Under review as a conference paper at ICLR 2026

A RENDERING TRAINING VIDEOS USING UNITY

In this work, all training videos are synthesized using Unity. As introduced in Sec.d.2] for each
camera motion synthesis, we first prepare the scene and then render the video with and without
camera motion.

Scene creation. Each scene consists of a background, a floor texture, and objects. These elements are
randomly determined during scene creation. Specifically, we first randomly select the categories of
the background and floor texture. The background options include {*“sky”, “far mountains”, “closer
mountains”, “both mountains”}. The “sky” refers to the default background in Unity. The “far
mountains” and “closer mountains” are publicly available background assets that depict mountains at
different distances, respectively. The “both mountains” option includes both of the previous mountain
backgrounds. The floor texture options include “brick and stone floor”, “black sand ground”, “green
grassland”, “brown ground”, “yellow grassland”, “light green grassland”. These textures are also
publicly available assets in Unity. For the objects, we randomly place both static and moving objects
in the scene. The static objects include “tree”, “bush”, “grass”, while the moving objects include
“sphere”, “cube”, “polygon”, “cylinder”. Notably, all objects are created using basic geometric shapes
and do not require specific human effort for design. Please refer to the example training videos on our
anonymous website https://anonymoususersl96.github.io/VividCamDemo/|for a

better understanding of their visual appearance.

Video rendering. After creating the scene, we render the videos both with and without camera
motion. The videos without camera motion are generated by randomly determining the camera’s
coordinates and pose, then fixing the camera in place while recording the video. For the videos with
camera motion, we first define the camera movements using a short script (typically no more than 10
lines of code). Based on this script, the rendered video incorporates the specified camera motions.
We note that the camera motion script can be effectively written by GPT given natural language
instructions (e.g., “I want to write a Unity C# code depicting a camera first push forward, then truck
left.”)

B DETAILS OF TEXT PROMPTS

Our training and inference processes rely on different categories of text prompts. In this section,
we provide a detailed discussion of the prompts used. Generally, two categories of prompts are
employed: (1) scene-only prompts ¢, used for appearance LoRA learning, and (2) composite prompts
(em @ ¢), which combine camera instructions with scene descriptions for learning camera control in
the text-based setting. Additionally, we provide examples of prompts used during inference.

Scene-Only Prompts for Appearance LoRA Training. During appearance LoRA training, we
constrain the LoRA to learn only the appearance style. Therefore, the training prompt at this
stage includes only a description of the rendered scene, specifying objects and environmental
details. For example: “Content: There are small plants and geometries on the light green grassland.”
Additionally, as described in Sec. we incorporate a style-aligned prompt to help bridge domain
gaps during appearance LoRA training. This prompt acts as a virtual indicator of the target style.
With this addition, the complete training prompt ¢ becomes, for example: “Content: In this low-poly
3D <VIRTUAL> scene, there are small plants and geometries on the light green grassland.”

Composite Prompts for Text-Based Camera Control. For text-based camera control, we freeze
the appearance LoRA and train a separate camera LoRA. At this stage, the training prompt includes
both camera movement instructions ¢, and scene descriptions ¢. The camera component guides the
camera LoRA to learn appropriate motion patterns, while the scene description ensures consistent
content generation. For example: “Camera: The camera pushes forward, focusing on a moving
sphere. Then the camera trucks left. | Content: In this low-poly 3D <VIRTUAL> scene, there is a
moving sphere. There are also small plants and geometries on the black sand ground.” It is worth
noting that for trajectory-based camera control, we use only the scene description ¢, rather than
composite prompts (e, @ ¢), since the camera condition is provided directly by the trajectory input p.

