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ABSTRACT

Joint finetuning of a pretrained encoder and a randomly initialized decoder has
been the de facto standard in semantic segmentation, but the vulnerability of this
approach to domain shift has not been studied. We investigate the vulnerability
issue of joint finetuning, and propose a novel finetuning framework called Decou-
pled FineTuning (DeFT) for domain generalization as a solution. DeFT operates
in two stages. Its first stage warms up the decoder with the frozen, pretrained
encoder so that the decoder learns task-relevant knowledge while the encoder pre-
serves its generalizable features. In the second stage, it decouples finetuning of the
encoder and decoder into two pathways, each of which concatenates an adaptive
component (AC) and retentive component (RC); the encoder and decoder play
different roles between AC and RC in different pathways. ACs are updated by
gradients of the loss on the source domain, while RCs are updated by exponen-
tial moving average biased toward their initialization to retain their generaliza-
tion capability. By the two separate optimization pathways with opposite AC-RC
configurations, DeFT reduces the number of learnable parameters virtually, and
decreases the distance between learned parameters and their initialization, lead-
ing to improved generalization capability. DeFT significantly outperformed ex-
isting methods in various domain shift scenarios, and its performance was further
boosted by incorporating a simple distance regularization.

1 INTRODUCTION

The current de facto standard for learning semantic segmentation is to jointly finetune a pretrained
encoder and a segmentation decoder on training data with segmentation labels (Long et al., 2015;
Noh et al., 2015; Ronneberger et al., 2015; Chen et al., 2017; Zhao et al., 2017; Xie et al., 2021;
Yu et al., 2022; Chen et al., 2023). This practice allows significant performance improvement, but
it also often leads to models vulnerable to domain shift in testing caused by, for example, weather
conditions and geolocations they do not experience in training (Ganin et al., 2016; Pan et al., 2018;
Saito et al., 2018; Yue et al., 2019a; Choi et al., 2021). A straightforward solution to this issue is
to collect a vast amount of training data from diverse domains. However, this does not guarantee
that the collected data cover any potential test domains, and more importantly, pixel-wise class
annotation for such data will be prohibitively expensive.

To resolve this issue, we study domain generalization for semantic segmentation, i.e., learning a
model on a single source domain so that it generalizes well to unseen, arbitrary target domains that
may arise in testing (Yue et al., 2019b; Lee et al., 2022; Zhao et al., 2022; Chattopadhyay et al.,
2023; Kim et al., 2023a). A large body of domain generalization research has focused on simulating
diverse target domains by data or feature augmentation during training (Lee et al., 2022; Zhao et al.,
2022; Chattopadhyay et al., 2023), or removing domain-specific information from features (Choi
et al., 2021; Peng et al., 2022; Pan et al., 2018; 2019). Although these approaches have driven
remarkable success, there is still large room for further improvement in that they do not take into ac-
count potential negative impact of the joint finetuning of encoder and decoder, the common practice
in semantic segmentation, on domain generalization.

We argue that the joint finetuning of encoder and decoder can degrade the model’s generalization
capability. First, the joint finetuning causes the pretrained encoder to overfit to the source domain
and thus corrupts its generalization capability (Kumar et al., 2022; Saito et al., 2023). Also, the
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Figure 1: We empirically verify that the joint finetuning causes overfitting to the source domain and
degrades the generalization capability by comparing (a) loss on the source domain–GTAV (Richter
et al., 2016) and (b) that on an unseen target domain–Cityscapes (Cordts et al., 2016) during fine-
tuning. Freezing either the encoder or decoder before being overfitted mitigates the issue to some
extent, which suggests that preventing one of them from being trained with the other overfitted to the
source domain may improve the entire model’s generalization. Of course, this approach is far from
the optimal solution due to the lack of task-relevant knowledge of the frozen module, as demon-
strated in Table 1. Meanwhile, DeFT demonstrates significantly better generalization capability: its
loss on the unseen target domain decreases more quickly and reliably during finetuning.

Table 1: Comparison between the proposed framework, DeFT, and freezing either an encoder or
decoder. All the methods were trained on GTAV using ResNet-50 backbone. After the warm-up
stage, we selectively froze either the encoder or decoder while continuing to update the other. The
results indicate that the model cannot learn sufficient task-relevant knowledge when one module is
not updated at all, especially the encoder, which contains most of the parameters of the model.

Method Cityscapes BDD100K Mapillary Avg.

Freezing Encoder 41.88 36.85 44.59 41.11
Freezing Decoder 42.52 38.75 45.03 42.10

DeFT 50.06 43.17 50.51 47.91

decoder relying on the encoder’s output inevitably draws distorted decision boundaries, producing
gradients that cause the encoder to be more overfitted. Figure 1 empirically verifies this argument.

Building on this insight, we propose a new, simple yet effective finetuning framework dubbed
Decoupled FineTuning for domain generalization (DeFT). DeFT comprises two stages. In the first
stage, the decoder is warmed up with a frozen pretrained encoder, following Kumar et al. (2022).
By warming up on the source domain, the decoder learns the target task (i.e., semantic segmentation
in this paper) without distorting the generalizable knowledge of the pretrained encoder.

