused
512 for different tasks, and there is the possibility of a separation of concerns whereby one
513 party is responsible for making the representations fair, and another party is responsible for
514 making the best predictive model....In addition our approach means that the representations
515 can be used with any classifier". However, they discuss only Statistical Parity and suffer the
516 same deficiency we described above - the resulting representation fails to guarantee fairness
517 for tasks with data distributing different than the one used to train the representation. Their
518 promise "can potentially be reused for different tasks" can be met only in the very limited
519 case of tasks sharing the training distribution.

520 Creager et al 2019 [4] Focus on Demographic Parity. In the Discussion section they pose two
521 followup problems: "There are two main directions of interest for future work. First is the
522 question of fairness metrics: a wide range of fairness metrics beyond demographic parity
523 have been proposed (Hardt et al., 2016; Pleiss et al., 2017). Understanding how to learn
524 flexibly fair representations with respect to other metrics is an important step in extending
525 our approach. Secondly, robustness to distributional shift presents an important challenge in
526 the context of both disentanglement and fairness” We prove that both desired extensions
527 are unattainable!

s28  Zhao et al [19, 18] The data representation discussed in these papers are only meant for the given
529 task it is trained over. It is therefore essentially different from the scenario of multi-task
530 fairness providing represnetation that our paper discusses.

531 McNamara-Williamson 2019 "costs" [12] Address a different setup of fair representations. Rather
532 than fixing such a representation for use of down the road classification tasks, they view it
533 as a tool for a data curator to prevent intentional unfaimess by an agent using that data for a
534 specific predetermined task that the representation building algorithm has access to samples
535 from. Therefore this work is orthogonal to our discussion.

536 Oneto et al ""transferable' 2019 [13] The motivation is to learn a representation based on some
537 tasks that will make the fair and accurate learning of new, similar tasks more sample efficient.
538 This has a similar flavor to our notion of accuracy-driven agents. The fairness notion used in
539 this paper is demographic parity though. They consider multi-task in the sens of multiple
540 labelling rules for the same marginal distribution. And they show that the utility transfers
541 while demographic parity is still satisfied. Since the tasks for which such a representations
542 intended all share the same marginal data distribution, the ability to guarantee demographic
543 parity is consistent with our results (although, as mentioned above, such an approach suffers
544 from the restriction of tasks to sharing a fixed marginal and from the potential accuracy
545 costs implied by respecting statistical parity).
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A3 Formal Setup

Extended taxonomy: A-robustness

It is not necessarily sufficient that the requirement of accuracy-driven fairness of a representation
is not sufficient to guarantee that accuracy-driven decision makers actually arrive at a fair decision
rule, if they do not have access to the underlying distribution /2 but only to a finite i.i.d sample of
the distribution. For this, we would need to further require that any decision with close to optimal
accuracy has good fairness. This motivates the definition of A-robustness.

Definition 7 ( A-robust fairness). A feature set J is considered to be A-robustly fair w.r:t.
the fairness objective L/*" and the distribution P, if for every o € |[0,1] every classifier

h € Hp with LY (h) < mingey, LE(h) + € has group unfairness bounded by L{.,""(h) <

miNjearg wmingseqy . LE(RY) L{-;ui"(h) + Ae. Similar to above definition, we say representation JF
is A-robustly fair w.r.t. to LI, P and « if the guarantee above holds for a particular threshold c.

Note that, if a representation is both accuracy-driven fair and A-robust fair, an accuracy-driven
decision maker, who bases their decision on an i.i.d. sample of that representation, is guaranteed to
arrive at a fair decision rule with high probability over the sample generation, if the sample size is
sufficient to guarantee accuracy.

A4 Can there be a generic fair representation?

Proofs

Corollary 1. No data representation can guarantee the DP faimess of any non-trivial classifier w.r.t.
all possible data generating distributions (over any fixed domain set with any fixed partition into
non-empty groups). That is, any non-constant representation F, cannot be adversarially fair with
respect to LPY and any arbitrary task P.

Proof of Corollary 1: For any non-constant function f, we have seen that there exists a marginal Px
such that f does not fulfill demographic parity with respect to Px (Claim 1). Now if a representation
F is non-constant, it allows some non-constant function using that representation. Thus no non-
constant representation can fulfill adversarial demographic parity with respect to any distribution P.
O

Claim: 2.

For every function non-constant function f : X — {0, 1} and every non-constant classifier h : X —
{0,1} with h # f and h # 1 — f (where 1, denotes the function that maps every element to 1), there
exists a marginal Px, such that h has high unfairness with respect to L¥© and P = (Px, f), (i.e.
LEO(h) > 0.5).

Let f : X — {0,1} be any function and h : X — {0, 1} be any classifier such that h is non-
committing with respect to ground-truth f, i.e. none of the subsets {x € X : f(z) = l1,h(z) =
ly,G(z) = g} for any g € {A, D} and 1,1, € {0,1} is empty. Then there exists a marginal P,
such that h is arbitrarily unfair with respect to L¥? and P = (Px, f), (i.e. LE?(h) > 0.9).

Proof of Claim 2:

1. Let f: X — {0,1} be any non-constant function and i : X — {0, 1} be any non-constant
classifier with h # f,1 — f. Then we know that at least three of the four sets {z € X :
f(z) =1,h(z) =0}, {z € X: f(z) =0,h(z) =1}, {z € X : f(z) = 1,h(z) = 1}
and {z € X : f(z) = 0,h(z) = 0} are non-empty. Thus two of these three sets, agree
on the ground truth. Call them B; and B; (and let the remaining set be By). W.lLo.g.
By ={seX:f(zx)=1h(z)=0},By={se€ X: f(z) =1,h(z) = 1}

e Case 1: BN A # 0 and Bo N D # (). Then we can choose the marginal Px as
Px(B; N A) = 0.5 and Px(Bz N D) = 0.5. Yielding, LE?(h) = 0.5
e Case 2: Bo N A # (and By N D # : Analogous to Case 1
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* Case 3: there is G € {A, D}, such that B NG = BoNG = (. W.lo.g. G = A. Then
BsNA# Qand ByND # ) and BN D # (. In this case we can choose the marginal
as Px(A N Bs) = 0.5 and Px(D N By) = 0.5. Then all elements of D will be
misclassified and all elements of A will either be classified correctly or be misclassified
in the opposite direction, yielding to high EO unfairness. (In the case where the ground
truth labeling is constant on one group, we define the misclassification rate with respect
to the label it will not achieve to be zero. Then we get LE?(h) > 0.5.)

2. We can choose the marginal Px as follows:

Px({z € X : G(z) = A, f(z) =1,h(z) = 1}) = 0.25
Px({z € X:G(z) = A, f(z) =1,h(z) =0}) =0

Px({z € X : G(z) = A, f(z) =0,h(z) = 1}) = 0.25
Px({z € X:G(z) = A, f(z) =0,h(z) =0}) =0
Px({z € X:G(z) =D, f(z) = 1L,h(z) =1}) =0

Px({z € X : G(z) =D, f(z) = 1,h(z) = 0}) = 0.25
Px({z € X :G(z) = D, f(z) = 0,h(z) = 1}) =

Px({z € X : G(z) = D, f(z) = 0,h(z) = 0}) = 0.25

The resulting unfairness is LE?(h) = 1.

O

Corollary 2. No data representation can guarantee EO fairness of any non-constant predictor based
on that representation for all "downstream" classification learning tasks. That is, any representation
F that is not constant on any group, cannot be adversarially fair with respect to L¥© and any
arbitrary task P. This holds even if one restricts the claim to tasks sharing a fixed marginal data
distribution.