Prompts at Inference Time. During inference, we use prompts similar to those employed during
camera control training, with the exception that the virtual style indicator is omitted. Below are
example prompts for both text-based and trajectory-based control: Text-based: “Camera: The

13

https://anonymoususers196.github.io/VividCamDemo/

Under review as a conference paper at ICLR 2026

Value

Learning rate le-4

Rank 128

Scheduler Cosine with Restarts
Appearance LORA Warm up steps 400

Optimizer adamw

b1 0.9

B2 0.95

Learning rate 3e-4

Rank 512

Scheduler Cosine with Restarts
Camera LoRA Warm up steps 400

Optimizer adamw

B1 0.9

B2 0.95

Learning rate le-4

Scheduler Cosine with Restarts

. Warm up steps 250

Trajectory Encoder Optimizer adamw

B1 0.9

B2 0.95

Table 6: Hyperparameter settings.

camera pushes forward, focusing on a static steaming coffee cup. Then the camera trucks right. |
Content: A steaming coffee cup rests on a wooden table beside a stack of books and a pair of glasses.”
Trajectory-based: “Content: A steaming coffee cup rests on a wooden table beside a stack of books
and a pair of glasses.”

C IMPLEMENTATION DETAILS

For all experiments, we use CogVideoX-5B (Yang et al., [2024b) as the base model. The base
model remains frozen throughout all experiments, and we adopt its default hyperparameters (e.g.,
noise sampling schedule, conditional guidance scale). Each generated video is 5 seconds long,
consisting of 49 frames at a resolution of 720 x 480. For text-based control, the learning rate for
LoRA optimization is set to 1e-4 for appearance learning and 3e-4 for camera motion learning, with
the LoRA rank fixed at 128. We use one camera LoRA for different motion types, each using 500
synthetic training videos. For trajectory-based control, we fine-tune from the pre-trained AC3D
model using a learning rate of le-4. We train one encoder for different motion types, using the same
set of synthetic training videos as in text-based control.

To help reproduce our results, we report the detailed hyperparameter settings in Table [6]

D QUALITATIVE COMPARISON AND ANALYSIS

Section [5.2] presents the qualitative results of the text-based methods (VIVIDCAM-COG). In this
section, we first present the qualitative results of the trajectory-based methods (VIVIDCAM-AC3D),
followed by a comparison with the baseline methods and corresponding analyses.

Qualitative results of trajectory-based methods. We present the qualitative results of VIVIDCAM-
AC3D in Figure[6. As shown, similar to the text-based method, our trajectory-based method can
generate videos with precise camera control and high visual quality across a range of camera motions,
from simple and composed to complex ones.

Qualitative comparison with baselines. We present qualitative comparisons in Figure [7 and
Figure[8. Our observations indicate that state-of-the-art methods struggle to accurately synthesize

14

Under review as a conference paper at ICLR 2026

Camera: The camera pulls back, moving away from a static steaming coffee cup. Then the camera trucks left.

Content: A steaming coffee cup rests on a glass table beside a plate of croissants and an open newspaper.

Camera: The camera pushes forward, focusing on a static microscope. Then, the camera trucks left.
Content: A laboratory microscope sits on a counter, flanked by glass slides, test tubes, and an open science book.

i R et AT = = o SR <~
Camera: The camera pans around, searching for a static bouquet of wildflowers. Upon finding it, the camera locks focus and
pushes in on the petals. Content: A bouquet of wildflowers rests in a jar on a picnic table, with a red-checkered cloth beside it.

S B e | e
»

Camera: The camera pans around, searching for a glowing lantern. Upon finding it, the camera locks focus and pushes in on
the warm light inside. Content: A lantern glows on a cobblestone path at dusk, surrounded by fallen leaves and a faint mist.

Camera: The camera pulls out from a moss-covered rock. Then, the camera zooms in, shifting focus to a stone pathway.
Content: The rock rests under the shade of tall trees, while the pathway winds through the forest, its stones carefully placed.

Camera: The camera orbits the static globe.
Content: A classic globe with detailed continents rests on a wooden stand, surrounded by history books.

Figure 6: Qualitative results of diverse camera motions using VIVIDCAM-AC3D. Note that some
complex camera motions are difficult to demonstrate through images; please refer to the videos on
our anonymous webpage https://anonymoususersl96.github.io/VividCamDemo/
for better visual results.