The main contribution of DeFT lies in its second stage, which finetunes both the encoder and de-
coder in a decoupled manner. Motivated by the observation in Figure 1, we propose decoupling
the finetuning of the two trainable modules in the model, the encoder and decoder. To this end, we
employ two parallel encoder-decoder pathways for finetuning, each combining an adaptive compo-
nent (AC) and a retentive component (RC). AC is updated using the standard error backpropagation
based on the training loss from the source domain, while RC is not updated using the gradients that
might be overfitted to the source domain. As a result, RC maintains its generalization capability
during finetuning, guiding the coupled AC’s updates using its generalizable knowledge. Note that
the encoder and decoder play different roles between AC and RC in different pathways.

A naı̈ve strategy for managing RCs is not updating them at all, which however leads to a suboptimal
solution due to the lack of task-relevant knowledge in RCs as demonstrated in Table 1. To allow
RCs to learn task-relevant knowledge while preserving their generalization capability, we adopt a
variant of exponential moving average (EMA) (Tarvainen & Valpola, 2017) that is biased towards
the model’s initial parameters, as an update scheme for RCs. This EMA method assigns higher
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Figure 2: An overview of DeFT. The first step of DeFT is to warm up the decoder with the frozen,
pretrained encoder. After warming up the decoder, the decoupled finetuning is conducted through
two parallel encoder-decoder pathways. In the pathways, the parameters of encoders and decoders
are initialized with those from the warmed-up model. In the second step, DeFT finetunes both the
encoder and decoder in a decoupled manner: the RCs (d̃1 and ẽ2) are updated by the exponential
moving average of their counterpart ACs (d2 and e1), while the ACs are updated by gradients of the
loss. Our final model for inference is configured as the combination of the well-generalized RCs (d̃1
and ẽ2), i.e., ffinal = d̃1 ◦ ẽ2.

weights to the early parameters during the finetuning, performing gradual temporal ensemble in the
parameter space.

At the end of finetuning, DeFT produces two RC-AC pairs. Since RCs better preserve the rich and
generalizable knowledge from pretraining and thus have better generalization capability than AC,
we set our final model as the combination of two RCs, i.e., EMA encoder and EMA decoder. The
overall pipeline of DeFT, including each stage, is illustrated in Figure 2.

Our method was evaluated on five different datasets, Cityscapes (Cordts et al., 2016), BDD-
100K (Yu et al., 2020), Mapillary Neuhold et al. (2017), GTAV (Richter et al., 2016) and SYN-
THIA (Ros et al., 2016), and it demonstrated superior performance to previous work in every exper-
iment. In summary, our contribution is three-fold:

• We empirically demonstrate that joint finetuning of the encoder and decoder degrades gener-
alization performance, and simply decoupling them in the finetuning process can substantially
improve the performance.

• We propose a novel training framework for domain generalizable semantic segmentation,
dubbed as DeFT, which finetunes the encoder and decoder in a decoupled manner. We also
provide detailed analysis of our method through extensive experiments.

• DeFT was evaluated on various domain shift scenarios using multiple semantic segmentation
datasets, where it outperformed previous work by large margins in all evaluations.

2 RELATED WORK

2.1 DOMAIN GENERALIZABLE SEMANTIC SEGMENTATION

The objective of domain generalization is to develop models that generalize well to unseen do-
mains (Muandet et al., 2013; Li et al., 2018b). Early methods (Li et al., 2017; 2018a; Pan et al., 2018;
Nam et al., 2021; Zhou et al., 2021) primarily focused on classification tasks. Recently, significant
progress has been made in semantic segmentation (Yue et al., 2019b; Lee et al., 2022; Zhao et al.,

3



Published as a conference paper at ICLR 2025

2022; Chattopadhyay et al., 2023; Kim et al., 2023a). Yue et al. (2019b) suggest learning features
invariant to random style variations in the input. Methods like Lee et al. (2022); Zhao et al. (2022)
simulate diverse style spaces by manipulating the channel-wise means and standard deviations of
features. Additionally, Chattopadhyay et al. (2023) introduced a frequency-domain randomization
technique, particularly for strong augmentation in high-frequency regions. Furthermore, Kim et al.
(2023a) collected a variety of images with different styles from web repositories to enhance gener-
alization performance. Also, some recent work explores alternative model architectures for the pur-
pose. For instance, Ding et al. (2023) propose HGFormer, a hierarchical grouping transformer that
integrates both local and global feature interactions to improve generalization in unseen domains.
Luo et al. (2024) demonstrate that network pruning can enhance domain generalization by reducing
model complexity and increasing robustness. DAFormer (Hoyer et al., 2022) introduces domain-
adaptive semantic segmentation by incorporating architectural refinements and training strategies
that enhance robustness across diverse domains. Meanwhile, DGInStyle (Jia et al., 2024) employs
image diffusion models to generate diverse stylized versions of training images, simulating various
domain shifts; this approach enables models to learn domain-invariant features, effectively improv-
ing their robustness to diverse input distributions during inference.

However, the listed methods still adopt joint finetuning, despite its negative impact on generalization
ability, which remains a common practice in existing frameworks. To address this generalization
issue in previous work, we propose a novel decoupled finetuning strategy called DeFT, and present
a dedicated training algorithm based on EMA.