Proof of Corollary 2:  For any ground truth f : X — {0, 1} and any representation I’ : X — Z,
that allows h : Z — {0, 1} as described in Claim 2, there exists a marginal Py such that / is highly
EO unfair with respect to (Px, f). Note that as long as h is not constant on either group, we can find
P, such that the requirements from Claim 2 are fulfilled. Thus the representation is not adversarially
fair with respect to (Px, f) and L¥©. Thus any sufficiently complex representation cannot guarantee
fairness for every possible covariate shift. ]

Lemma 1. Let PP; and P, be the distributions defining two different tasks with the same marginal
Px = Py x = P5x such that at least one of the tasks does not have equal success rates. Let
hi,hy : X — {0,1} be such that Lp, (hy) = Lp,(hs) = 0, and assume that tasks are non-negligibly
different (namely, Lp (hy) # 0). Then, it cannot be the case that both hy and hy are EO fair w.rt.
both Py and P.

Proof of Lemma 1:

Let P, and P be the distributions defining two different tasks with the same marginal Px = P, x =
P, x such that at least one of the tasks does not have equal success rates. Let hy, by : X — {0,1}
be such that Lp, (h1) = Lp,(hs) = 0, and assume that tasks are non-negligibly different (namely,
Lp, (h2) # 0). The easiest way to verify our claim is to realize that hy being fair w.r.t. to P and
equalized odds is equivalent to hy being fair w.r.t. P; and predictive rate parity. It is known [10] that
this can only be fulfilled if the ground-truth has equal success rates. We will now give a more detailed
proof of our claim. For the sake of contradiction let us assume that both A, and hy are FO fair w.r.t.
both Py and Ps. As Lp, (ha) # 0, we know that P, p, [ha(z) = 1, hi(z) = 0] or Ppp, [ha(z) =
0, h1(z) = 1] to be non-zero. W.Lo.g. assume that P, p, [ho(z) = 1, hy(z) = 0] # 0. We then
know from h, fulfilling EO fairness with respect to /7, that

Popy lho(z) = 1|G(z) = A, hi(z) = 0] = Propy [ho(z) = 1|G(z) = D, hy(z) = 0].
This implies

Popyhi(z) = 1, ho(z) = 1,G(z) = A] _ Punpy [hi(z) = 1, ho(z) = 1,G(z) = D,]
Popyhi(z) =0, ha(z) = 1,G(z) = A]  Puupy [hi(z) = 0,ha(z) = 1,G(z) = D]~
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Thus there exists some [3; such that:
Pz~1’x [hl(:l‘) = l,hg(l‘) = I,G(T) = A] = ﬂlpz,\,px [hl(:l‘) = 0, hQ(T) = I,G(T) = A]

and

Px~1’x [hl(:l‘) = 1, hQ(T) = I,G(T) = D,] = ﬂlPvaPx [h,l (:I‘) = O,hQ(T) = 1, G(T) = D]

Furthermore from A, fulfilling EO fairness with respect to %, we know
Pz~1’x [hl(:l‘) = OlG(T) = A, hQ(T) = 1] = Pz~1’x [hl(:l‘) = OlG(T) = D,hg(l‘) = 1]

This implies

PINPX [h’l(T) =0, hQ(T) - OvG(T) - A] o PINPX [h’l(T) =0, h'2( ) C( ) =D ]

P:J:~Px [hl(T) - 07 h’2(T) - lyG(T) - A] - P:J:~Px [h'l(T) = 07 h’2( ) C(T) ]
Thus there exists some [35 such that:

P:J:~Px [h'l(T) = 09 h’2(T) = 09 G(T) = A] = ﬂlP:zfva [h'l(T) = 09 h’2(T) = lvG(T) = A]

and

Piopylho(z) = 1, ho(z) = 1,G(z) = D,| = BoPrrpy [h1(z) = 0, ho(z) = 1,G(z) = D).
Now there are two cases.

* Case 1: P,.p, [ho(z) = 0,h1(z) = 1] = 0. Then
Pyrp [h1(z) = 0, ho(z) = 1|G(z) = A] = Pyup, [h1(z) = 0,h2(z) = 1,G(z) = D] =0
. We then have

1+ Bo

Porpy [i(z) = 0|G(z) = A] = 141+ B

= Perp, [h2(7) = 1|G(z) = D]

. Thus P fulfills demographic parity. Similarly,

1+ b

Ponry lha(z) = 11G(z) = A] = 15—

=We~p, [hg(]‘) = llG(T) = D]

. Which implies that P also fulfills demographic parity, contradicting our assumption.
* Case 2: P,..p, [ho(z) = 0, h1(z) = 1] # 0. Then

Py py [hi(z) = 1|G(z) = A, ha(z) = 0] = Pyepy [l (z) = 1|G(z) = D, ha(z) = 0.
— Case 2.]:Pz~px[h2(l‘) = O,hl( ) = 0] = Pz,\,px[hg( ) 1 h ( ) 1

In this case P,opy|hi(z) = 1|G(z) = Ahs(z) = 0] = Prupy|hi(z)
1|G(z) = D,hy(z) = 0] = 1 and P,opy, [h1(z) = 0|G(z) = A, ho(z) = 1]
P,..p,hi(z) = 0|G(z) = D, hy(xz) = 1] = 1. This implies dcmographlc parit
P and for P, contradicting our initial assumptions.
Case 2.2. Pz,\,px [hg(]‘) = 0, hl(:l‘) = 0] # 0 or Pz,\,px [hg( ) =1 h,l( ) = 1] # 0.
w.Lo.g. Ppp, [ha(z) = 1, hi(z) = 1] # 0. This implies

P:J:~Px [h'l(T) = 13 h’2(T) = 09 G(T) - A] o P:J:~Px [h’l (T) = 19h2(T) = 09 G(T)

<
I~
g

:D,

P1~Px [hl(:l‘) = l,hg(l‘) = I,G(T) = A] N Px~1’x [hl(:l‘) = l,hg(l‘) = I,G(T)
Thus there exists some 35 such that:

P:J:~Px [h'l(T) = 13 h’2(T) = 09 G(T) = A] = ﬂ3PI~Px [h'l(T) = 1? h’2(T) = 1’ G(T) =

and

P:J:~Px [h'l(T) = 13 h’2(T) = 09 G(T) = D] - ﬂfi]p:zfvpx [h'l(T) = 19h2(T) = lvG(T) =

. We then have
Py [n(@) = 01G(@) = A] = — 12 _p__ (hy(x) = 1|G(z) = D]
1+ p1+ B2+ B1B3 :
. Thus P, fulfills demographic parity. Similarly,
1+
Popy [ho(z) = 1|G(z) = A] = — Pyrp, [ha(z) = 1|G(z) = D
px [ha(z) = 1|G(z) = A] 1551 B i Bibs p.[ha(z) = 1|G(z) = D]

. Which implies that /%, also fulfills demographic parity, contradicting our assumption.
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Theorem 1. There can be no data representation I such that for some P, , P> as above, the following
criteria simultaneously hold:

1. Fis adversarially fair w.rt. Py and EO
2. Fis adversarially fair w.rt. P, and EO

3. F allows for perfect accuracy w.r.t. to Py and Ps, i.e. there are hy, hy both expressible over
the representation I, such that Lp, (hy) = Lp,(ha) = 0.

