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1. Introduction
We propose a novel system for automated scien-

tific knowledge discovery at scale, referred to as Dis-
covery Engine (DE). Traditional data analysis meth-
ods rely on human assumptions and linear patterns,
while performant machine learning models find
complex patterns but remain opaque. Our system
overcomes these limitations by combining machine
learning’s pattern recognition ability with the SOTA
interpretability methods [1, 2] that broadly aim at
shedding light on decisionmaking ofmachine learn-
ingmodels. This enables human-understandable in-
sights from complex data that would otherwise re-
main hidden.
While existing work shows AI’s potential for sci-

entific discovery, automation across diverse datasets
remains unexplored. The exception to this are Large
Language Model (LLM) driven discovery pipelines
that aim to go from data to insight directly [3, 4].
However, in practice due to data confidentiality
and/or context length issues, it is not trivial to ex-
pose the LLM to the entire dataset. This makes it
very difficult to judge what part of the discovery is
in fact specifically related to the dataset, rather than
the LLM’s knowledge based on its training data. This
is on top of LLMshortcomings inmathematical tasks
in general [5, 6]. DE addresses these limitations,
makingAI-driven discovery data-driven, automated,
systematic and reproducible.
Belowwe provide an overview of DE components,

followed by two case studies. For the case study that
has ground truth patterns, we make a comparison
with the ground truth, and results from a pure LLM
pipeline. In the second case study we validate the
patterns by exposing them to the academic expert
who has collected the dataset for the study.

2. Discovery Engine
Figure 1 shows an overview of DE. In what follows

we provide details about each component.
Data Ingestion: In this step the data gets pre-

processed automatically. Operations done include
imputation of missing values, duplication removal,
elimination of correlated columns as well as han-
dling of categorical and continuos variables.
AutoML The pre-processed data is modelled us-

ing an AutoML component. Whilst AutoML tools ex-
ist, they are typically unsuitable for interpretability-
driven scientific discovery as they rely on transfer
learning from general pre-trained models, and do

Fig. 1: The Discovery Engine Schematic

not optimise for interpretability. Our AutoML is
tailored for scientific discovery and includes sev-
eral models in various categories: linear (e.g., linear
regression), tree-based (e.g., XGBoost [7]), kernel-
based (e.g., SVM [8]) and deep learning models (e.g.,
autoencoders [9]). Whilst discovery often requires
sophisticated models capable of capturing complex
patterns, we cater for simpler models as well to en-
sure that a highly parameterised model overfitting a
simple dataset will not form the basis of discovery.
AutoInterp: In this component a suite of inter-

pretability methods is applied to the trained models
to elicit patterns in the data. Thesemethods include,
but are not limited to (i) feature importance meth-
ods that highlight the features a model focuses on
themost; (ii) top examples, which are training points
that are most representative of a class or a high re-
gression value; (iii) prototypical examples, which
are synthetic data points generated via an optimi-
sation process, such that they maximally activate a
certain class or low/high regression value. These
examples are at the heart of the discovery process
as they exaggerate the patterns learnt by a model;
(iv) global counterfactuals, which are also synthetic
data points, and with minimal changes swap from
being amember of one class to another or from very
high to low regression values.
Insight Evaluation: The interpretability artefacts

generated are analysed using this component in or-
der to identify and prioritise novel patterns. The
analysis ranges from discarding noisy artefacts to
ranking and grouping them in order to infer robust
patterns derived from them collectively. Whilst the
heavy lifting ofmodelling andmathematical reason-
ing is done in the AutoML and AutoInterp compo-
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nents, here we utilise LLMs to explain and contex-
tualise interpretability results (with reference to ex-
ternal sources of knowledge, such as arXiv). The
extracted patterns, whether LLM-driven or not, are
subjected to validation prior to being revealed.

3. Experiments
3.1 ITR Dataset
Wepresent a case study on an Interfacial Thermal

Resistance (ITR) dataset collected by Wu et al [10] to
understand how material properties affect the ITR
between two interfacing films. We provide more de-
tail about the dataset and the hypotheses that have
been inferred from studying it in Appendix A.
We treat these hypotheses as ground truth and

evaluate the extent to which they can be generated
by DE and a pure LLM-driven discovery system (Dis-
coveryBench (DB) [3]). DB is an agentic pipeline that
provides LLM agents with access to a dataset and
tools to generate Python code that can then be ap-
plied to the data to analyse it. This pipeline relies on
the existence of a ground truth hypothesis framed as
a query that the pipeline aims to investigate. The re-
sult of the investigation forms hypotheses that may
ormay not be alignedwith the ground truth ones. To
score the similarity of the generatedhypotheseswith
the ground truth ones, the pipeline includes an eval-
uation procedure that matches context across gen-
erated and ground truth hypotheses as well as the
variables they use and the relationship between such
variables. The context match score, variable overlap
score and variable relationship score are obtained
throughLLM-based evaluation as a number between
0 and 1 and multiplied to give a final score.
Unlike DB, DE is not necessarily hypothesis

driven, however for fairness, we expose both
pipelines to queries extracted based on ITR ground
truth hypotheses listed in Appendix B. We then use
OpenAI’s o1 as the LLM of choice in both pipelines
and report on results in Table 1. Since o1 doesn’t al-
low temperature to be set to 0, we run the evaluation
a total of 5 times to control for LLM randomness. DE
scores better than DB for all queries. In fact in 3 out
of 4 cases, where DB scores 0, the agent returns code
containing errors leading tohypotheses about the er-
rors rather than addressing the queries.