2.2 WEIGHT AVERAGING FOR MODEL ENSEMBLING

Weight averaging has been explored as an effective method for leveraging the historical training
trajectories of deep neural networks to improve generalization performance. Snapshot ensem-
bling (SSE) (Huang et al., 2017) and fast geometric ensembling (FGE) (Garipov et al., 2018) were
early attempts to utilize weight trajectories from historical training by employing cyclic learning
rates to guide the learning process through multiple local minima, which are then saved as ensemble
members. Building on FGE, stochastic weight averaging (SWA) (Izmailov et al., 2018) updates a
pretrained model using a cyclical or high constant learning rate, gathers model parameters during
training, and averages them to form a model ensemble. Extending from SWA, trainable weight
averaging (TWA) (Li et al., 2023) introduced a technique that allows for weight averaging with
adjustable coefficients. Additionally, model soups (Wortsman et al., 2022a) demonstrated that av-
eraging the weights of multiple models finetuned with different hyperparameters can improve both
accuracy and robustness.

We adopt a variant of EMA as temporal ensembling in the model parameter space for DeFT, allowing
the model to learn task-relevant knowledge while minimizing overfitting to the source domain.

2.3 ROBUST FINETUNING FOR OUT-OF-DOMAIN GENERALIZATION

Robust finetuning using pretrained weights enhances out-of-domain (OOD) performance. Recent
studies (Wen et al., 2021; Gouk et al., 2021) demonstrate that leveraging pretrained models can sig-
nificantly booster robustness on OOD datasets. Moreover, the finetuning process plays a critical role
in improving OOD generalization capability. Research (Nagarajan & Kolter, 2019; Lin & Zhang,
2019; Gouk et al., 2021; Li & Zhang, 2021) indicates that generalization performance is affected
by the distance between the initial and finetuned models: as this distance increases, generaliza-
tion tends to decline. WiSE-FT (Wortsman et al., 2022b) shows significant improvements in OOD
generalization by linearly interpolating pretrained weights with finetuned ones during inference. LP-
FT (Kumar et al., 2022) demonstrates that simultaneously finetuning both the final linear layer and
the feature backbone can distort pretrained features, and proposes a two-stage training strategy: first,
warming up the decoder while freezing the encoder, then finetuning the entire network. Lastly, Tian
et al. (2023) introduces per-layer regularization, which automatically learns constraints for more
accurate finetuning.

Our method adopts a two-step training strategy motivated by LP-FT, but it is clearly different from
LP-FT: after warming up the decoder, we finetune encoder and decoder in a disjoint manner with
the proposed DeFT framework, rather than jointly finetuning them as in LP-FT.
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3 METHOD

We consider training a domain-generalizable segmentation model, f = d ◦ e, with an encoder e and
decoder d using labeled images from a single source domain, where the image height, width, and the
number of semantic classes are denoted by h, w, and c, respectively. Our framework, dubbed DeFT,
consists of two stages: warming up the decoder while freezing the pretrained encoder (Section 3.1),
followed by decoupled finetuning of the encoder and decoder (Section 3.2).

3.1 WARMING UP THE DECODER WITH A PRETRAINED ENCODER

The first step of DeFT is to warm up the decoder on the source domain dataset using the pretrained
encoder that remains frozen. For an input image X and its ground truth Y , let P = f(X) = d(e(X))
be the class probability map, where P ∈ Rh×w×c. Let Lce(P, Y ) denote a standard pixel-wise cross-
entropy loss, which is given by:

Lce(P, Y ) = − 1

h · w

h·w∑
i=1

Y ⊤
i · log(Pi), (1)

where i is the pixel index and Yi is the one-hot vector of the ground truth for pixel i. Then, the
weights of the randomly initialized decoder d are updated using gradients of the cross-entropy loss
Lce(P, Y ), while the pretrained encoder is frozen. This warming up stage enables the decoder to
learn the target task without distorting the generalizable knowledge of the pretrained encoder.

3.2 DECOUPLED FINETUNING OF ENCODER AND DECODER

After warming up the decoder, the encoder and decoder are fine-tuned in a decoupled manner. Dur-
ing decoupled finetuning, they are assigned as one of two components, the retentive component (RC)
and the adaptive component (AC), but are different from each other. Then AC is updated using gra-
dients of the training loss from the source domain, while RC is updated by an exponential moving
average (EMA) scheme to retain its generalization capability.

To decouple the encoder and decoder then finetune both, we define two distinct pathways, which
can be represented as two segmentation models f1 and f2 that share the same architecture but have
opposing configurations for AC and RC. Let f1 = d̃1 ◦ e1 and f2 = d2 ◦ ẽ2 be the segmentation
models, where d̃1 and ẽ2 are the RCs, and d2 and e1 are the ACs. The weights of ACs, d2 and e1,
are updated using the cross-entropy loss Lce(P

(1), Y ) and Lce(P
(2), Y ), where P (1) = f1(X) and

P (2) = f2(X) are the predictions of f1 and f2, respectively. On the other hand, RC in one model
is not updated by the cross-entropy loss but by the exponential moving average of AC in the other,
with an update ratio β:

θ̃t+1
d1

= βθ̃td1
+ (1− β)θtd2

, θ̃t+1
e2 = βθ̃te2 + (1− β)θte1 , (2)

where θ̃td1
and θ̃te2 are the weights of d̃1 and ẽ2 at the t-th iteration, respectively. Updates of ACs

and RCs are conducted simultaneously during the second stage.

