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A ANTHROPOMETRIC MEASUREMENTS

The selection of the anthropometric measurements is mainly adopted from AnthroNet (Picetti et al.,
2023). In total, 36 measurements are selected, which can be divided into 23 lengths and 13 cir-
cumferences. All measurements are taken based on the standard SMPL-X T-pose. The reference
landmarks are chosen by matching the vertices on the default mesh with the landmarks defined by
the anthropometric survey of the U.S. army personnel (Gordon et al., 2014). A visualization of the
landmarks can be found in Figure 1 and 2a. The lengths are calculated by computing the Euclidean
distance between two landmarks or the difference along the coordinate axis pointing upwards for
certain heights. The lenghts are visualized in Figure 2b and 3. Table 1 lists the enclosing landmarks
for each length. To measure the circumferences, we adopt the code from (Bojanic, 2023). For each
measurement, a plane is created, the intersection between the mesh and the plane are extracted and
the convex hull of the result is calculated. During this process, the mesh is restricted to the body
part to be measured. A visualization of the circumferences can be found in Figure 4 and a list of the
landmarks and the normal vectors spanning the plane in Table 2.

Figure 1: Visualization of the used landmarks with a standard T-pose SMPL-X mesh in front view.
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Table 1: Definitions of lengths by their two enclosing landmarks.

Idx Length Name From To

1 Shoulder width Left shoulder tip (left acromion) Right shoulder tip
2 Back torso height Cervicale Back belly button
3 Front torso height Suprasternale (top of the breast bone) Belly button
4 Head Head top Cervicale
5 Midline neck Chin Suprasternale
6 Lateral neck Center between the ears Cervicale
7 Height Head top Center between heels

8/9 Hand right/left Center between middle and ring finger Stylion rotated downwards
10/11 Arm right/left Acromion Wrist
12/13 Forearm right/left Elbow Stylion rotated downwards
14/15 Thigh right/left Outer point at the femur (Trochanterion) Knee cap
16/17 Calf right/left Knee cap Ankle
18/19 Foot width right/left Small toe Big toe
20/21 Heel to ball right/left Heel Ball
22/23 Heel to toe right/left Heel Big toe

(a) Visualization of a subset of
the used landmarks.

(b) Visualization of used lengths with a standard
T-pose SMPL-X mesh.

Figure 2: Sideview visualizations of landmarks (a) and lengths (b).

Table 2: Definitions of circumferences by landmarks and the normal vector spanning the plane.

Idx Circumference Normal Vector Position

1 Waist Up Belly button
2 Chest Up Nipple
3 Hip Up Pubic bone
4 Head Up Head temple
5 Neck Spine to head Adam’s apple

6/7 Upper Arm Shoulder to elbow Center of the bicep
8/9 Forearm Elbow to wrist Widest point of the forearm

10/11 Thigh Up Center of the thigh
12/13 Calf Up Widest point of the calf

2
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Figure 3: Visualization of used lengths with a standard T-pose SMPL-X mesh in front view.

Figure 4: Visualization of used circumferences with a standard T-pose SMPL-X mesh in front view.

B 3D HUMAN SHAPE GROUND TRUTH ANALYSIS

We further analyze the GT shape consistency for the common datasets Human3.6m (Ionescu et al.,
2014) and MPI-INF-3DHP (Mehta et al., 2017). We find that for Human3.6m, the bone lengths
derived from the 3D annotations are fixed, but not for MPI-INF-3DHP. Therefore, we do not report
the deviations of 3D joint annotations for Human3.6m, since there are none. We further evaluate the
SMPL-X annotations for both datasets provided by NeuralAnnot (Moon et al., 2022) which are used
by HME models as GT for training. See Tables 3, 4 for details.
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Table 3: GT data analysis for MPI-INF-3DHP (Mehta et al., 2017). Bone length analysis based on
the 3D joint locations (left) and on SMPL-X annotations by NeuralAnnot (right). Standard deviation
σ, relative standard deviation σ

avg and relative range max−min
avg of anthropometric measurements are

reported. Standard deviations are given in cm, except for the β parameters. The values are averaged
between left and right body parts and between all persons in each dataset. The β parameter standard
deviation is averaged over all β parameters.

3D joint annotations SMPL-X annotations
Measure σ r. σ r. range Measure σ r. σ r. range

head 0.19 1.03% 2.08% head 0.21 0.75% 4.87%
hip width 0.22 0.89% 1.80% hip circ. 1.16 1.16% 9.13 %
forearm 0.21 0.87% 1.77% forearm 0.45 1.80% 9.75%

upper arm 0.29 0.90% 1.82% arm 0.83 1.59% 8.19%
lower leg 0.60 1.49% 3.06% lower leg 1.05 2.56% 11.54%

thigh 3.83 7.91 % 41.90% thigh 0.77 2.02% 9.47%
height 2.76 1.56% 8.24%

β param. 0.18

Table 4: GT data analysis for Human3.6m (Mehta et al., 2017): Analysis of SMPL-X annotations
by NeuralAnnot. Standard deviation σ, relative standard deviation σ

avg and relative range max−min
avg

of anthropometric measurements are reported. Standard deviations are given in cm, except for the
β parameters. The values are averaged between left and right body parts and between all persons in
each dataset. The β parameter standard deviation is averaged over all β parameters.