Proof of Theorem 1: We note that in order for I being adversarially EO fair with respect to both

% and P, both hy and hs need to be EO fair with respect to P; and /%, from Lemma 1, we know
that this implies that either P’} = P or that both P, and P, have equal success rates. Thus we have
proven our claim. [

AS Fairness of a feature set vs. fairness of a feature

Assumptions for Theorem 2

We now give an explicit definition for the assumptions made in Theorem 2.

Non-Triviality properties
Definition 8. We define the following two non-triviality requirements for a feature:

1. Non-committing We will call a feature non-committing if it leaves some ambiguity about
label and group membership. That is, a feature f is non-committing if there are two distinct
values 1y, and 1o, such that [ assigns each of these values to at least one instance of
each X 40, Xa,1,Xp1, Xpo. i.e. [~ (y1) N X; # O and [~ (y2) N X; # O for every
X; € {X40,Xa1,XDp1, XD}

2. k-anonymity A feature f is k-anonymous if knowing this feature, group-membership and
label, will only reveal identity of an individuals up to a set of at least k individuals. Namely,
Jor every combination of value of this feature, group membership and class label, there are
either no instances satisfying this combination or there are at least k many such instances.

Another concept we need in order to prove the theorem are feature-induced cells. A set of features
F = {f1,--., fn} induces an equivalence relation ~z, by z ~p iff fi(z) = fi(y) for all i =
1,...,n. We call the equivalence classes with respect to ~ x cells and denote the set of cells for a
featureset F as Cr.

As this theorem will consider accuracy-driven fairness, we will give a shortly introduce the Bayes
optimal classifier. First, we need to consider the scores that are induced by a probability distribution.

We define the ground truth score function s, : Cx — [0,1]. s (C) is the probability, w.r.t. P, of
z € C having the true-label 1, i.e., s/’ (C) = E,p[t(z)|z € C|. In cases where the distribution is
unambiguous we will use the abbreviated notation s, instead of s!”.

The predictor in H ; that minimizes L, is the Bayes Optimal predictor ¢, ;. that for a cell CeCr
assigns the label 1 if s,(C') > « and 0 otherwise.

Additional remarks about Theorem 2

We have shown in Theorem 2 that for any feature fulfilling some non-triviality requirement, there
exists a distribution P and two feature sets such that adding f to the feature sets has opposing effect
on the fairness of the representation in terms of accuracy-driven fairness w.r.t. equalized odds. We
now want to convince the reader that this can be the case for distributions that are not pathological
wrt. f.

To see this we will now show an example of this happening when both f and F are ad-
versarially fair w.r.t. P: Let the domain X = {zq,z2, 73,74, T5, T6, T7, T8, T9, T10, T11, T12 }
with X4y = {z,22,23},Xp1 = {z4,75,26},Xa0 = {z7,28,79}, and Xpy =

16
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{Z10,711, 712}. Furthermore consider the uniform distribution P over X, ie. P({z}) = 1—12

for every z € X. For the construction of the feature set, we only consider binary fea-
tures f; : X — {0,1}. Now let f be defined by f~'(1) = {z1,z5,7s, 712}. Further-
more, let F = {fi,f2,f3} and 7' = {f], f3} with fi'(1) = {z1,22,23,25,25,712},
f2_1(1) = {I17I27I37I57I117I12}a ffi_l(]-) = {I17I4I57I67I77I11}’f{_1(1) -
T1,T4, 07,710} and fi7Y1) = {zy,72,74,T5, 77,78, T10,711}.  The resulting cells
for f and f’ arc C.F - {{I17I5}7{I27I37I12}7{I8}7{I47I67I7}7{I9}7{I10,I11}} and
C].'I{{.’I,‘l,.’l,‘4,.’l,‘7,.’l,‘1()},{.’IIQ,.’IIs,.’IIg,.’IIll}, {.’I,‘3,.’I,‘6,.’I,‘g,.’l,‘12}}. It is easy to see that F' and {f} are
adversarially fair w.r.t. P and L. Furthermore, we have:

(83 1 1 (83
Ul FUL) = 315 — 21+ 315 — 31 = 3 >0 =Usto(F)
and 13 3, 1,1 1
Ut F u{f})=—|‘-—j—|+ 5-3l=0<
1 3
—=—| 3t I———I Ugee (F')-
Thus we see that there are indeed fcalurcs f whnch are adversarially fair w.r.t. P and equalized

odds, for which there is this opposing effect of feature deletion. Moreover, we can give general
criteria for f and P which are fulfilled by many pairs (f, P), that are sufficient for showing that
the phenomenon from Theorem 2 occurs. In our proof we will show that these critiera are fulfilled
when the non-triviality criteria of Definition 7 are fulfilled. We will now state these criteria. In the
following let [ € {0,1} denote a label and G € {A, D} a group. The opposing label and group will
be denoted by [ and G respectively. A feature f is called "generic" with respect to P if there exist
sets Cy, Co,C3 C X with the following properties.

1. P(Cy) > P(Ca)

2. (4 and C} are separated by the feature f,i.e. Cy C f~1(I') and Cy C f~1(1—1') for some
e {0,1}

3. Cy and C} are label-homogeneous for different labels and C is group homogeneous, i.c.
Cl C t_l(l) and (;'2 C X(x‘,l_'

4. (45 is not split by the feature, i.e. C3 C f~1(I") for some I” € {0,1}

5. (3 has the same majority label as Cy,i.e. P(t~1(1) N C3) > P(t=1(1) N Cy)

6. The fraction of elements of group G and label [ in (5 is sufficiently big in comparison to

. P(CanNXg,) P(Cs)
02a P(X¢a) 2 P(X(:"!,l)-

For pairs (P, f) fulfilling such requirements, one can easily construct two representations 7 and F'
such that deleting f in the context of F will increase unfairness and such that deleting f in the context
of F' decreases unfairness in the spirit of the proof of Theorem 2. We define JF as a representation
which separates everything but a cell C' = Cy U Cy by labels. For such a representation U{f}
enables perfect accuracy and therefore perfect fairness. However F is constructed in a way such that
thresholding at 0.5 leads to unfair classification. Furthermore we can define ' as a representation
that separates all but two cells C" = Cy U Cy and C" = (5 perfectly by labels. By definition, the
threshold that cuts at 0.5 on featureset 7' U { f} is now less fair than the threshold that cuts at 0.5 on
featureset F' as the misclassification rates of C' and C"’ affect different groups.

Impact of feature deletion for other group-fairness notions

We can make an observation similar to Theorem 3 for demographic parity and predictive rate parity
(in cases where adversarial fairness w.r.t. L7¢? is possible, i.e., when success rates between groups
are equal). The proofs use Theorem 11 and Theorem 10 from Section A7.

Observation 1. For every distribution P and feature f, there exists a feature set F, such that
addmg f will not impact the adversarial fairness w.r.t. LPT of the distribution, e.g. UP, Y (.7:) =
TPP(FO{f}). Furthermore, there exist distributions P, features f and F', such that UET (F') =

and UPP({f}) =0, but UPE(F' U {f}) = 1.

adv adv
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Observation 2. For every distribution P and feature f, there exists a feature set F, such that adding f
will not impact the adversarial fairness w.r.t. L¥'7? of the distribution, e.g. UTT¢4(F) = UPred(Fn

adv adv

{f}). Furthermore, there exist distributions P, features f and F', such that U'T*d(F') = 0 and
UPTH'I({f}) =0, but UP""'I(]:’ U {f}) =1.

adv adv

In Section A7, you will also find another observation related to feature deletion, which uses the
terminology of that section(Observation ).