15

https://anonymoususers196.github.io/VividCamDemo/

Under review as a conference paper at ICLR 2026

CameraCtrl

CogVideoX

m‘g‘-w‘d\—¥ ’vw i

AC3D

VividCam-AC3D VividCam—Cog

Camera: The camera pans around, searching for a sunflower in a glass vase. Upon finding it, the camera locks focus and
pushes in on the vibrant yellow petals. Content: A sunflower sits in a glass vase on a windowsill, with sunlight streaming in and
casting soft shadows on the sill.

CameraCtrl

CogVideoX

AC3D

VividCam-AC3D VividCam-Cog

Camera: The camera pushes forward with intermittent explosive tremors, focusing on a worn-out teddy bear lying on ground.
Content: A car explodes in a fiery blast, sending debris and dust into the air.

Figure 7: Qualitative results comparison. We observe that camera motions such as “panning around
to search for an object, then pushing in to focus on the object” are particularly challenging for
state-of-the-art models. Even when provided with exact trajectories, these methods often degrade
into simpler camera motions—such as a rightward truck in CAMERACTRL or a turbulent push-in
in AC3D. In contrast, our method faithfully produces the intended camera motions. Additionally,
we note that certain effects, such as explosive camera motions, are difficult to convey through static
images. Please refer to the videos on our anonymous webpage https://anonymoususersl196.
github.io/VividCamDemo/ for better visual results.

16

https://anonymoususers196.github.io/VividCamDemo/
https://anonymoususers196.github.io/VividCamDemo/

Under review as a conference paper at ICLR 2026

CameraCtrl

CogVideoX

AC3D

VividCam-AC3D VividCam-Cog

Camera: The camera pulls out from a moss-covered rock. Then, the camera zooms in, shifting focus to a stone pathway.
Content: The rock rests under the shade of tall trees, while the pathway winds through the forest, its stones carefully placed.

CameraCtrl

CogVideoX

AC3D

VividCam-AC3D VividCam-Cog

Camera: The camera orbits the static candle holder.

Content: A rustic candle holder with a flickering candle rests on a wooden table, accompanied by dried flowers and a brass bell.

Figure 8: Qualitative results comparison. We observe that camera motions such as “pulling out
from an object, then zooming in to shift focus to another object” are particularly challenging for
state-of-the-art models. Even when provided with exact trajectories, these methods often fail to
accurately reproduce the desired camera motions. For example, while AC3D attempts to depict a
focus shift from a rock to a stone, it does not successfully demonstrate the pull-out from the rock
followed by the push-in toward the road. In contrast, our method faithfully captures and reproduces
the intended camera motions. Additionally, we note that such unconventional camera movements are
difficult to fully appreciate through static images alone. Please refer to the videos on our anonymous
webpage https://anonymoususersl96.github.io/VividCamDemo/ for better visual
results.

17

https://anonymoususers196.github.io/VividCamDemo/

Under review as a conference paper at ICLR 2026

Instructions: Please read the instructions carefully. Failure to follow the instructions will lead to the rejection of your results. In this task, you will be asked to evaluate if Al

imodels accurately follow the camera motion instructions in text instruction (e.g. left, right) when generating videos. Specifically, you will first see a text description, which

idescribes the camera motion in the videos we want to generate. The instruction usually consists of two parts movement. Please pay special attention to the direction. Next,
ou will see a short video, which is generated based on the provided text by an Al algorithm. You will then be asked to evaluate if the camera motion in the video is consistent
ith the instruction. Assign 2 points if the camera motion is clear and consistent, 1 point if the camera motion is unclear and consistent with the description in a part of the
ideo, and 0 points if the camera motion is incorrect or no camera motion. Notice that you should only focus on the camera motion and ignore any other factors. Additionally,
ou should ignore the errors where some objects mentioned in the text are missing.