SMPL-X annotations
Measure σ r. σ r. range

head 0.41 1.51% 10.28%
hip circ. 1.24 1.19% 8.90%
forearm 0.83 3.30% 27.93%

arm 0.77 2.58% 22.88%
lower leg 0.43 1.18% 12.20%

thigh 0.66 1.27% 9.43%
height 3.40 2.06% 15.66%

β param. 0.20

C EVALUATING A2B MODELS

We measure two types of errors to evaluate the performance of our A2B models. The first type (β
error) shows the error if we take the GT β parameters, derive anthropometric measurements (B2A),
input them into the A2B models and evaluate the MSE of the predicted β parameters. The second
type (A error) calculates B2A from the predicted β parameters and evaluates the mean difference
between the GT and predicted anthropometric measurements (all 36) in mm. These evaluations are
a kind of cycle consistency evaluation for A2B and B2A. Figure 5 provides a visualization of the
evaluation scheme. The part that is also included in the training is highlighted.

A2B

GT Anthropometric 
Measurements AGT Shape β

A2B Shape ̂β
A2B Anthropometric 

Measurements ̂A
B2A

B2A

Anthropometric Error Parameter Error

(Train Loss)

β

Figure 5: Visualization of the A2B evaluation and training procedures. The part involved in training
the A2B models is highlighted with thicker arrows. B2A is a deterministic function and not learned.
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D KEYPOINT SELECTION FOR FIT3D

We use the fit3D (Fieraru et al., 2021) dataset for our evaluations, since this is the only sports dataset
with public SMPL-X annotations. We evaluate on the SMPL-X joints, since these are trivial to
obtain from SMPL-X meshes and there is no regressor available for the fit3D annotated 3D joints.
SMPL-X has 144 defined joints. Since our focus is mainly on the body and not on the hands and
face, we remove most of these joints. In the end, we select a subset of 37 SMPL-X joints: pelvis,
left hip, right hip, spine1, left knee, right knee, spine2, left ankle, right ankle, spine3, left foot, right
foot, neck, left collar, right collar, head, left shoulder, right shoulder, left elbow, right elbow, left
wrist, right wrist, left index, left thumb, right index, right thumb, left big toe, left small toe, left heel,
right big toe, right small toe, right heel, right eye, left eye, right ear, left ear, nose.

E GENERATION OF PSEUDO GT ANTHROPOMETRIC MEASUREMENTS

As we do not have access to the athletes of ASPset and fit3d to obtain real anthropometric mea-
surements, we need an alternative to kind-of simulate this process. For ASPset, as a first step, we
run IK on the GT 3D joint locations. We obtain the necessary anthropometric parameters from the
generated meshes with B2A. Then, we use the median values of these measurements as the GT an-
thropometric values. We call these parameters pseudo GT throughout this paper, since this is not
directly the GT, but obtained from IK executed on the GT 3D joint locations and the B2A computa-
tion from the created meshes. These parameters are used in this paper to generate the pseudo GT β
parameters by A2B prediction.

We do not have access to the athletes of the fit3D dataset either. Therefore, we need some kind of GT
data to mimic measurements. Obviously, there is no GT available for the official test set evaluation
on the evaluation server. We therefore split the official training dataset into a training, validation,
and test set for our evaluations. Details can be found in the main paper. With this selection, we
have GT shape parameters available. We do not use these directly, but apply B2A and use the
median measurements over time in order to mimic the measuring process and obtain a single set of
anthropometric measurements per person (which is not the case for the provided GT parameters, see
Section 3 in the main paper). In real applications, this step is omitted because the anthropometric
parameters can be measured directly from the athletes before starting the recording.

F FINETUNING HME MODELS WITH PSEUDO GT MESHES

Finetuning existing HME models on pure 3D joints datasets is not possible, since they need mesh
annotations for training. However, with IK, we can generate pseudo GT meshes. We exemplary
test a finetuning of SMPLer-X on ASPset with this approach. Experiments show that using their
finetuning script with 1.6M iterations leads to worse results than the results without finetuning.
Therefore, we reduce the number of iterations with early stopping and achieve better results with
finetuning only for 32K iterations.

The results shown in Table 5 prove that finetuning on IK generated meshes can lead to a significant
improvement of the scores. Replacing the β parameters of the finetuned results with the A2B β
parameters boosts the performance even more. These are the best results achieved with any existing
HME model throughout this study.