Proofs

Theorem 2. For every 6-anonymous non-committing feature f, there exists a probability function P
over X and feature sets F and F' such that:

* The accuracy-driven fairness w.r.t L¥©, P and o = 0.5 of F U { f} is greater than that of
F, Le.
I]l(ll(.'(.' (fU {f}) < I]l(ll(.'(.' (f)

Thus, deleting f in this context will increase unfairness.

* The accuracy-driven fairness w.rt L, P and o = 0.5 of F' U {f} is less than that of F',

- U o F'ULF}) > Uge(F)

Thus, deleting f in this context will decrease unfairness.

Proof of Theorem 2: In the following, we will denote false negative rates and false posi-
tive rates of the two groups A and D for the optimal classifier induced by a feature set F as
FPy 5, FPp 5, FN 4 r and I'Np _r. The difference of false positive rates with respect to F will
be denoted by AF Pr and the difference in false negative rates with respect to F will be denoted
by AF Nx. We will call instances of "A" advantaged and instances of "D" disadvantaged. Further-
more, we call instances with ground-truth label "1" deserving and those with ground truth label "0"
undeserving.

For each case will will start by listing sufficient requirements for the effect of deleting f; being
an increase/decrease of features. We find that those scenarios are quite likely to appear in reality.
However, when we focus on constructing the examples, we will focus on making the construction as
simple as possible, rather than modeling a realistic scenario.

On a high level this proof will construct the two feature sets F and F' such that in both cases there
exist only three cells that include mislabeled instances. Furthermore the union of those cells for
featurization F and the union of those cells for the featurization 7’ will be chosen to be disjoint.
This way we can pick P independently for both cases. Furthermore there will be instances of each
X1, Xa,0, Xp,1 and Xp ¢ are not in either of those cells. This way we can ensure that most of the
probability mass does not sit in either of those cells and therefore control for normalizing factors.
This makes it possible to choose /7 in a way to fulfill all the inequalities.

We first consider the case where deleting f; increases fairness. We will choose fi, ..., fi—1 in sucha
way that deleting f; from {fy, ..., fi_1, fi} decreases fairness. We will first give a list of properties
that such a set fy, ..., fi—1 should fulfill and then argue why they can all be fulfilled simultaneously.
We propose fi, ..., fi—1 be chosen in a way such that deleting f; from f1,..., fi_1, fi conserves all
but two cells C? and C} of the featurization { f1, ..., fi_1, fi}. The two cells C? and C} are merged
by the deletion of f; into C; such that
1. C; has majority label 1, i.e.
P((XA’() U XD’()) n C,) < P((XA’I U XD,I) n C,)
C} only consists of disadvantaged undeserving and advantaged deserving people
2. CY has majority label 0, i.c.
P((Xa0U Xp,o) NCY) > P((Xa,1UXpa) NCY)
3. false positive rate of A is higher than of D:
A(FPr) > D(F Pr)
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4. after deleting f; the false positive rate of A will still be higher than that of D:

P(CiNXpa1)  P(CyNXan)

AFPr >
77 P(Xpy) P(Xa,1)

5. false negative rate of D is higher than of A:
D(FNyr) > A(FNr)
6. after deleting f; the false negative rate of D will still be higher than that of A:

I’(C(’) N XD’()) B 1’((;'6 N XA’())

AFNr >
> P(Xp,0) P(Xa,0)

7. switching labels of C? decreases false negative rate of D more than that of A:

P(CY N Xa) - P(C)NXp,)
P(Xa1) P(Xp,)

8. switching labels of C? increases false positive rate of 1D more than that of A:

P(CY N Xao0) _ P(C?NXpo)
P(X a,0) P(Xpy)

We believe these properties to hold for some realistic sets of features {fi,..., fi—1}. We will now
construct an example for a cell C; = C? U C}, such that these properties are actually fulfilled.

Let y; and y2 be defined as in the definition of non-committing features. We will define C’(’; as a
subset of the pre-image f[l(yl) and C} as a non-empty set that does not contain any elements
of the pre-image f;'(y1). This way, we will ensure that deleting the feature f; will indeed result
in the merging of cells C} and Ci. Let Cp,y = Xa1 N f~Yy1) and Cao = Xpo N f ()
and Cy o = Xa,0N f~ () and Cyqy = Xp,1 N f~(y1). According to our non-committing and
6-anonymity assumption on f; all of these sets are non-empty and contain at least 6 elements. We
will only take 3 of those elements for the construction, such that the construction of similar cells for
F' can be done with the other 3 elements and we can assign probability weights to all of those points

independently. Let C; C Cy,o and C(",’IL‘JCZZ(I)L'JCﬂ”} C Cy4,1 and Cﬁ”gL‘JCﬁ’}, = C’ﬁ’o C Cy,0 and
choose P such that
* 1’(03,0) > P(sz,l)

PChe) _ ML
P(Xp,o) P(Xa,0)

< P(CI4) < P(CYY)
- P(C3Y) < P(CED)

One easy way of achieving (2.),(3.) and (4.) is defining C}) = sz,1 U C’;’O. We can achieve (1.) by
letting C} be defined as a subset of (X431 N Xp 1) N (X \ f~ () such that P(C}) > P(C?).
This can be done because of f; is non-committing. Since one can always introduce more features that
separate perfectly by label, we can construct fy, .. ., fi_1 such that {f1,..., fi_1} induces only three
cells with mixed labels: C;, C} := C’ﬂ”(l, U C’(’I”} and CY := C’ﬂ’fl) U C’ﬂ”g Thus the only misclassified
instances are in these cells. It is easy to see that this construction achieves (5.)-(8.).

Now we will show that fulfilling (1.)-(8.) implies that deleting f; makes the optimal classifier based
on the featurization more fair with respect to our fairness notion: The only change in false positive
and false negative rates are introduced to labeling the elements of C? as 1 instead of 0. Because of
(3.) and (4.) the change in false positive rate difference induced by the deletion of f; is

P(C§NXa1) P(CiNXp,)
‘l)(XA,l) ‘l)(XD,l) '

19



773
774

775
776

778

779

780

781
782
783
784

785
786

787

788

789

790

which is a negative value because of (8.). Because of (5.) and (6.) the change in false negative rate
difference induced by the deletion of f; is

I’(C(l) n XD’()) 1’(0(1) n XA’())

P(Xp,) P(X a,0)

which is a negative value because of (7.). Therefore the deletion of f; causes both difference in false
negative rate and difference in false positive rate to decrease.

We now consider the case where deleting f; decreases fairness. We will again give a list of criteria,
that are sufficient for our claim to hold and then show a more concrete construction that fulfils these
criteria. We can construct f{, ..., f/_; such that deleting f; from f{,..., f/_,, fi only merges two

cells C”} and C”? into C';, such that

1. C! has majority label 1, i.c.
P((X4,0UXpo)NCY) < P((Xa1UXp1)NC)

C¢ only consists of disadvantaged undeserving and advantaged deserving people
2. 'Y has majority label 0, i.e.