3.3 OUR FINAL MODEL FOR INFERENCE

DeFT produces two encoders, e1 and ẽ2, and two decoders, d̃1 and d2. As the two RCs better
preserve their initial states which are more generalizable and thus have superior generalization ca-
pability compared to the ACs, we set our final model as the combination of the two RCs from f1
and f2: ffinal = d̃1 ◦ ẽ2. Since each RC from different pathways is updated based on its counterpart
AC in Eq. (2), their feature distributions are implicitly aligned, properly adapting to each other.

3.4 EMPIRICAL JUSTIFICATION FOR DEFT

The decoupled finetuning improves the model’s generalization capability by enabling the encoder
and decoder to be trained independently, each benefiting from less-overfitted decision boundaries
or features derived from their respective generalized counterparts. Moreover, it can tighten the
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Figure 3: We empirically demonstrate that the model jointly finetuned tends to move further away
from its initial parameters than the model finetuned with DeFT. We measured the distance between
the current and initial parameters of each model using three metrics: (a) L2 norm (Nagarajan &
Kolter, 2019), (b) MARS norm (Gouk et al., 2021), and (c) operator norm (Long & Sedghi, 2020).
The final model ffinal = d̃1 ◦ ẽ2 was used to measure the distance for DeFT. The results show that
the model finetuned with DeFT exhibits a shorter distance from its initial parameters than the jointly
finetuned one, resulting in better generalization performance.

generalization bounds of the model, as it reduces both the number of parameters to be optimized
at each pathway and the distance from initial parameters, i.e., the distance between the learned
parameters and their initial values.

DeFT divides a single optimization objective of joint finetuning, which handles all the parameters
in the model simultaneously, into two separate optimization objectives: one for the encoder and one
for the decoder. As a result, each of the networks f1 and f2 is trained on a separate objective with
fewer parameters to optimize compared to the original model. This leads to a tighter generalization
bound for each module than the joint finetuning (Du et al., 2018b; Long & Sedghi, 2020).

We also empirically demonstrate that DeFT reduces the distance from initial parameters, which is
one of the critical factors for the model’s generalization bounds (Nagarajan & Kolter, 2019; Long &
Sedghi, 2020; Gouk et al., 2021; Li & Zhang, 2021). Thanks to the EMA update scheme in DeFT,
RCs are updated to maintain their initial states, partially retaining their initial weights. RCs, ẽ2 and
d̃1, which comprise our final model, exhibit a shorter distance from their initialization as shown in
Figure 3, resulting in better domain generalization capability.

Moreover, we compare DeFT to other methods which explicitly regularize the distance from initial
parameters: using low learning rates and adding a distance regularization into optimization objec-
tive. The results in Table 2 show that simply reducing the learning rate does not always lead to
performance improvement, rather degrading its generalization performance due to the increased the
risk of falling in local minima. For the distance regularization, we add a regularization term to the
optimization objective to regularize the sum of the Euclidean distances from initial parameters. Let
L be the number of layers in the model, and, Wi and W

(0)
i be weights of the model and its initial

parameters of the l-th layer. Then the revised training loss after warming up the decoder is given by:

Ltraining = Lce + α ·
L∑

i=1

∥Wi −W
(0)
i ∥, (3)

where ∥·∥ denotes the Frobenius norm for matrices and the Euclidean norm for vectors, respectively.
The results reported in Table 3 demonstrate that DeFT outperforms joint finetuning, even the dis-
tance regularization is applied. The result also suggests that distance regularization can be applied
orthogonally to DeFT. In addition to the empirical justification, we provide theoretical foundation
of DeFT in Section B.

4 EXPERIMENTS

In this section, we first describe the experimental settings and implementation details, followed by
a demonstration of the effectiveness of our DeFT framework through a series of extensive experi-
ments, including various ablation studies.
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Table 2: Analysis of the impact of learning rate. We investigate whether reducing the learning rate
after the warm-up stage can lead to better generalization. All the methods were trained on GTAV
using ResNet-50 backbone. The results demonstrate that a small learning rate increases the risk of
falling in local minima, resulting in suboptimal performance.

Method Learning rate Cityscapes BDD100K Mapillary Avg.

Joint Finetuning 1e-2 42.32 40.33 44.88 42.51
3e-3 44.87 42.10 49.38 45.45
1e-3 44.01 39.47 47.45 43.64
1e-4 40.84 37.38 44.83 41.02

DeFT 1e-2 50.06 43.17 50.51 47.91

Table 3: Impact of distance-based regularization. All the methods were trained on GTAV using
ResNet-50 backbone. DeFT outperformed joint finetuning in both settings. The result also suggests
that the distance regularization is orthogonal to DeFT and further improve its performance.

Method Cityscapes BDD100K Mapillary Avg.

Joint Finetuning 42.32 40.33 44.88 42.51
Joint Finetuning + Distance Regularization 46.06 40.80 47.93 44.93

DeFT 50.06 43.17 50.51 47.91
DeFT + Distance Regularization 51.09 43.46 51.58 48.71

4.1 EXPERIMENTAL SETUP

Datasets. We used three real-world datasets, Cityscapes (Cordts et al., 2016), BDD-100K (Yu et al.,
2020), and Mapillary (Neuhold et al., 2017), and two synthetic datasets, GTAV (Richter et al., 2016)
and SYNTHIA (Ros et al., 2016) for the experiment. Cityscapes is a real-world urban driving scene
dataset, comprising 2,985 images for training and 500 for validation. BDD-100K is another real-
world urban driving scene dataset, and we used the 1,000 validation images for evaluation. Mapillary
consists of 25,000 images collected from various worldwide locations, and we used 2,000 valida-
tion images for evaluation. GTAV contains 24,966 images generated from the Grand Theft Auto
V (GTAV) game engine, split into 12,403 images for training and 6,382 for validation. SYNTHIA is
a photo-realistic synthetic urban scene dataset, consisting of 9,400 images. We used 6,382 validation
images for evaluation.