Moreover, we experiment with using the SMPLer-X body shape parameters combined with the poses
estimated by IK applied to the UU results (see last two rows of Table 5). Using the β parameters
from SMPLer-X leads to a slightly better result than the original 3D joint based result (without IK).
This evaluation shows that 3D HPE models are better in precisely locating the joints of humans than
HME models, but HME models are better in estimating the shape of humans. We also try to use
the β parameters of the finetuned variant together with the UU IK poses like before. However, this
resulted in a performance drop compared to the body shape parameters from the original SMPLer-X
without finetuning. These experiments show that finetuning HME models on pseudo ground truth
leads to a better performance regarding the keypoints, but the estimated β parameters have worse
quality. This can further be proven by replacing the β parameters from the finetuned SMPLer-X
variant with the β parameters from the not finetuned model, which results in a performance gain
of over 5 mm compared to the original results from the finetuned version (rows 2 and 4 in Tab.
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Table 5: MPJPE results in mm for the test split of ASPset. Results are given for different methods
and replaced beta parameters with A2B results (columns NN/SVR) or the median of the original β
parameters from the model noted in the measurements column. SMPLer-X FT stands for the best
finetuned variant of SMPLer-X (finetuned with the meshes obtained from IK executed on the GT
3D joints). The orig column contains the results without replaced β parameters. We highlight the
best result for each model and the best option for the combination of UU IK pose and SMPLer-X β
parameters, since this combination outperforms the original UU IK result, too.

model orig. measurements NN m SVR m NN n SVR n median

SMPLer-X 86.02 SMPLer-X 85.89 85.69 86.03 85.99 86.04
SMPLer-X FT 79.09 SMPLer-X FT 78.92 78.88 79.44 79.37 79.44
SMPLer-X FT - GT 65.63 65.84 64.71 64.76 -
SMPLer-X FT - SMPLer-X 73.41 73.29 73.65 73.63 73.66

UU IK 67.54 UU 66.92 66.60 67.25 67.12 67.16
UU IK - SMPLer-X 63.80 63.64 63.81 63.78 63.82
UU IK - SMPLer-X FT 69.46 69.27 69.70 69.63 69.69
UU IK - GT 56.44 56.56 55.14 55.19 -

5). However, our method using the UU IK poses and the A2B body shape parameters with GT
anthropometric measurments achieves the overall best results.

We provide a comprehensive summary and visualization of all results on the ASPset dataset in
Section G. This includes results of existing HME models, results of our approach, and the finetuning
results.

G SUMMARY OF THE RESULTS

We execute a multitude of experiments with different combinations of pose and shape parameters.
Figure 7 summarizes the results with their pose and shape origins for ASPset. In general, the poses
estimated by IK based on the UU results (red branch in Fig. 7) are more precise than the poses
estimated by SMPLer-X (light blue branch in Fig. 7). Further, the body shape parameters from our
A2B models with GT anthropometric measurements (green boxes in Fig. 7) achieve the best results
for all poses. We provide more qualitative examples comparing SMPler-X with this approach in

O
ur
s

SM
PL

er
-X

Figure 6: Qualitative results of SMPLer-X and our approach for example frames from ASPSet. GT
joints and estimated joints are color-coded. Corresponding joints are connected.
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SMPLer-X Mesh
86.02

UU Mesh
67.54

3D Pose
63.85

IK

67.16

86.04

85.69

78.38

66.60

55.14

63.64

69.27

finetuned SMPLer-X

Mesh
79.09

79.44

78.88

64.71

median beta

GT a2b beta

a2b beta

median beta

GT a2b beta

a2b beta

median beta

a2b beta

GT a2b beta
SMPLer-X a2b beta
SMPLer-X FT a2b beta

IK meshes

73.29

SMPLer-X a2b beta

Figure 7: Overview of the main results for the ASPset dataset. All results are MPJPE results in mm.
Results below mesh boxes show the result with the original β parameters. All results after arrows to
the right are results with replaced β parameters. The type of the β parameters is noted on the arrow
and is color-coded: pseudo GT (green), SMPLer-X (light blue), SMPler-X finetuned (dark blue),
UU IK (red).

Figure 6. Without access to the GT, all models benefit slightly from A2B model results with the
median anthropometric measurements from B2A of the estimated meshes by the respective model
(boxes with same color for all three branches in Fig. 7). Moreover, SMPLer-X A2B body shape
parameters perform best when analyzing body shapes without GT access (light blue boxes in Fig.
7). Finetuning SMPLer-X with IK created meshes (dark blue branch in Fig. 7) improves the per-
formance of SMPLer-X, although the quality of the body shape deteriorates. This can be seen as by
comparing the shapes from SMPLer-X and finetuned SMPLer-X (dark blue and light blue boxes in
Fig. 7) with finetuned and IK poses.
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Since fit3D is a larger dataset, finetuning UU works better, which further leads to better IK meshes
with an MPJPE of 37.02 mm. Enforcing consistent meshes with GT or IK A2B shape parameters
decreases the performance slightly in this case. However, A2B shape parameters achieve slightly
better scores than median values. This also holds for OSX and Multi-HMR. Overall, the approach
with UU, IK, and A2B body shape parameters achieves an over 33 mm lower MPJPE than any HME
model.
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