[Example: We provide an example to help you understand how to evaluate the generated results. The text description is "The camera pushes forward, focusing on a moving
sphere. Then the camera pans left." To analyze the generated results, we observe that in the video, the camera first pushes forward, then moves leftward from the initial
lposition. The camera motion is clear and consistent, and you should assign 2 points to this video. You should ignore the difference between camera pan and camera truck
movements.

» 0:00/0:06

[Question: The text description is "The camera orbits the static coffee grinder.".

> 0:00/0:06

How is the camera motion in this video consistent with the text description? Assign 2 points if the camera motion is clear and consistent, 1 point if the camera motion is unclear
land consistent with the description in a part of the video, and 0 points if the camera motion is incorrect or no camera motion.
oo
o1
O 2
Submit

Figure 9: The example interface of Amazon Mechinical Turk in our human study.

unconventional camera motions. For instance, in the upper panel of Figure[7} even when provided with
exact trajectories, these methods often simplify the intended motion—resulting in a pan to the right
in CAMERACTRL or a turbulent push-in in AC3D. Similarly, in the upper panel of Figure 8, while
AC3D attempts to depict a focus shift from a rock to a stone, it fails to effectively illustrate the pull-out
from the rock followed by a push-in toward the road. In contrast, our method faithfully captures and
reproduces the intended camera motions. Additionally, we note that such unconventional motions are
difficult to fully appreciate through static images alone. We encourage readers to refer to the videos on
our anonymous webpage https://anonymoususersl96.github.io/VividCamDemo/
for better visual results.

E DETAILS OF HUMAN STUDY

Our human study is conducted on Amazon Mechanical Turk. We consider three levels of camera
motion: simple, composed, and complex. Please refer to Table I for the specific camera motions
covered in each category. For each category, we sample 25 prompts and input them into our model
and baseline models for evaluation. Each of the 25 prompts is tested twice, resulting in 50 videos
per camera motion category and a total of 150 videos. Each question is awarded $0.03. In total, 88
unique workers participate in the study. For each question, we present the tested videos along with
the input text prompt and ask participants to answer two types of questions: @ (Action Correctness)
How consistent is the camera motion in the video with the text description? @ (Realism) How is the
visual quality of the video? Participants rate each question on a scale from 0 to 2. To ensure precise
evaluation, we provide detailed explanations, a scoring rubric, and examples.

Figure[9]shows an example of the interface that participants will see during the human study.

F CLIP SIMILARITY

18

https://anonymoususers196.github.io/VividCamDemo/

Under review as a conference paper at ICLR 2026

Simple Composed Complex

We present the CLIP similarity results in Table[7]

. CAMERACTRL 0.3254 0.3306 0.3006

C')ve'rau, all methods a.Chleve Comparable CLIP CoGVIDEOX 0.3272 0.3215 0.3070
similarity scores. Specifically, both VIVIDCAM- AC3D 0.3397 0.3437 0.3153
CoG and VIVIDCAM-AC3D exhibit less than a VIVIDCAM-COG 0.3327 0.3362 0.3230
VIVIDCAM-AC3D 0.3352 0.3341 0.3134

0.01 difference in CLIP score compared to their
vanilla counterparts, COGVIDEOX and AC3D, o
respectively. This indicates that our methods Table 7: Results on CLIP similarity.
maintain the same level of alignment with the desired content described in the text prompts. We also
observe that COGVIDEOX performs worse in scenarios involving complex camera motions, possibly
due to quality degradation when generating motion patterns that are likely underrepresented in the
training dataset, as shown in Sec. E

19

	Introduction
	Related Work
	Video Generative Models
	Camera Control in Video Generation
	Improving Video Generation Models Using Synthetic Data

	Preliminaries
	ViVidCam
	Problem Formulation
	Render Training Videos
	Dual Adaptation Training Scheme

	Experiments
	Experiment Settings
	Qualitative Results
	Quantitative Evaluations
	Ablation Study

	Conclusion
	Rendering Training Videos Using Unity
	Details of Text Prompts
	Implementation Details
	Qualitative Comparison and Analysis
	Details of Human Study
	CLIP similarity