P((Xa,0U Xp,o)NC%) > P((Xa1UXp1)NCLO)
3. false positive rate of A is higher than of D:
A(FPrr) > D(F Prr)
4. after deleting f; the false positive rate of A will still be higher than that of D:

P(C N Xa,) P(C'NXpa)
P(Xan) P(Xp,1)

AF Py >

5. false negative rate of D is higher than of A: D(FNz) > A(FNx/)

6. after deleting f; the false negative rate of D will still be higher than that of A:

I’(C(’)i n XA’()) B 1’(0{)1 n XD’())
P(Xap0) P(Xp)

7. switching labels of C? decreases false negative rate of A more than that of D:

P(CI N Xp,) - P(CI N Xaa)
P(Xp,1) P(Xa4)

AFNy >

8. switching labels of C!” increases false positive rate of A more than that of D:
P(CPNXpy)  PCPNXap)
P(Xp,) P(Xa0)

We will define Cj)* as a subset of the preimage f; ' (y2) and C}* as a non-empty set that does not
contain any elements of the preimage fi_l(yQ). This way, we will ensure that deleting the feature f;
will indeed result in the merging of cells C})* and C}*. Let Cyy9, C,1,Ca o and C, 1 be defined as
before. Let C’(’L’li C C,,1 and C("’O*UC("’Oj’OUC("’Oj’I C Cay» C(’,’lj’OUC(’I’lj’l = C’il C Cg,1, such
that they are disjoint from all the non-perfectly labeled cells in the featurization F;. Therefore we
can choose P in such a way that

* P(Clo'") > P(ChyY)
P(CLa) _ P(Clg™)
P(Xa,0) P(Xa,0)

* P(Cy ") < P(Ch ™),

* P(Cy,7") < P(CLe™),
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Similar to the above case, a way of achieving (2.),(3.) and (4.) is defining Cj* = C}, ,* U C, .
We can achieve (1) by defining C/* as a subset of (X41 N Xp1) N (X \ f~(y2)) such that

P(C!*) > P(C!"). This can be done because of the second assumption for f;. Since one can

always introduce more features that separate perfectly by label, we can construct fi,. .., fi—1 such
that {fy,..., fi_1} induces only three cells with mixed labels: Cj, Cj' = C, »' U Cj ;7" and

C;° = C"’l’lj’o U CY, o7 Thus the only misclassified instances are in these cells. It is casy to check
that this construction achieves (5.)-(8.).
Because of (3.) and (4.) the change in false positive rate difference induced by the deletion of f; is
P(CiNXa1) P(CHFNXpa)
P(Xa)  P(Xpy)

which is a positive value because of (8.). Because of (5.) and (6.) the change in false negative rate
difference induced by the deletion of f; is

1’(0{# n XD,()) 1’((]’(’)l n XA,())

P(Xp,0) P(Xa,0)

which is a positive value because of (7.). Therefore the deletion of f; causes both difference in false
negative rate and difference in false positive rate to increase.

O
Theorem 3. 1. For every distribution P and feature f, there exists a feature set J, such that
adding f will not impact the fairness of the distribution, e.g. Uyq,(F) = Ugan(F U{f}).

2. There exist distributions P, features f and F', such that U4, (F') = 0 and U,q,({ f}) = 0,
but (]udv(]:’ U {f}) =1L

Proof of Theorem 3:

1. For any distribution ” and feature f we can choose a representation F such that Cr =
Cruqry- Itis obvious that the fairness will not change between those representations.

2. The following example establishes the second claim: Consider the domain X =
r1,Tr2,Tr3,Ty,T5,Te, L7, T8 with XA,l = {II,IQ} aXD,l = {I3,I4}, XA,() = {:I,‘s,l‘g}
and XD,() = {1‘7,1‘8},. Furthermore let F = {fl,fg} with fl_l(l) = {II,I3,I5,I7}
and f;'(1) = {1, 24,25, 73}. Furthermore let P be uniform over X,ie. P({z1}) =
P({z2}) = P({zs}) = P({za}) = P({zs}) = P({ze}) = P({z7}) = P({zs}) =
0.125. Thus, we have adversarial fairness w.r.t. EO for both features, i.c.

PXaa0J7 (1) Pl{m))
PEI() N £ (1) P({zn,22})

P({z3}) _ P(Xpanfii(1))
P({zs,za}) P2 (1)N f71(1)
P(Xa00 f; (1)) __P({zs})
P2 (0)n f;71(1)  P({zs,z6})
B P({z7}) B P(Xpon fii(1))
P({z7,zs})  P@t=1(0)N fi (1)
P(XaaNf3'(1)  P({z})
P=1(1) N f3 (1)) P({z1,22})
_ P({z4}) _ P(Xpanfy'(1))
P({zz,za})  P@E-1(1)N f3 (1)
P(Xa0n f7'(1)  P({as))
P(t=1(0) N f51(1)) P({zs, 6})
_ P({zs}) _ P(Xpo N f3'(1))
P({zz,zs})  P(t=1(0)N f3 (1))

= 0.5 =

=0.5=

=0.5 =

=0.5
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However, the featureset F does not have adversarial fairness w.r.t. EO (using Theorem 6)

: Cr = {C1,Cy,C3,Cy} with Cy = {zy,25}, Cy = {x2,76}, C3 = {z3,77}, and

Cy = {z4,75}. Consider the classifier h € Hr with h=1(1) = {Cy,C3}. Then
; PR (1=1))nX P(h ' (|1—1))NX

LEO(h) Zle{() 1} (l( Al)l) i & nl,)l) 2| = |% —0l+10 - %l ke

Thus UEC(F) = 1.

adv

O

Theorem 4. 1. For any feature f and any featureset F we have Uy, (F) < Uqan(F U{f}).
Similarly, if the representation F is (¢,n)-fairness-enabling, the representation F U {f} is
also (e, n)-fairness-enabling.

2. For every distribution P and every feature f, there exists a feature set JF, such that F U {f}
is (1, €)-fairness-enabling, if and only if F is (e,n)-fairness-enabling. Furthermore, there
exists a distribution P, a feature f and a feature set F', such that both F' and { f} are not
(e,m)-fairness-enabling for any €,1 < %, but such that F' U { f} is (0, 0)-fairness-enabling.

Proof of Theorem 4:

I. We note that Hr C  Hrygy- Thus any argmingey, LEC(h) <
arg minpey,.,, , Lp? (h), proving the inequality for adversarial fairness. Further-
more any h € H 7 with € loss and 7) unfairness, is also an element of h € H r,( , proving
our claim about the fairness-driven case.

2. Similarly to the proof of Theorem 3, given a feature f and a distribution P°,we can construct

a feature set F, such that Cr = Cryqy}. Since this implies that Hr = Hryq(;, we get the
same fairness-enabling for both distributions.
Furthermore we can construct the following example to proof the second claim: Consider
the domain X = z1,z9, T3, T4, T5, T6, T7, Tg With X4 1 = {z1,22} Xp1 = {z3,24},
XA’() = {:I,‘s,l‘g} and XD’() = {:I,‘7,:I,‘g},. Furthermore let F = {fl,fQ} with fl_l(l) =
{z1, 23,75, 27} and f5 (1) = {z}, 23, 74, 78 }. Furthermore let P be uniform over X i.e.
P({z1}) = P({z2}) = P({z3}) = P({za}) = P({zs}) = P({ze}) = P({z7}) =
P({zg}) = 0.125. On both { f,} and {f2} there are no classifier hy € Hy_y or hy €
Hyy with L (hy) < 5 or L§(ha) < § respectively for any o € (0,1). Therefore {f; }
and { f»} are both not (e,7)-best case fair for any €, < 3. Furthermore, the classifier hg
defined by h=' (1) = {1, 2,3, x4} is element of H f,y,,( s,y and has loss L (h) = 0 and
unfairness LEP(h) = 0. Thus {f1} U {f2} is (0,0)-fairness-enabling for any o € (0,1).