Network architecture. We utilized DeepLab v3+ (Chen et al., 2018) as the segmentation model
with ImageNet (Deng et al., 2009) pretrained ResNet-(50/101) (He et al., 2016) backbone networks.
During training, we introduced two segmentation models that share the same architecture.

Implementation details. The model was trained with a batch size of 4 through SGD with a mo-
mentum of 0.9. For the warm-up stage, the model was trained for 2K iterations for Cityscapes and
8K iterations for GTAV, with a learning rate of 1e-2 and a weight decay of 5e-3. During the decou-
pled finetuning, the model was trained for 40K iterations with a learning rate of 1e-2 and a weight
decay of 5e-4. We employed a polynomial learning rate decay schedule with a power of 0.9. For
data augmentation, we adopted color jittering, Gaussian blurring, random horizontal flipping with
a probability of 0.5, random scaling in the range [0.5, 2.0], and random cropping with a size of
768× 768. The weight update ratio β was set to 0.9999. We used the mean Intersection-over-Union
(mIoU) as the evaluation metric. We excluded the auxiliary cross-entropy loss applied to the en-
coder, which has been widely adopted in previous work (Zhao et al., 2017; Pan et al., 2018; Lee
et al., 2022; Zhao et al., 2022; Chattopadhyay et al., 2023; Ahn et al., 2024), as it degrades OOD
generalization capability.

4.2 COMPARISON WITH STATE OF THE ART

We conducted a series of experiments to evaluate the effectiveness of DeFT. DeFT was compared
with existing domain generalization methods, including IBN-Net (Pan et al., 2018), DRPC (Yue
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Table 4: Quantitative result comparison in mIoU (%) using ResNet-50 and ResNet-101 backbones.
The model was trained on GTAV and evaluated on Cityscapes (C), BDD100K (B), and Mapil-
lary (M).

Methods ResNet-50 ResNet-101

C B M Avg. C B M Avg.

Baseline 35.16 29.71 31.29 32.05 35.73 34.06 33.42 34.40
IBN-Net (Pan et al., 2018) 33.85 32.30 37.75 34.63 37.37 34.21 36.81 36.13
DRPC (Yue et al., 2019a) 37.42 32.14 34.12 34.56 42.53 38.72 38.05 39.77
ISW (Choi et al., 2021) 36.58 35.20 40.33 37.37 37.20 33.36 35.57 35.38
WildNet (Lee et al., 2022) 44.62 38.42 46.09 43.04 45.79 41.73 47.08 44.87
SAN-SAW (Peng et al., 2022) 39.75 37.34 41.86 39.65 45.33 41.18 40.77 42.43
DIRL (Xu et al., 2022) 41.04 39.15 41.60 40.60 - - - -
SHADE (Zhao et al., 2022) 44.65 39.28 43.34 42.42 46.66 43.66 45.50 45.27
PASTA (Chattopadhyay et al., 2023) 44.12 40.19 47.11 43.81 45.33 42.32 48.60 45.42
TLDR (Kim et al., 2023b) 46.51 42.58 46.18 45.09 47.58 44.88 48.80 47.09
BlindNet (Ahn et al., 2024) 45.72 41.32 47.08 44.71 - - - -

DeFT (Ours) 50.06 43.17 50.51 47.91 52.14 45.16 53.15 50.15

Table 5: Quantitative result comparison in mIoU (%) using ResNet-50 backbone. The model was
trained on Cityscapes and evaluated on BDD-100K (B), SYNTHIA (S), and GTAV (G).

Methods B S G Avg.

Baseline 44.96 23.29 42.55 36.93
IBN-Net (Pan et al., 2018) 48.56 26.14 45.06 39.92
DRPC (Yue et al., 2019a) 49.86 26.58 45.62 40.69
ISW (Choi et al., 2021) 50.74 26.20 45.00 40.64
WildNet (Lee et al., 2022) 50.94 27.95 47.01 41.97
SAN-SAW (Peng et al., 2022) 52.95 28.32 47.28 42.85
DIRL (Xu et al., 2022) 51.80 26.50 46.52 41.61
SHADE (Zhao et al., 2022) 50.95 27.62 48.61 42.39
BlindNet (Ahn et al., 2024) 51.84 28.51 47.97 42.77

DeFT (Ours) 53.12 28.87 48.72 43.57

et al., 2019a), ISW (Choi et al., 2021), WildNet Lee et al. (2022), SAN-SAW (Peng et al.,
2022), DIRL Xu et al. (2022), SHADE Zhao et al. (2022), PASTA (Chattopadhyay et al., 2023),
TLDR (Kim et al., 2023b), and BlindNet (Ahn et al., 2024), using five datasets—(C)ityscapes,
(B)DD-100K, (M)apillary, (S)YNTHIA, and (G)TAV, and two different backbone networks—
ResNet-50 and ResNet-101. To evaluate the generalization ability of our method on various un-
seen domains, we conducted experiments in two scenarios: 1) the model was trained on GTAV and
evaluated on Cityscapes, BDD-100K, and Mapillary, or 2) the model was trained on Cityscapes
and evaluated on BDD-100K, SYNTHIA, and GTAV. For the first case, the results in Table 4 show
that our method outperforms all other methods by a large margin when trained on GTAV, using
either ResNet-50 or ResNet-101 as a backbone. Similarly, the results in Table 5 demonstrate that
our method also outperforms all other methods in the second case, where the model was trained on
Cityscapes with ResNet-50 backbone.