3.2 Plant Bio Dataset
In collaboration with Mattieu Platre from the

Montpellier Institute of Plant Sciences, we analysed
a dataset on the early root architecture ofArabidopsis
Thalianawithin the first 16 days of growth. Details of
dataset can be found in Appendix C.
We use DE for pattern discovery on this dataset

and divide our findings into: reproducing known
benchmark patterns, novel patterns validated by the
data, and hypotheses requiring experimental valida-
tion. Wemainly focus on genotype and nutrient fea-
tures due to their biological significance and less ex-
plorednature compared to other features in thedata.

Table 1: Comparison of evaluation scores between
our Discovery Engine (DE) and Discovery-
Bench [3] (DB) automated pipelines

Q1 Q2 Q3 Q4 Avg

DE 0.25± 0 0.35± 0.09 0.20± 0.08 0.195± 0.05 0.25
DB 0± 0 0± 0 0.32± 0.02 0± 0 0.08

Reproducing benchmark patterns: DE found
patterns that have been confirmed by our collabo-
rator and existing literature. One example is the
combination of the WT (the "Wild Type" genotype
found in nature) and the N110_275 nutrient (a mid-
range level of Nitrate) for maximizing the total root
length. At this level of nitrate, the root system trig-
gers the plant’s foraging mode, which increases the
total root length much more than when provided at
sufficient levels [11]. Additionally, the results reaf-
firmed that total root length increases with time and
certain known temperature and CO2 levels.
Validated novel patterns: Our model unexpect-

edly favoured the BRL3-2 genotype when optimiz-
ing total root length under nitrate limiting condi-
tions. Since BRL3 is involved in the brassinosteroid
signalling pathway and no clear phenotypes have
been reported for this mutant under nitrate limit-
ing conditions, this was surprising. Further analy-
sis revealed that BRL3-2 alone had a lowermean root
length than the dataset average, but when paired
with N11400_110, it produced significantly higher to-
tal root length. This suggests a synergistic effect,
where certain genotype-nutrient combinations out-
perform their individual contributions.
Novel hypotheses for experimental validation:

DE proposed some genotype-nutrient pairings not
observed in the data, such as WT with N11400_550.
These predictions represent testable hypotheses
that our collaborator has expressed interest in val-
idating through laboratory experiments.

4. Summary
Despite their limitations, when successful, pure

LLM pipelines allow a level of scalability that far
surpasses the common task-specific AI discovery
(where a certain modelling paradigm is chosen and
trained for a dataset and then analysed for insights).
We propose a pipeline that offers the best of both
worlds: it allows an end-to-end scientific discovery
process, where interpretability artefacts capture the
essence of the data in a succinct and precisemanner
that can thenbe investigatedusingLLMs, domain ex-
perts or validated by contrasting to the data.
We verify DE performance quantitatively (ITR

case study) and qualitatively (Plant Bio case study).
In the former, whilst DE outperforms DB, the gap
could have been even wider if the evaluation proce-
dure wasmore open ended rather than as restrictive
as comparing variable names. In the latter we show
the biological relevance of the findings that has mo-
tivated the experimental validation of our results.
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Appendix A. ITR Dataset

The ITR dataset comprises 1318 data points denoting
457 interface combinations across 54 materials, in-
cludingmetals, insulators, and semiconductors. The
457 interfaces are defined by their films, interlayers,
substrate materials, and experimental conditions.

Besides experimental conditions like the tempera-
ture at which ITR was measured, the dataset also
contains information about the thickness of films in
the interface and material properties like melting
point, binding energy etc.
The ground truth hypotheses inferred by studying

the ITR dataset are as follows:

1. Film melting point, and film/substrate mass
have a linear correlation with ITR

2. There is a strong linear correlation between
atomic coordinates, binding energy and ionic
potential

3. Material systems Bi/graphite, Bi/diamond, and
Bi/B are predicted to have high ITR and are not
present in the original dataset

4. f_melt (Film melting point) and s_melt (Sub-
strate melting point) show opposite linear
trends

Appendix B. Crafted Queries

The queries crafted to enable evaluating our Discov-
ery Engine and DiscoveryBench [3] to align with the
ground truth hypotheses presented in Section 3.1 are
as follows:

• Q1: How is filmmelting point and film/substrate
mass related to ITR?

• Q2: How are atomic coordinates, binding en-
ergy and ionic potential related to each other?

• Q3: Whatmaterial systemsarepredicted tohave
high ITR and are not present in the original
dataset?

• Q4: What is the relation between f_melt and
s_melt?

Appendix C. Plantbio Dataset

This dataset contains over 10 thousand plant sam-
ples, each measuring 18 root system architecture
(RSA) measurements and 6 experimental features
(days since planting, CO2 levels, room temperature,
genotype, soil nutrients, and sorbitol levels). While
we explored multiple target variables, this paper fo-
cuses on understanding how these 6 features impact
only one of theRSAmeasurements: total root length.
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