O

Observation 1. For every distribution P and feature f, there exists a feature set F, such that
adding f will not impact the adversarial fairness w.r.t. LPT of the distribution, e.g. UP, adv P(F) =

UPP(FN{f}). Furthermore, there exist distributions P, features f and F', such that UPF (F') =0

adv adv

and UBP ({f}) = 0, but UPP(F' U {f}) = 1.

adv

Proof of Observation 1: Analogous to the Proof of Observation 3 using Theorem 11 and Observa-
tion3. O

Observation 2. For every distribution P and feature f, there exists a feature set F, such that adding f
will not impact the adversarial fairness w.r.t. L¥7? of the distribution, e.g. UTT¢4(F) = UPred(Fn

adv adv

{f}). Furthermore, there exist distributions P, features f and F', such that U'T*(F') = 0 and
UPred({f}) =0, but UPred(F'U {f}) = 1.

adv adv

Proof of Observation 2: Analogous to the Proof of Theorem 3 using Theorem 10 and Observation 3.
O
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A6 Impossibility of adversarially fair representations with respect to
predictive rate parity

Proofs

Theorem 5. Adversarial fairness w.r.t. P and LY7? is only possible, if P has equal success rates
for both groups.

Proof of Theorem 5: We note that in order to achieve adversarial fairness with respect to any
representation, the all-one classifier needs to be fair, as any representation /' admits any constant
classifier. We furthermore note that the all-one classifier is fair with respect to predictive rate parity if
and only if the ground truth has equal success rates. This shows our claim.

O

A7 Characterizations of different notions of fair representations

In this section we characterize accuracy-driven and adversarial representation fairness w.r.t. the
odds equality notion of classification fairness. We will start by introducing a property we call
zero-group knowledge. It is aimed to prevent an adversary from inferring the group membership
from the representation, when given access to the ground-truth labels. To ensure that an adversarial
agent won’t be able to infer group-membership, one would of course require the representation to
have demographic parity. However, in situations where label information is correlated with group
membership, demographic parity of all features will hurt classification accuracy. In such cases,
zero-group-knowledge might be a better tool for concealing group-information.

We will then see that this property is closely related to adversarial fairness.

Definition 9 (Zero-group-knowledge). A representation I has zero-group-knowledge w.r.t.
adistribution P, if for x ~ P, knowing the feature vector F'(z) will not reveal more information about
the group membership G(z) than knowing just the ground truth, t(x). Namely, G(z) 1L F(z)|t(z).

It turns out that this property is equivalent to adversarial fairness with respect to equalized odds.

Theorem 6. A representation I’ has zero-group knowledge w.rt. P if it has adversarial fairness w.rt
to P and the group-fairness measure L.

A similar observation has been made and shown by Zhang et al [17], relating the optimization criteria
for the goal of concealing group-membership and preventing unfair classification with respect to
equalized odds in a representation learning setting with GAN .

We will now give a characterization of accuracy-driven and worse-case fairness in terms of the
conditional distributions given label and group-membership over the cells Cr of a finite feature set
F. In the following we will denote the conditional probabilities given label / and group G as P ;.
We will see that a representation is adversarially fair, if and only if the conditional probabilitics
are aligned. It has already been shown in [18] that if conditional probabilities are aligned over a
representation, every classifier based on that representation is fair. We go a step further here, by
noting, that this is indeed a necessary condition for adversarial fairness.

Theorem 7. A feature set F is adversarially fair w.r.t. distribution P if and only if for each cell
C € Crand for each | € {0,1} we have Py ;(C) = Pp(C).

We now give a similar statement for accuracy enforced fairness. Here, the same statement holds, if
instead of considering the probability distributions over the set of cells Cr, we consider the set of
cells that results from merging all cells of the same score:

Definition 10 (Score-induced cells). For a set of cells Cr, the corresponding set of score-induced
cells Crs, is the set of cells that is obtained by merging all cells with the same score together. More
formally, each feature set and scoring function, induce an equivalence relation ~r ,,, such that
x ~F, yifand only if there are cells C,,,Cy, € Cx such that z € C,y € Cyand s,(C;) = s,(Cy).
The set Cr g, is then defined as the set of ~r ,, equivalence classes.

Theorem 8. A feature set F is accuracy-driven fair w.r.t. distribution P if and only if for each cell in
the score-induced C € Cr, and for each | € {0,1} we have P4 ;(C) = Pp(C).
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We can now bound the unfairness in terms of accuracy-driven and adversarial fairness of a represen-
tation by the distribution distance of conditional probabilities. For this we take the H-distance as
introduced by [2].

Definition 11 (#-distance). Given two distributions P and (Q over X, we define their H-distance by
d?{('l)v Q) = Ssup |‘I)(B) - Q(B)L

1peH

where 1 denotes the indicator function of set B.

In the following let H{"%% = {h: Cx — {0,1} : for some a, h(C) = 0if f 5,(C) < a} be the
class of all classifiers that are a threshold in the ground-truth scoring. We can now state a quantitative

theorem about the relation between the conditional alignment and the fairness of a representation:

Theorem 9. We can bound adversarial fairness and accuracy enforced fairness of a feature set
F w.rt. P and L¥© by the dy,-difference and dwcp.m, -difference of conditional distributions
F 5t

respectively:

1 1
(]utlv(]:) < Ed/’{}'('l)A,l»-I)D,l) + Ed"{}'(l)A,O» -I)D,O)

1 1
I]u(:(:(]:) < Ed’}{é’;""-:t (-I)A,l ’ -I)D,l ) + Ed’}{‘c';""-:t (-I)A,O ’ -I)D,O)
Furthermore, we can lower bound the adversarial fairness of a representation by

1
Ed"{}- (I)A,l ’ I)D,l) < (]utlv (]:)

foreveryl € {0,1}

Note that for both bounds there exist probability distributions /2 such that equality holds in all cases.
Furthermore we note that since the H-distance between two distributions can be estimated, if H has
a finite VC-dimension [2], we can estimate both the upper and the lower bound with a sample size
dependent on |Cx|, when given access to i.i.d. samples from Pp 1, Ppa, Ppy and Py g each.

From Theorem 5 we know that there are distributions for which there is no representation that
has adversarial fairness with respect to predictive rate parity. In cases, where such a adversarial
representation is achievable, however, we can characterize it by the following natural requirement on
the representation, as we will see in the following theorem.

Definition 12. A feature set F has calibration parity w.r.t. a distribution P if for every cell C € Cr
both groups have equal success probability. Equivalently, one can say that for a random instance
x € P the ground truth labeling t(x) and the group membership G(x) are statistically independent,
when the feature vector F'(z) of x is known, i.e. G(z) 1L t(z)|F(x).

Theorem 10. A feature set F has calibration parity w.r.t. P if it has adversarial fairness w.r.t P
and the group-fairness measure LY. The other direction does not hold. In particular, adversarial
fairness w.r.t. P and LY"¢? is only possible, if P has equal success rates for both groups

Theorem 11. A feature set F has demographic parity w.r.t. P if and only if it has adversarially fair
w.rt P and the group-fairness objective LPT .

Impact of a feature on fairness for other group fairness notions

We can make another observation about the impact of feature deletion on unfairness for other notions
of group fairness.