4.3 ABLATION STUDIES

In this subsection, we study the individual contribution and effectiveness of each component within
our method. For the all experiments, the model was trained on GTAV and evaluted on Cityscapes,
BDD100K and Mapillary with ResNet-50 backbone.

Ablation study of the impact of individual component for training. To investigate the con-
tribution of individual component during training, we investigated the impact of various training
components and measured its performance. We considered four different components for the ex-
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Table 6: Ablation study of the impact of individual component for training. Aux. and Aug. denote
the auxiliary cross-entropy loss attached to the encoder and data augmentation, respectively. All
the methods were trained on GTAV using ResNet-50 backbone. Warm-Up represent warming up
the decoder while freezing the encoder before finetuning, and DeFT is the proposed decoupled
finetuning.

w/o Aux. Aug. Warm-Up DeFT Cityscapes BDD100K Mapillary Avg.

35.16 29.71 31.29 32.05

✓ 36.58 34.49 39.08 36.72
✓ ✓ 40.77 37.87 43.39 40.66
✓ ✓ ✓ 42.32 40.33 44.88 42.51
✓ ✓ ✓ ✓ 50.06 43.17 50.51 47.91

Table 7: Ablation study of the impact of the decoupled finetuning strategy.

Finetuning strategy Cityscapes BDD100K Mapillary Avg.

Joint finetuning 42.32 40.33 44.88 42.51
Joint finetuning + EMA 48.30 42.29 49.02 46.54
DeFT 50.06 43.17 50.51 47.91

Table 8: Analysis on the impact of final model configuration.

ID e1 (AC) ẽ2 (RC) d̃1 (RC) d2 (AC) Cityscapes BDD100K Mapillary Avg.

I ✓ ✓ 39.30 37.41 43.14 39.95
II ✓ ✓ 43.15 39.82 45.55 42.84
III ✓ ✓ 47.29 41.84 49.33 46.15
IV ✓ ✓ 50.06 43.17 50.51 47.91

periments: removing the auxiliary cross-entropy loss attached to the encoder (w/o Aux.), data aug-
mentation (Aug.), decoder warming up (Warm-up) and our DeFT framework (DeFT). Note that all
the settings except the last row (DeFT) conducted joint finetuning, instead of decoupled finetuning.
The results in Table 6 show that each component contributes to the performance, and applying all of
them improves the most.

Ablation study on the decoupled finetuning strategy. we conducted an experiment to investigate
the effect of decoupled finetuning and that of weight ensemble separately. To be specific, we jointly
finetuned the encoder and decoder, and considered their EMA versions as the final model for eval-
uation. The EMA update ratio β was set to 0.9999, the same as DeFT. The results in the Table 7
show that the proposed decoupled finetuning strategy better preserves generalizable knowledge of
the pretrained encoder and decoder than joint finetuning.

Ablation study on final model configuration. We set our final model as the combination of two
RCs, i.e., EMA encoder ẽ2 and EMA decoder d̃1, as RCs preserve the rich and generalizable knowl-
edge. To investigate this, we conducted additional ablation study on various combination of RCs
and ACs. We measured the performance of each combination when the whole training ended, and
the results are listed in Table 8. The experiments show that superior generalization capability of
RC (Exp. II, III and IV) than AC (Exp. I), where using both of RCs outperformed all other settings
by a large margin.

Ablation study on the impact of the update ratio β. We employed the exponential moving average
as an update scheme for RC with the update ratio β in Eq. (2). To investigate the impact of β, we
conducted additional experiments by varying the values of β. The results in Table 9 demonstrate that
assigning a higher weight to the model’s initial parameters yields better generalization performance.
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Table 9: Ablation study of the impact of the update ratio β in Eq. (2).

EMA update ratio (β) Cityscapes BDD100K Mapillary Avg.

0.99 44.37 40.79 46.81 43.99
0.999 46.19 42.14 48.81 45.71
0.9999 50.06 43.17 50.51 47.91

Figure 4: Qualitative results of DeFT and its baseline. The model was trained on the GTAV dataset
using ResNet-50 and tested on the Cityscapes, BDD100K, and Mapillary datasets.

5 CONCLUSION

In this paper, we have demonstrated the detrimental effects of jointly finetuning the encoder and de-
coder in semantic segmentation models on domain generalization. Our empirical analysis revealed
that this common practice leads to overfitting on the source domain, thereby degrading the model’s
generalization capability. To address this issue, we introduced DeFT, a novel and effective training
framework that decouples the finetuning of the encoder and decoder. This decoupled finetuning pre-
vents them from being trained based on their counterpart, which might be overfitted to the source
domain, resulting in improved generalization capability. DeFT operates in two stages. In the first
stage, we warm up the decoder while keeping the pretrained encoder frozen. In the second stage, we
decouple the finetuning process by employing two parallel encoder-decoder pathways, each consist-
ing of adaptive components (ACs) and retentive components (RCs). The ACs are updated through
standard backpropagation on the source domain, while the RCs are updated using an exponential
moving average of the ACs’ parameters. This approach enables the RCs to learn task-relevant infor-
mation while maintaining their generalization ability. Our extensive experiments demonstrate that
DeFT consistently outperforms existing methods in domain generalizable semantic segmentation.