Observation 3. ¢ There exists a distribution P and a feature set F such that each f € F the
feature set { f} has zero-group-knowledge w.r.t. P, but F is not and U4, (F) = 1

o There exists a distribution P and a feature set F such that each f € F, the feature set {f}
has demographic parity w.rt. P, but F has not. Furthermore the group-membership can be
perfectly determined by F, i.e. for every cell C' € Cx we have

P, .plr € Alz € C| € {0,1}
¢ There exists a distribution P and a feature set F such that each f € F, the feature set

{f} has calibration parity w.r.t. P, but F has not. Furthermore the scores for the different
groups in each cell are perfectly opposed, i.e. C C A or C' C D.
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Proofs

Theorem 6. A feature set F has zero-group knowledge w.r.t. P if it has adversarial fairness w.r.t to

P and the group-fairness measure

LE()

Proof of Theorem 6:

I’(h_l(l) n X(,‘,l) - ECGC}-:CGIF'(I) I)(h’_l(l) N X(r',l) . Z 1’(0 n X(;’l)

P(Xay) B P(Xay) P(Xeu)

CeCr:Ceh—1(1)

_ y Penci) _ P@Tne )
E0) P1(0)

CeCr:P(Ceh—1(1)

Thus any hypothesis h € Hr is fair w.r.t. to the odds equality notion of fairness.
Assume F does not have zero-group-knowledge. Thus F'(z) and G(z) are dependent given
the ground truth #(z). Thus there exists label [ € {0,1}, group G € {A, D} and a cell

C € Cr with 20 Xc.0) # POl (D) Now consider the hypothesis class h defined by

P(Xea,u) P(L=1(1))

h='(1) = C. For this hypothesis we have PO ()0 Xc.0) # P00 (M) Ty, not

P(Xa.,u) P(L=1(1)

every hypothesis h € H r fulfills equalized odds.

O

Theorem 7. A feature set F is adversarially fair w.r.t. distribution P if and only if for each cell
C € Cr and for each | € {0,1} we have P4 ;(C) = Pp(C).

Proof of Theorem 7:

Assume F is adversarially fair w.r.t. to P and L¥?. This means that every h € Hr is fair w.r.t
to L¥C. Now take any cell C € Cr and let h be defined by h~1(1) = C. Then we know that

P(XaA.NC)

P(X,J,.ﬂ(,‘) d P(XA,nn()) o P(X’J,nn())

P(Xa,1)

e, ad T = (g - Thus, for each | € {0,1} we have

)A,l((j) = Pp(C).

Now assume, we have for each ! € {0,1} we have P4 ;(C) = Pp,(C). Then forany h € H r, we

get

1)(XA,I n h_l(l)) Z 1)(XA’1 n C) -

P(Xa,) Cehi(1) P(Xa,)
S P(Xpu,NC) P(Xpynh (1))
P(Xp,) P(Xp,)

Ceh—1(1)

Thus LEC(h) =0. O

Theorem 8. A feature set F is accuracy-driven fair w.r.t. distribution P if and only if for each cell in
the score-induced C € Cr, and for each | € {0,1} we have P4 ;(C) = Pp(C).

Proof of Theorem 8: "Conditional probabilities over score-cells align" implies "representation is
accuracy-driven fair": We know for every cell C' € Cr,,

and

Thus for every threshold a € [0, 1], we have P, _p[t$, - (z)|z € A, t(z) = 1]

P, .plr € Clz € A, t(x) =0] =P, plz € Clz € D,t(x) =0

P,.plr € Clz € Ajt(z) = 1| =P,oplz € Clz € D, t(z) = 1].
Ponplt p(z)|z €

D,t(x) = 1] and P, p[tP p(z)|z € A, t(z) = 0] = Pyplz € Clz € D, t(x) = 0]. This implies
equal false-positive and false-negative rates and therefore group fairness.

" conditional probabilities over score-cells do not align" implies "representation is not accuracy-

driven fair":

We assume that the conditional probabilities over score induced cells are not aligned.
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Let Crscore = {C1,...Cy } such that 5,(C;) < s,(C}) for every i < j. Thus, C; € Cr,, with
P,.plz € C| € Ajt(z) = 0] # P, plz € Cilz € D,t(z) = 0l or P, plz € C;| € At(z) =
1| # Poplz € Ci|lz € D, t(z) = 1]. Now consider the threshold classifier with threshold s,(C;).
We can consider two cases:

O

. . PUEE N ONXa0) P (0)NXp,1) P3G (1)NXA,0)
CaS(: )l P(Xa,) 7 P(Xp,1) or P(Xa.0) 7
8(Cy 1
Py P(xf:})r;xn ) This implies Lf‘"' (t“(P‘)) > 0. In this case, the Bayes classifier

that cuts at s,(C}) is unfair. Thus thcrc exist a threshold classifier that is unfair.

. COPEEGD TN ONXA) PRSP 000X ) P(LLC) M (1)NXa0)
Case 2: P(Xa,1) - P(Xp,1) and P(Xa,0) -
PGP (1)NXDp, 0)

P(XIJ 0)
However since P,.p[z € C;| € At(z) = 0] # Pyuplz € Cilz € D,t(z) = 0] or
P,.plz € C;| € At(z) = 1| # P,oplz € C;|z € D,t(z) = 1|, this implies that i > 1.
Now consider the threshold classifier with threshold s,(C;_1): P,.p[t*©i-1)(z) = 0| €
A t(z) =1]
= P,.p[t*©)(z) = 0| € A, t(z) = 1]
+P.plz € Cle A t(z) =1]
# Purplt™©@(z) = 0] € D, t(z) = 1]
+Pyoplz € C| € D,t(z) = 1]
— P, _p[t*©)(z) = 0] € D, t{x) = 1] or P, plt*@(z) = 1] € A,t(z) = 0
= Poop|t*©)(z) = 1] € A,t(x) = 0]
—Pyoplz € Cle A t(z) =0)
# Popt*(“(z) = 0] € D, t(x) = 0]
—Pyoplz € C|l € D,t(z) = 1]
= P,p[t*(“~)(z) = 1| € D,t(z) = 0] Which implies LEC(#*(“i-1)) > 0. Thus there
exist a threshold classifier that is unfair.

Theorem 9. We can bound adversarial fairness and accuracy enforced fairness of a feature set F
w.r.t. P and L¥? by the dc , -difference and dc ., ~difference of conditional distributions respectively:

1 1
Ugdn(F) < Ed’}{y(PA,lyPD,l) + Edn;(I’A,o, Ppp)

1 1
Uace(F) < Ed’“é'}'."'n'l (Pajy,Ppa)+ Ed“é'}'fn": (Pap,Ppo)

Furthermore, we can lower bound the adversarial fairness of a representation by

1
Ed?{p(I)A,lyI)D,l) < Ugaw(F)

foreveryl € {0,1}
Proof of Theorem 9:  U,q,(F) = maxpen,, LEC(h)

1\ P(h'(1=)NXay) P(h"(l—l)ﬂxn.x)|

= MaAXpeH Zle{ﬂ,l} §| P(Xa1) P(Xpa)
< 58Uy ep, [Paa(B) — Ppa(B)| + 5 supy e, [Pao(B) — Ppa(B)|
= 3dy,. (Pay, Pp) + 5du,. (Pao, Ppyo)

Uacc(]:) < MaXpeH LEO(h’)

Ph~'(1-)NX A, P(ln_'(l—l)nX,J',)l

E— ma.Xhe’Hp Zle{(),l} §| P(XA'() - P(X[J'()
% SuplnE?‘lé';;"t |1)A,1(B) o I)D,I(B)l

<

+

-y

351, epprer |Pao(B) = Ppa(B)

— %d“é'}'.?: (Pan, Ppa) + %d?té";j’:t (Pa,0, Pp,o) Furthermore, for any label I’ € {0, 1}, we get

Uudv(]:) MaXpeH LEO (h’)

P(h '(1-D)NX 4, P(h™'(1-DNXp ) |

= MaXpeH Zle{(),l} §| P(Xa.1) - P(Xp.1)
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1028 Z % MaxXpeH p |P(h_]l')((})(_‘:j‘),r;XA,‘ - P(’l_;_)((l‘;:J")’SXIJ,l)l
1029 = %surn,,em |Pay(B) — Pp(B)|

1030 = §d’}£p(1)A,l,1)D,l)

1031 O

1032 Theorem 10. A feature set F has calibration parity w.r.t. P if it has adversarial fairness w.r.t P
1033  and the group-fairness measure LY. The other direction does not hold. In particular, adversarial
w034 fairness w.r.t. P and LYY is only possible, if P has equal success rates for both groups

1035 Proof of Theorem 10:  Assume JF does not have calibration parity. Thus ¢(z) and G(z) are
1036 dependent given a feature vector. Thus there exists label [ € {0,1}, group G € {A,D} and a

v v -1
1037 cell C € Cr with 5},5(%31) # ﬂ(_;j(‘(_rﬁﬂl Now consider the hypothesis class h defined by

w38 h~'(1) = C. For this hypothesis we have ng(;l_(.l (){;,f(‘)’) # ”(";'(53_)?(‘,;)'(‘”. Thus, not every

1039 hypothesis h € H r fulfills predictive rate parity.

140 The reverse statement is not true. Let Cr = {Cy,C>} be such that P(Cy N X 41) = 0.5, P(Cy N
041 Xa0) =0.1,P(CyNXp1)=02P(CyNXa1)=0.0and P(CoNXa1) = P(CoNXap) =
w2 P(C1NXp,1) = P(C1NXa1) = 0.04. The classifier h defined by h(C) = 1forevery C € Cr

1043 does not have predictive rate parity, since P(’;,_(lh(_lmﬁ‘)"") = PE;TQ’)") =B 4B -Pt(1)=

P(h~'(1)NXa0) _ P(Xao . .. .. . .
1044 —gﬂﬂ(_—%mr—l = —gp—(m—). Moreover, adversarial predictive parity is only possible in cases where

1045 success rates are equal, since unequal success rates always implies that the classifier i defined by
1046 h(C) = 1 for every C € Cr does not fulfill predictive rate parity. [J

1047 Theorem 11. A feature set F has demographic parity w.r.t. P if and only if it has adversarially fair
w48 w.rt P and the group-fairness objective LT .

1049 Proof of Theorem 11:

* Demographic Parity: Assume F has demographic parity, then we have for every cell
CeCr: ﬂp%(ﬂ(rl = P(A). Thus, we have forany h € H z:

P(hY(1)NnA)  YcecrcenrqyP(CNA)

P(h=1(1)) P(h=1(1))

B Z()ec}-:(leh—'(l) P(C)P(A) B P(A) Z()ec}-:()eh—'(l) P(C) _ P(A)P(h—1(1)) ()

B P(h=1(1)) B P(h=1(1)) P(h=1(1))
1050 Thus any h € Hr also has demographic parity.
1051
1052 * Assume F does not have demographic parity. Thus, there exists at least one cell C' € Cr
1053 with 55-,%2 # P(C'). Now consider the hypothesis class h defined by h=1(1) = C'. For

-1
1054 this hypothesis we have W # P(A). Thus, not every hypothesis h € Hr has
1055 demographic parity.
1056 O
1057 Observation 3. ¢ There exists a distribution P and a feature set F such that each f € F the
1058 feature set { f} has zero-group-knowledge w.r.t. P, but F is not and U, 4,(F) = 1
o There exists a distribution P and a feature set F such that each f € F, the feature set {f}
has demographic parity w.rt. P, but F has not. Furthermore the group-membership can be
perfectly determined by F, i.e. for every cell C € Cx we have
P..plz € Alz € C| € {0,1}

1059 ¢ There exists a distribution P and a feature set F such that each f € F, the feature set
1060 {f} has calibration parity w.r:t. P, but F has not. Furthermore the scores for the different
1061 groups in each cell are perfectly opposed, i.e. C C A or C C D.
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Proof of Observation 3:

* (zero-group-knowledge) Consider the domain X = zy,xz9,x3, 24, x5, T, T7, T8 With

XA,I = T1,T2 ,XD,I = I3, T4, XA,() = x5,z and XD,() = x7,xg,. Furthermore let
F = {f1, fo} with fi'(1) = {z1,23,25,27} and f, ' (1) = {x1, 24,75, 25}. Further-
more let P be uniform over X.,ie. P({z,}) = P({zz}) = P({z3}) = P({z4}) =
P({zs}) = P({ze}) = P({z7}) = P({zs}) = 0.125. Thus, we have zero-group-
knowledge for both features, i.e.

PXannfi'(1) _ P({z})
Pt () nfii(1)  P({z1,22})

_ P({=s}) _ P(Xpanfr'()
P({zs,z4}) P-1(1)N f7(1)
P(Xaonfi'(1) _  P({as})
P (0)n f(1) - P({zs,z6})
__P({zz) _ P(Xpon (D)
P({z7,z})  PE=1(0)n f{ (1))
P(Xai0f3' (1) P({z1})
P (1) N f3 (1)) P({z1,z2})
_P({za) _ P(Xpanfii(D)
P({zs,za}) P10 f5(1)
P(XaoN fy'(1) P({zs})
P(1(0) N f5 (1)) P({ws,76})
_ P({zs}) _ P(Xponf3'(1)
P({z7,z8})  P({t=1(0)n f; (1))
However, the featureset F does not have zero-group-knowledge (using Theorem 6) :

C}' = {01,02,03,04} with Cl = {1‘1,1‘5}, CQ = {1‘2,1‘6}, C3 = {1‘3,1‘7}, and
Cy = {z4,73}. Consider the classifier h € Hy with h='(1) = {C1,C3}. Then

5 Ph—'(1—1))nX Ph—'(1—1))nX
LEO(h) = Tieqony | Pran 2 — " Prmay 22| =13 -0l +10 - 3| = 1.
Thus UEO(F) = 1.

adv

= 0.5

= 0.5

=0.5

=0.5

(demographic parity) Consider the domain X = xy,z9,z3, 24 With A = 1,29 and D =
x3, 4. Furthermore let F = {f, fo} with f{'(1) = {1, 23} and f5 (1) = {z1,24}.
Thus, Cr = X. Furthermore let P be uniform over X,ie. P({z1}) = P({z2}) =
P({z3}) = P({z4}) = 0.25. We have demographic parity for both features. However,
since Cr = X, the featureset does not have demographic parity. Furthermore, the informa-
tion from the cells suffice to perfectly predict the group-membership.

(calibration parity) Consider the same domain X, the same feature set and the same
probability distribution P as in the case of zero-group-knowledge. Furthermore consider the
featureset F = {fy, fo} with fi (1) = {21, 5,25, 77} and f5 ' (1) = {xy, x4, 76, 27}
Both features of F have calibration parity, since both sides of each split have success-
rate (.5 for each group. Furthermore the F itself does not have calibration parity: We
have Cr = {01,02,03,04} with C; = {:I,‘l,:l,‘7}, Cy = {:I,‘Q, :I,‘g},c;'; = {I;‘;,Is}, and
Cy = {z4,76}. Both cells Cy and C'» have one element from X 4 ; and one from Xp .
Thus the success rate of elements of group A is 1 in these cells and the success rate of
clements of group D is 0. Accordingly, both cells C3 and Cy have one element from
Xp,1 and one from X 4. Thus the success rate of elements of group A is () in these
cells and the success rate of elements of group D is 1 Thus when splitting these cells by
group-membership both cells the resulting scores don’t remain the same.
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