Limitation and discussion. Although DeFT has demonstrated impressive performance improve-
ment through a large number of experiments, there is still room for further theoretical analysis.
Also, there might be better design choices for RCs, although the EMA models showed their gener-
alization capability. We believe that building a more concrete theoretical foundation and exploring
a better alternative configurations for the RCs will be promising future research directions.
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A ALGORITHMS FOR EACH STAGE OF DEFT

In this sections, we present PyTorch-like pseudocodes for each stage of DeFT. Algorithm 1 describes
the training procedure for decoder warm-up, and Algorithm 2 describes the training procedure for
decoupled finetuning and the configuration of the final model for inference.

Algorithm 1 Pseudocode for Decoder Warm-Up, PyTorch-like

1 # e: pretrained encoder e
2 # d: randomly initialized decoder d
3 # CE: standard pixel-wise cross entropy loss Lce

4

5 freezing_weights(e)
6

7 for x, y in source_loader: # load a minibatch x with n samples
8 p = d(e(x)) # prediction P = f(X) = d(e(X))
9 L = CE(p, y) # calculate loss

10

11 L.backward()
12 update(d) # only the decoder d is updated

Algorithm 2 Pseudocode for Decoupled Finetuning and Inference, PyTorch-like

1 # e: warmed-up encoder e, the same as the pretrained encoder
2 # d: warmed-up decoder d
3 # CE: standard pixel-wise cross entropy loss Lce

4 # beta: EMA update ratio β
5

6 e1 = copy(e) # AC encoder e1
7 e2 = copy(e) # RC encoder ẽ2
8

9 d1 = copy(d) # RC decoder d̃1
10 d2 = copy(d) # AC decoder d2
11

12 freezing_weights(e2)
13 freezing_weights(d1)
14

15 for x, y in source_loader: # load a minibatch x with n samples
16 p1 = d1(e1(x)) # prediction P (1) from f1 = d̃1 ◦ e1
17 L1 = CE(p1, y) # calculate loss
18

19 p2 = d2(e2(x)) # prediction P (2) from f2 = d2 ◦ ẽ2
20 L2 = CE(p2, y) # calculate loss
21

22 L1.backward()
23 L2.backward()
24

25 update(e1) # update AC encoder e1
26 update(d2) # update AC decoder d2
27

28 update_EMA(e2, e1, beta) # update RC encoder ẽ2
29 update_EMA(d1, d2, beta) # update RC decoder d̃1
30

31 def update_EMA(rc, ac, beta):
32 for param_rc, param_ac in zip(rc.parameters(), ac.parameters()):
33 param_rc = beta * param_rc + (1 - beta) * param_ac
34

35 def inference(x):
36 return d1(e2(x)) # final model ffinal = d̃1 ◦ ẽ2
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B THEORETICAL FOUNDATION OF DEFT

This section theoretically justifies the motivation and design choices of DeFT to validate its efficacy.
To be specific, we discuss (1) the issues of joint finetuning, and (2) how DeFT resolves them.

Kumar et al. (2022) showed that jointly finetuning a well-generalizable encoder with a randomly
initialized decoder distorts the representation of the encoder, and proved this theoretically for the
case of a two-layer linear neural network. Let us suppose finetuning a two-layer linear network
fB,v consisting of an encoder B ∈ Rk×d and a decoder head v ∈ Rk. For in-distribution (ID) data
X ∈ Rn×d and its corresponding label y ∈ Rn, the loss to be optimized is L(ŷ, y) = ||ŷ − y||22,
where ŷ = fB,v(x) = XB⊤v is the prediction of the network f for X . Then, the gradient of B for
the loss L is as follows:

∇BL(ŷ, y) = 2v(XB⊤v − y)⊤X.

Considering an out-of-distribution (OOD) data point u ∈ Rd which is orthogonal to the ID subspace
S = rowspace(X). Then the feature representation of the updated encoder for u, denoted by B′u,
where B′ = B − λ∇BL(ŷ, y), is as follows:

B′u = (B − λ∇BL(ŷ, y))u = Bu− λ∇BL(ŷ, y)u = Bu− 2v(XB⊤v − y)⊤Xu.

Note that u is orthogonal to the rowspace of X , and thus 2v(XB⊤v− y)⊤Xu goes to 0. Therefore,
in such case, changes in B with respect to the ID data X cannot affect the feature representation of
the OOD data u. However, the decoder head v also changes since loss gradients for updating the
encoder and decoder are coupled, which is referred to as “balancedness” in Du et al. (2018a). Then
the change of the decoder head affects the predictions for OOD data U , which is given by

UB′⊤v′ = UB′⊤(v − λv∇vL) = UB′⊤v − λvUB′⊤∇vL

Since the representations for U are same during the update, i.e. UB = UB′, the predictions for U
can be distorted as λvUB′⊤∇vL, where ∇vL = 2BX⊤(XB⊤v− y). Such distortion in prediction
can impair the generalization capability on OOD data as ∇vL is calculated solely based on ID data
X . As a result, the entire model becomes less capable of handling OOD data by the joint finetuning.
This suggests the need to decouple one module from being affected by the distortion of another
module.

On the other hand, consider a linear probing case where the encoder is fixed and no feature distortion
occurs. According to Lemma A.14 in Kumar et al. (2022), the upper bound of OOD error of the
linear probing is: √

Lood(v∞lp , B0) ≤
(

cδ
cos θmax(S,R)

)2

d(B0, B⋆)∥w⋆∥2,

where Lood(v
∞
lp , B0) is OOD error with the frozen initial encoder B0 and linearly probed decoder

head v∞lp , cos θmax(S,R) is the cosine of the largest angle between S = rowspace(X) and R =

rowspace(B0), w⋆ = B⋆v⋆ with the optimal encoder B⋆ and decoder v⋆, and d(B0, B⋆) is the
distance between B0 and B⋆. A rigorous proof of the above upper bound can be found in Kumar
et al. (2022). This demonstrates that the upper bound of OOD error of the linear probing is inversely
proportional to the difference between the pretrained encoder and the “optimal” encoder, which
shows the lowest errors for both ID and OOD data. In other words, in the linear probing case, a
decoder coupled with more generalizable encoder results in a more generalizable final model.

Based on this, we first decouple the encoder and decoder to prevent each module from being dis-
torted by their jointly finetuned counterparts, coupling them with counterparts which are not affected
by distribution (i.e., domain) shift thus are well generalizable. Through the empirical analysis of the
distance from initialization in Figure 3, it can be inferred that DeFT suppresses such “distortion”
from the initial states during training, resulting in better generalization capability.

The optimization behavior from the perspective of individual network modules, such as encoders and
decoders, as well as the interactions between these modules during the optimization process, seems
to remain relatively underexplored. We expect that further foundational study in this direction might
pave the way for more rigorous theoretical analysis of DeFT.
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C VERSATILITY OF DEFT AT A TRANSFORMER BACKBONE

We evaluated DeFT using the MiT-B5 (Xie et al., 2021) transformer backbone. All models were
trained on GTAV and evaluated on Cityscapes, BDD100K, and Mapillary. As shown in Table 10,
DeFT outperformed existing methods, such as DAFormer (Hoyer et al., 2022) and the combination
of DAFormer and DGinStyle (Jia et al., 2024), using the same backbone. Notably, DeFT achieved
this outstanding performance without additional modifications, unlike DAFormer, which adapts its
model architecture for domain generalization, or DGinStyle, which relies heavily on extreme data
augmentation. We believe that incorporating such strategies could further enhance DeFT’s perfor-
mance. These results demonstrate that DeFT is a versatile training strategy applicable across various
backbones.

Table 10: Comparison between DeFT and other methods incorporating MiT-B5 backbone.

Segformer / MiT-B5 Cityscapes BDD100K Mapillary Avg.
DAFormer (Hoyer et al., 2022) 52.65 47.89 54.66 51.73
DAFormer + DGInStyle (Jia et al., 2024) 55.31 50.82 56.62 54.25
DeFT (Ours) 57.16 49.32 59.99 55.49

D OTHER UPDATE SCHEMES FOR RETENTIVE COMPONENTS (RCS)

We conducted additional experiments by replacing the update scheme for RC in DeFT (i.e., EMA)
with two different weight ensemble methods.

(A) Exponentially decreasing the later ensemble coefficient:

θRC
t =

α ∗ θRC
t−1 + θAC

t

T
, T =

t−1∑
i=0

αi, α > 1. (4)

(B) Simply averaging the latest AC weights with the initial weights, similar to WiSE-FT (Wortsman
et al., 2022b):

θRC
t = 0.5 ∗ θAC

t + 0.5 ∗ θ0. (5)

All models were trained on GTAV and evaluated on Cityscapes, BDD100K, and Mapillary. As
shown in Table 11, the EMA biased towards initialization employed in DeFT clearly outperformed
the other weight ensemble methods.

Table 11: Comparison between the EMA and other RC update schemes.

Update scheme Cityscapes BDD100K Mapillary Avg.

(A) Exponentially decreasing 44.46 40.86 46.72 44.01
(B) WiSE-FT 45.03 40.47 47.04 44.18
(C) EMA (DeFT) 50.06 43.17 50.51 47.91

E ADDITIONAL QUALITATIVE RESULTS

In this section, we provide additional qualitative results on Cityscapes (Cordts et al., 2016) in Fig-
ure 5, BDD100K (Yu et al., 2020) in Figure 6, and Mapillary (Neuhold et al., 2017) in Figure 7,
respectively, which are not presented in the main sections due to the space limit. We used the model
trained on the GTAV (Richter et al., 2016) using ResNet-50 (He et al., 2016) backbone. We also
provide the color code of 19 classes in Figure 8.
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Figure 5: Qualitative results of DeFT and its baseline on Cityscapes dataset.

Figure 6: Qualitative results of DeFT and its baseline on BDD100K dataset.
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Figure 7: Qualitative results of DeFT and its baseline on Mapillary dataset.

Figure 8: The color code of 19 classes on the training and test datasets.
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